
Findings of the Association for Computational Linguistics: EACL 2024, pages 17071–17084
November 12-16, 2024 ©2024 Association for Computational Linguistics

MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language
Models Fine-tuning

Jingfan Zhang1∗ Yi Zhao2∗ Dan Chen3† Xing Tian4 Huanran Zheng5 Wei Zhu5†
1 iFLYTEK Co., Ltd, China

2 University of Pennsylvania, USA, zhaoyi3@seas.upenn.edu
3 Lenovo Connect Co., Ltd, China

4 Niuxin Network Technology Co., Ltd, China
5 East China Normal University, China

Abstract

Low-rank adaptation (LoRA) and its mixture-
of-experts (MOE) variants are highly effective
parameter-efficient fine-tuning (PEFT) meth-
ods. However, they introduce significant la-
tency in multi-tenant settings due to the LoRA
modules and MOE routers added to multiple
linear modules in the Transformer layer. To
address this issue, we propose Mixture of Low-
Rank Adaptation (MiLoRA), a novel and ef-
ficient LoRA variant. MiLoRA differs from
previous MOE-style LoRA methods by con-
sidering each LoRA module as an expert and
employing a prompt-aware routing mechanism.
This mechanism calculates expert routing re-
sults once before generating the first new to-
ken and reuses these results for subsequent
tokens, reducing latency. Extensive experi-
ments and analysis on commonsense reason-
ing tasks, math reasoning tasks, and widely
used LLM evaluation benchmarks demonstrate
that MiLoRA consistently outperforms strong
PEFT baselines with comparable tunable pa-
rameter budgets. Additionally, MiLoRA signif-
icantly reduces latency in multi-tenant settings
compared to previous LoRA-based methods.

1 Introduction

Large language models (LLMs) have been
achieving state-of-the-art (SOTA) results not only
in various natural language processing tasks (Qin
et al., 2023; Zhu et al., 2023) but also in numerous
challenging evaluation tasks (Huang et al., 2023;
Li et al., 2023), such as question answering, rea-
soning, math, safety, and instruction following. Al-
though LLMs are evolving into general task solvers,
fine-tuning remains essential for efficient LLM in-
ference and for controlling the style of the gener-
ated content (Xin et al., 2024; Ding et al., 2022).
Full-parameter fine-tuning of such large models

∗Equal contributions.
†Corresponding author. For any inquiries, please contact:

michaelwzhu91@gmail.com;

is impractical due to the significant GPU mem-
ory and computational resources required. Con-
sequently, parameter-efficient fine-tuning (PEFT)
(Zhang et al., 2023b; Zhao et al., 2023) has gar-
nered considerable attention in the research com-
munity, as it typically involves tuning less than
1% of the LLMs’ parameters, thereby substantially
reducing computational costs.

Among many PEFT methods, the
reparameterization-based method low-rank
adaptation (LoRA) (Hu et al., 2021) is considered
one of the most effective methods for LLMs (Xu
et al., 2023; Ding et al., 2022; Xin et al., 2024).
Although LoRA is effective and can bring stable
performance with the original setting in Hu et al.
(2021), it still brings inconvenience under the
multi-tenant setting (Chen et al., 2023): it has to
add LoRA modules to multiple weights of the
Transformer layer and introducing significant
additional latency in every generation steps
under the multi-tenant setting. Recently, the
Mixture-of-Experts (MOE) style LoRA methods
(Chen et al., 2024; Yang et al., 2024; Liu et al.,
2023; Dou et al., 2023; Gou et al., 2023) have
surged, further pushing the performance ceilings
of LoRA fine-tuning. However, they introduce
the calculation of MOE routers, further increasing
inference latency. Thus, it is essential to develop a
novel variant of the LoRA method that introduces
minimum latency during generation and still can
perform competitively in downstream tasks.

In this work, we propose a novel PEFT
method called Mixture of Low-Rank Adaptation
(MiLoRA). Our MiLoRA method differs from the
previous literature on MOE-style LoRA methods
in the following two aspects. First, in MiLoRA, an
entire LoRA module is considered a LoRA expert,
and the LoRA router is responsible for determin-
ing which LoRA expert to activate. Second, we
propose the prompt-aware routing mechanism in-
stead of calculating the expert routing results for

17071

mailto:zhaoyi3@seas.upenn.edu

Figure 1: Schematic illustration of our MiLoRA method. Left: The architecture of a Transformer layer as in
LlaMA-2 (Touvron et al., 2023). There are seven linear modules and seven positions to add LoRA modules. Right:
Upon receiving an input prompt, the LoRA router before each Transformer layer will take the input prompt’s hidden
states as input features and go through a pooler, an activation function, and the MOE router network to determine
which LoRA module is activated (or used) (e.g., LoRA U in the figure). This routing decision is repeatedly used
when generating subsequent tokens.

every new token. Given an input prompt, the expert
routing results are calculated once, right before the
generation of the first new token. The subsequent
generation steps will reuse the expert routing re-
sults. Under the prompt-aware routing mechanism,
our LoRA router consists of a pooler operation, a
learnable activation function (Molina et al., 2019),
and a sparse MOE router.

We conduct extensive experiments and analy-
sis on various challenging tasks, including five
commonsense reasoning tasks, two math reasoning
tasks, and three widely used LLM evaluation bench-
marks. Our method can consistently outperform
strong PEFT baselines with comparable tunable pa-
rameter budgets, especially the recent LoRA vari-
ants. In addition, our MiLoRA method has signifi-
cantly lower latency under the multi-tenant setting
(Chen et al., 2023) than the previous LoRA-based
methods with comparable tunable parameters.

Our contributions are summarized as follows:

• we propose a novel LoRA variant, MiLoRA,
which combines the MOE mechanism with
LoRA in an efficient way.

• In MiLoRA, we treat each LoRA module as
an expert.

• We propose a prompt-aware routing mecha-
nism to avoid token-wise router calculations.

• We have conducted extensive experiments and
analysis showing that our MiLoRA frame-
work is (a) practical and outperforms the base-
lines under comparable parameter budgets. (b)
efficient during inference for LLMs.

2 Related works

Since LoRA is the most popular PEFT method
in the era of large language models, many works
are devoted to improving upon LoRA. AdaLoRA
(Zhang et al., 2023a) looks into the parameter al-
location of LoRA modules. VERA (Kopiczko
et al., 2023) investigate whether one could freeze
the randomly initialized LoRA matrices and only
learn a set of scaling vectors. Recently, a series of
works has been looking into combining Mixture-of-
Experts (MoE) (Shazeer et al., 2017; Jacobs et al.,
1991) and LoRA. LLaVA-MoLE (Chen et al., 2024)
effectively routes tokens to domain-specific LoRA
experts, mitigating data conflicts and achieving con-
sistent performance gains over the original LoRA
method. MOELoRA (Liu et al., 2023) proves that
fine-tuning LoRA modules with a MOE router en-

17072

ables the LLMs to perform well in a multi-task
learning setting. MoRAL (Yang et al., 2024) ad-
dresses the challenge of adapting LLMs to new
domains/tasks and enabling them to be efficient
lifelong learners using the MOE techniques. Lo-
RAMoE (Dou et al., 2023) integrates LoRAs using
a router network to alleviate world knowledge for-
getting after instruction tuning. MoCLE (Gou et al.,
2023) proposes a MoE architecture to activate task-
customized model parameters based on instruction
clusters.

Although performing well in fine-tuning, these
methods introduce high additional latency since
(a) these methods do not reduce the number of
LoRA modules in the Transformer backbone. (b)
the routers and LoRA modules must be called when
generating each new token. Our MiLoRA method
addresses this efficiency issue by (a) only calling
the LoRA routers when encoding the input prompt
and before generating the first new token. (b) only
activate one LoRA module per Transformer layer.

3 Methods

In this section, we first introduce the founda-
tional concepts of LoRA and MoEs and then elabo-
rate on the architectural design of MiLoRA.

3.1 Preliminaries
Transformer model As depicted in Figure 1,
each Transformer layer of a LLM such as LlaMA-2
(Touvron et al., 2023) consists of a multi-head self-
attention (MHA) sub-layer and a fully connected
feed-forward (FFN) sub-layer. MHA contains four
linear modules, which are the Query (Q), Key (K),
Value (V), and Output (O) modules. FFN contains
three linear modules: Gate (G), Up (U), and Down
(D). For notation convenience, we will refer to
the number of modules in a Transformer block as
Nmod. Thus, in LlaMA-2, Nmod = 7.
LoRA For any Transformer module m ∈
{Q, K, V, O, G, U, D}, the LoRA method adds a
pair of low-rank matrices to reparameterize its
weights. Formally, the forward calculation of mod-
ule m with LoRA is:

x
′
= xWm + xWA

mWB
m + bm, (1)

where Wm ∈ Rd1×d2 is the weight matrix of mod-
ule m, bm is its bias term. WA

m ∈ Rd1×r and
WB

m ∈ Rr×d2 are the low-rank matrices for the
LoRA module, and r ≪ min(d1, d2). r is the rank
of the two matrices and will also be referred to as
the rank of the LoRA module.

3.2 Motivation
As demonstrated later in Table 4, the existing

works on MOE style LoRA significantly slow down
the LLM backbone during inference, reducing to-
kens per second (tps) by around 20%. Each LoRA
module is decomposed into multiple experts in
these works, and a router should be called to deter-
mine which experts are activated. The calculations
of multiple LoRA modules and multiple routers
per layer are executed when generating every new
token, resulting in latency that is not negligible. In
order to improve the efficiency of such MOE LoRA
methods, we need to investigate the following re-
search questions:
RQ1. Can we treat a LoRA module as an expert
so that each Transformer layer has only one LoRA
router and activate only one such expert per layer?
RQ2. Can the LoRA router be called once for an
input prompt?

3.3 Prompt-aware LoRA router
Trying to investigate RQ1 and RQ2, we now try

to propose the details of our MiLoRA method. The
core of MiLoRA is the prompt-aware routing mech-
anism. Under this mechanism, the LoRA router
takes the input prompt’s hidden states as input and
outputs the activated LoRA experts for the current
layer. Different from the previous works (Chen
et al., 2024; Yang et al., 2024; Liu et al., 2023; Dou
et al., 2023; Gou et al., 2023), our work: (a) only
calculates the LoRA routers once when the input
prompt is fed through the Transformer backbone
for the first time and right before generating the first
new token. The routers’ activation decisions will be
repeatedly used in the subsequent generation steps.
(b) determine the activated LoRA experts at the
Transformer’s layer level, selecting which Trans-
former module is modified by its corresponding
LoRA module.

As shown in Figure 1, to generate a response, the
input prompt has to go through the LLM backbone
to obtain the hidden representations. Denote the
hidden state of the input prompt with length np

right before Transformer layer l as Hl ∈ Rnp×d.
Then a pooling operation Pooler() aggregates the
semantic information in Hl and transforms it to
hl ∈ R1×d:

hl = Pooler(Hl). (2)

Here, according to (Zhu, 2021b,a), the Pooler op-
eration can be one of the following: (a) last-token

17073

pooling, which is to use the vector representation
of the last token in the prompt as hl. This pooler is
widely used when decoder-based models perform
sentence classification tasks. (b) average pooling.
(c) max pooling. (d) self-attention-based pooling,
whose detail is introduced in Appendix C.

Then, hl will go through an activation function
g and then the LoRA router Rl right before layer
l. Rl assigns the current input prompt to the most
suitable LoRA expert. This router contains (a) a lin-
ear layer that computes the probability of hl being
routed to each LoRA expert LoRAm, (b) a softmax
function to model a probability distribution over
the LoRA experts, and finally, (c) a Top-k function
that choose the top k > 0 experts with the highest
probability masses. Formally,

Rl(hl) = Top-k(Softmax(g(hl)W l
r)), (3)

where W l
r ∈ Rd×Nmod is the router’s weight. The

LoRA router dynamically selects the best k experts
for each input prompt during inference. Note that
the router is only called once before a new token
is generated. The activated LoRA experts are used
throughout the whole generation process.

Following Fedus et al. (2022), we add a load
balancing loss to the training loss function. Con-
sider a training batch B with NB samples, let f l

i

represent the proportion of prompts assigned to the
i-th LoRA expert in layer l,

f l
i =

1

NB

∑

x∈B
1{argmax

j
plj(x) = i}, (4)

where plj is the probability of expert j, output by the
router l. Let p̂li be the average of probability masses

received by the i-th expert, p̂li =
1

NB

∑
x∈B pli(x).

Then, the load balancing loss is given by:

Llb = Nmod

Nmod∑

i=1

f l
i · p̂li. (5)

The Llb loss term is added to the cross entropy loss
with a coefficient λlb ≥ 0.

3.4 Learned activation functions
The previous PEFT literature usually set the ac-

tivation functions in a PEFT module to be ReLU
(Mahabadi et al., 2021; Pfeiffer et al., 2021; Liu
et al., 2022b) and does not discuss whether this
setting is optimal. In addition, the PEFT modules’
activation functions in different Transformer layers

are usually set to be identical. As will be presented
later in Table 5, it is beneficial for LoRA routers of
different depths to have different activation func-
tions. Thus, how can we find an optimal setting
for the LoRA routers’ activation functions? Ex-
haustive hyper-parameter search is time and GPU-
consuming. Thus, we are motivated to set the acti-
vation function to be learnable during training.

We resort to rational activation functions
(Molina et al., 2019), which are learnable and
can approximate common activation functions and
learn new ones. The rational activation function
R(x) of order m, n is defined as follows:

Ra(x) =

∑m
j=0 ajx

j

1 + ∥∑n
i=1 bix

i∥ , (6)

where aj and bi are learnable parameters. The ra-
tional activation functions are successfully applied
in image classification (Molina et al., 2019) and
sequence modeling (Delfosse et al., 2021).

Inspired by the above literature, we propose
learning the activation functions in LoRA routers
via the rational activation functions when finetun-
ing a downstream task. Denote the set of parame-
ters in the learnable activations as Θ and the other
parameters in the LoRA routers and LoRA experts
as Ω. Following DARTS (Liu et al., 2019), we con-
sider Θ as architectural parameters and optimize
them along with Ω via bi-level optimization. Due to
limited length, we introduce bi-level optimization
in Appendix A.

4 Experiments

In this section, we conduct a series of ex-
periments and analysis to evaluate our MiLoRA
method.

4.1 Datasets and evaluation metrics
We compare our approach to the baselines on a

collection of challenging tasks: (a) five benchmark
common-sense question-answering tasks, ARC-e
and ARC-c (Clark et al., 2018), OBQA (Mihaylov
et al., 2018), PIQA (Bisk et al., 2020), BoolQ
(Clark et al., 2019). (b) two math reasoning tasks,
AQuA (Ling et al., 2017) and GSM8k (Cobbe et al.,
2021). We utilize the chain-of-thought (COT) ratio-
nales for these samples provided by Hu et al. (2023)
for training on these math tasks. All rationales are
generated through zero-shot CoT (Wei et al., 2022;
Kojima et al., 2022) on GPT-3.51, but without un-

1https://platform.openai.com/docs/models

17074

https://platform.openai.com/docs/models

dergoing any error filtering. (c) MT-Bench (Zheng
et al., 2023), MMLU (Hendrycks et al., 2020), and
BBH (Suzgun et al., 2022). Since these tasks pro-
vide no training data, we utilize the Alpaca (Taori
et al., 2023) dataset for instruction tuning. The
detailed statistics, and evaluation metrics can be
found in Appendix B.

4.2 Baselines

We compare our MiLoRA framework with the
current SOTA PEFT baseline methods.
LoRA and its variants we consider the follow-
ing LoRA variants as baselines: (a) the original
LoRA (Hu et al., 2021); (b) AdaLoRA (Zhang
et al., 2023a), which adaptively adjust the LoRA
parameters among different Transformer modules.
(c) MOELoRA (Liu et al., 2023), which consid-
ers each LoRA module as a mixture of single-rank
LoRA experts. (d) DoRA (Liu et al., 2024), one of
the most recent variants of LoRA that decomposes
the pre-trained weights into two components, mag-
nitude, and direction, for fine-tuning, specifically
employing LoRA for directional updates.
Other PEFT methods We also consider the most
recent PEFT methods: (a) Parallel-Adapter pro-
posed by He et al. (2021); (b) Learned-Adapter
(Zhang et al., 2023b). (c) P-tuning v2 (Liu et al.,
2021). (d) IAPT (Zhu et al., 2024). (e) BitFit (Ben-
Zaken et al., 2021). (f) (IA)3 (Liu et al., 2022a),
which multiplies learnable vectors to the hidden
states in different modules of the Transformer layer.
(g) SSP (Hu et al., 2022), which is a representa-
tive work on combining different PEFT methods,
including LoRA and BitFit.

The baselines are implemented using their
open-sourced codes. We only adjust the hyper-
parameters related to tunable parameter numbers
to fairly compare the baseline methods and our
MiLoRA method.

4.3 Experiment Settings

Computing infrastures We run all our experi-
ments on NVIDIA A40 (48GB) GPUs.
Pretrained backbones The main experiments
use the most recent open-sourced LLMs, LlaMA-2
7B (Touvron et al., 2023) as the pretrained back-
bone model. In the ablation studies, we will
also use the recently released LlaMA-2 13B and
Gemma 2B (Team et al., 2024).
Prediction heads When fine-tuning LlaMA-2
7B, we only consider the supervised fine-tuning

(SFT) setting (Ouyang et al., 2022). After receiv-
ing a prompt or instruction, all the predictions are
generated using the language modeling head (LM
head). No additional prediction heads are installed
to make categorical or numerical predictions. For
decoding during inference, we use beam search
with beam size 3.
Hyper-parameters for the MiLoRA framework
In our experiments, unless otherwise specified, we
set: (a) the rank of each LoRA expert is set to
r = 32. (b) k is set to 3. That is, each router
activates one expert. (c) the LoRA router adopts
the self-attention pooler. (d) the hyper-parameters
of the rational activation are m = 6, n = 5, and
th e learnable parameters aj and bi are initialized
by approximating the GeLU activation function.
(e) λlb is set to 1e-2. Under the above settings,
our MiLoRA method will introduce 80.9M tunable
parameters and, at most, 16.4M activated PEFT pa-
rameters to the LlaMA-2 7B backbone. The hyper-
parameters for training are specified in Appendix
D.
Reproducibility We run each task under five
different random seeds and report the median per-
formance on the test set of each task.

Due to limited length, other experimental set-
tings for the baseline methods and the training pro-
cedure are in Appendix D.

4.4 Main results

Single-task setup. In this setup, We compare
MiLoRA with baseline PEFT methods by employ-
ing these methods for fine-tuning a single task. The
experimental results on the five commonsense rea-
soning tasks and two math reasoning tasks are pre-
sented in Table 1. We present the number of tunable
parameters in the second column and the average
activated parameters in the third column. Table
1 reveals that our MiLoRA method outperforms
the baseline methods across all seven tasks, with
comparable tunable parameters and much fewer
activated parameters. In particular, MiLoRA out-
performs the previous SOTA LoRA style baselines
like AdaLoRA, DoRA, and MOELoRA with com-
parable parameters. These results demonstrate that
our method is good at downstream task adaptation
of large language models.
Multi-task setup. Table 2 presents the results
of LoRA, DoRA, MOELORA, and MiLoRA with
LLaMA2-7B in multi-task learning. In contrast
to the single-task setup in Table 1, during multi-

17075

Method
Tunable Activated ARC-e ARC-c BoolQ OBQA PIQA AQuA GSM8k

Avg.
Params Params (acc) (acc) (acc) (acc) (acc) (acc) (acc)

Baselines
Parallel-Adapter 83.9M 83.9M 67.1 54.2 65.2 76.3 69.8 15.6 26.4 53.5
Learned-Adapter 81.8M 81.8M 69.3 54.4 64.9 78.4 75.6 18.3 28.9 55.7

P-tuning v2 84.5M 84.5M 63.5 51.3 61.2 76.1 66.2 9.63 21.1 49.9
IAPT 83.9M 83.9M 66.3 54.7 67.8 79.2 77.3 13.6 25.8 55.0
BitFit 87.0M 87.0M 65.9 54.1 66.4 77.2 76.6 11.8 21.7 53.4
(IA)3 78.6M 78.6M 68.1 54.6 67.2 78.1 75.4 13.2 23.4 54.3
SSP 80.6M 80.6M 71.6 57.6 69.6 79.5 79.7 15.9 31.8 58.0

LoRA 80.0M 80.0M 73.4 57.2 68.8 80.1 81.4 16.6 31.1 58.4
AdaLoRA 80.0M 80.0M 73.8 57.9 69.2 80.4 82.1 17.6 31.7 59.0

MOELoRA 87.3M 30.1M 76.8 60.2 72.0 81.1 82.7 18.3 32.3 60.4
DoRA 80.0M 80.0M 76.5 59.8 71.7 80.6 82.7 17.9 32.6 60.3

Our proposed methods
MiLoRA (ours) 80.9M 25.2M 77.8 61.2 72.8 81.7 83.3 19.9 33.9 61.5
MiDoRA (ours) 80.9M 25.8M 77.5 61.3 72.9 81.3 83.1 19.3 34.1 61.3

Table 1: The Overall comparison of different PEFT methods for single-task learning. The backbone model is
LlaMA-2 7B. We report the median accuracy over five random seeds. Bold and Underline indicate the best and the
second-best results.

Method
Activated

ST/MT
ARC-e ARC-c BoolQ OBQA PIQA

Avg.
Params (acc) (acc) (acc) (acc) (acc)

LoRA 80.0M
ST 73.4 57.2 68.8 80.1 81.4 72.2
MT 67.2 (-6.2) 55.1 (-2.1) 69.1 (+0.3) 80.9 (+0.8) 78.6 (-2.8) 70.2 (-2.0)

MOELoRA 17.3M
ST 76.8 60.2 72.0 81.1 82.7 74.6
MT 76.1 (-0.7) 59.3 (-0.9) 71.5 (+0.1) 80.7 (-0.4) 82.1 (-0.3) 73.9 (-0.5)

DoRA 80.0M
ST 76.5 59.8 71.7 80.6 82.7 74.3
MT 74.1 (-2.4) 59.6 (-0.2) 67.4 (-4.3) 79.2 (-1.4) 80.4 (-2.3) 72.1 (-2.2)

MiLoRA (ours)
12.1M ST 77.8 61.2 72.8 81.7 83.3 75.4
12.3M MT 77.4 (-0.4) 61.5 (+0.3) 72.3 (-0.3) 81.3 (-0.4) 83.5 (+0.3) 75.2 (-0.1)

Table 2: The Overall comparison of different PEFT methods for multi-task learning. The backbone model is
LlaMA-2 7B. ST refers to the single-task setup, while MT refers to the multi-task setup. We report the average
accuracy scores over five different runs, with the difference between MT and ST in red font in the brackets.

task learning, we mixed training data from ARC,
BoolQ, OBQA, and PIQA to train the model, fol-
lowed by separate evaluations to investigate the
generalization ability of each method. The re-
sults indicate that (a) compared to single-task learn-
ing, LoRA and DoRA exhibit degradation in aver-
age accuracy in multi-task learning (LoRA: -2.0%,
DoRA: -2.25%). At the same time, MOELORA
and MiLoRA maintain nearly the same average ac-
curacy. MiLoRA presents nearly no performance
loss regarding the average score.
Results for general-purpose instruction tuning.
After the LlaMA-2 7B is fine-tuned on the Al-
paca (Taori et al., 2023) dataset with our MiLoRA
method or the MOELoRA methods, we utilize the
challenging benchmarks, MT-Bench (Zheng et al.,
2023), MMLU (Hendrycks et al., 2020), and BBH
(Suzgun et al., 2022), for evaluation. We report
the average GPT-4 score (gpt4-score) on the MT-
Bench. Table 3 presents the results. Consistent

Method
MT-Bench MMLU BBH

gpt4-score (↑) acc acc
MOELoRA 7.08 48.2 36.8

MiLoRA 7.21 49.7 37.3

Table 3: Performance of general-purpose instruction
tuning using the MiLoRA and MOELoRA methods.
The backbone model is LlaMA-2 7B. ↑ means the metric
is higher the better.

with the previous experiments (Table 1 and 2),
our MiLoRA method outperforms the MOELoRA
methods on the three benchmarks, demonstrating
that MiLoRA is superior in enhancing the instruc-
tion tuning quality of large language models.

4.5 Ablation studies and further analysis

Analysis of the inference efficiency To demon-
strate the inference efficiency of our MiLoRA
method, we now compare the GPU memory and de-

17076

Method Beam size Speed Memory cost
(tps) (MiB)

DoRA
1 36.5 13784
3 29.6 15292

MOELoRA
1 35.9 13788
3 28.4 15352

MiLoRA
1 43.7 13784
3 33.5 15300

Table 4: The memory and speed of LlaMA-2 7B for
generating responses given input instructions, with dif-
ferent PEFT methods.

coding speed of MiLoRA, DoRA, and MOELoRA
under beam search with different beam sizes. In
this experiment, LoRA parameters are not merged
to the backbone to mimic the single-LLM multi-
tenant setting (Chen et al., 2023). We present two
metrics for measuring efficiency: (a) peak mem-
ory cost (in MiB). (b) tokens generated per second
(tps). The results are presented in Table 4.

From Table 4, under beam sizes 1 and 3,
the MiLoRA method has a comparable memory
cost with MOELoRA and DoRA. However, its
generation speed in terms of tps is significantly
higher. With beam size 1, MiLoRA is 21.7% faster
than MOELoRA and 19.7% faster than DoRA.
With beam size 3, MiLoRA is 17.9% faster than
MOELoRA and 13.2% faster than DoRA. The
speed advantages of MiLoRA come from the fol-
lowing factors: (a) our method only calls the LoRA
router at each Transformer layer when the input
prompt goes through the LLM for the first time
and right before generating the first new token. In
contrast, MOELoRA and almost all the existing
MOE-based LoRA variants require one to call mul-
tiple routers per layer when generating every new
token. (b) our method significantly reduces the
number of LoRA modules activated to modify the
LLM backbone at each decoding step, making gen-
erating new tokens more efficient.
Distributions of activated LoRA experts We
now compare the distribution of LoRA experts
across all Transformer layers on the MT-Bench,
BoolQ, and PIQA tasks, in Figure 2. We can ob-
serve that: (a) Different Transformer layers choose
to activate different LoRA experts via their corre-
sponding routers, and the maximum proportion a
LoRA expert can achieve is less than 30%. The
results are intuitive since Transformer layers of
different depths represent different knowledge, re-
quiring different LoRA experts to express. (b) the

Figure 2: Distribution of LoRA experts across Trans-
former layers.

Method BoolQ PIQA MMLU
(acc) (acc) (acc)

MiLoRA 72.8 83.3 49.7
MiLoRA-1 72.5 83.1 49.5
MiLoRA-2 72.4 82.9 49.6
MiLoRA-3 72.3 82.8 49.3
MiLoRA-4 71.5 82.0 48.7
MiLoRA-5 72.4 82.9 49.4

Table 5: The comparison of MiLoRA’s variants on the
BoolQ, PIQA, and MMLU tasks. The backbone model
is LlaMA-2 7B.

LoRA distributions on different tasks are differ-
ent. For example, a few layers activate LoRA Q or
LoRA K on the MT-Bench and BoolQ tasks, while
these two LoRA experts are frequently selected for
the PIQA task.
Ablation study of MiLoRA framework We
now consider the following variants of MiLoRA:
(a) MiLoRA-1 substitutes the self-attention pooling
to average pooling. (b) MiLoRA-2 substitutes the
self-attention pooling to the last-token pooling. (c)
MiLoRA-3 uses the GeLU activation function g
for the LoRA router. (d) MiLoRA-4 uses ReLU
for the first 16 layers’ LoRA routers and GeLU for
the deeper 16 layers’. (e) MiLoRA-5 uses GeLU
for the first 16 layers’ LoRA routers and ReLU for
the deeper 16 layers’. The experimental results on
the BoolQ, PIQA, and MMLU tasks are reported
in Table 5.

The results show that MiLoRA under the de-
fault settings (as in Table 1) outperforms the five
variants. In addition, (a) comparing MiLoRA-1
and MiLoRA-2 to MiLoRA shows that the self-
attention poolers provide high-quality information
aggregation, leading to proper LoRA expert selec-

17077

Figure 3: Performances under different proportion of activated experts.

tion. (b) Comparing MiLoRA-5 to MiLoRA-3 and
MiLoRA-4 demonstrates that using different acti-
vation functions for different layers’ routers leads
to a performance boost. (c) However, MiLoRA out-
performs MiLoRA-3, MiLoRA-4, and MiLoRA-5,
demonstrating that learnable activation functions
can fit a proper activation function for each LoRA
router and enhance downstream adaptation capabil-
ity.
Effects of k. In Table 1 and 2, we set the num-
ber of activated LoRA experts, k, to 3. Now, we
alter k to {1, 2, 4, 5, 6, 7}, altering the propor-
tion of activated LoRA experts. As a comparison,
we also alter the proportion of activated experts in
MOELoRA. The results of the BoolQ and PIQA
tasks are presented in Figures 3(a) and 3(b), respec-
tively. The results show that: (a) With the increased
number of activated experts, the performance of
the two methods first increases and then decreases.
When the proportion of activated experts becomes
1, the two methods reduce to the vanilla LoRA. (b)
Our MiLoRA consistently performs superior to the
MOELoRA method, demonstrating our method’s
effectiveness in locating the Transformer modules
that need LoRA modules the most.
Effects of the coefficient λlb In Table 1, we set
router loss coefficient, λlb, to 1e-2. Now, we alter
λlb to {0.0, 1e-3, 1e-1, 1e0}, and conduct experi-
ments on the BoolQ and PIQA tasks. The results
are reported in Figure 4(a) and 4(b). Results show
that: (a) MiLoRA achieves the highest average
accuracy with the coefficient 1e-2. (b) Disabling
router loss or using a higher coefficient results in
lower average accuracy. These results suggest that
a reasonable router loss coefficient can help address
the imbalance problem of experts, while a higher
coefficient can impede model convergence during
fine-tuning.
Comparisons under different budgets of tunable
parameters We vary the budget of tunable pa-

rameters for MiLoRA by modifying the values of
m = 32 to {8, 16, 64, 128, 256}. We also vary the
MOELoRA method’s tunable parameter numbers.
The experimental results on the BoolQ and PIQA
tasks are presented in Figure 5(a) and 5(b). The
results show that under different tunable parameter
budgets, our MiLoRA method (a) can consistently
outperform the LoRA and LPT methods, and (b)
is more robust to decreases in tunable parameter
numbers.
Ablation on the pretrained backbones Our
main experiments are conducted on the LlaMA-2
7B model. To demonstrate the broad applicabil-
ity of our method, we now conduct experiments
on LlaMA-2 13B and Gemma 2B. The results are
reported in Table 7 of Appendix E. We can see
that our MiLoRA method can also outperform the
baseline methods on these two backbones.

5 Conclusion

This work presents the Mixture of LoRA
(MiLoRA) method, a novel method for the
parameter-efficient fine-tuning of large language
models. Different from previous literature on MOE
style LoRA methods, MiLoRA: (a) activates LoRA
experts at the Transformer layer level, determining
which Transformer module’s LoRA is activated.
(b) The decision to activate which LoRA expert is
conditioned on the input prompt. (c) for a given
prompt, the LoRA routers are called only once. The
subsequent token generation steps reuse the routers’
decisions. In order to improve our framework’s
downstream performance, we propose to learn dif-
ferent activation functions during fine-tuning for
LoRA routers of different depths. Our method is
convenient to implement and off-the-shelf. Ex-
periments on various tasks demonstrate that our
MiLoRA method outperforms the baseline meth-
ods while being efficient in inference.

17078

Figure 4: Performances under different coefficient λlb.

Figure 5: Performances under different numbers of tunable parameters.

Limitations

We showed that our proposed method can im-
prove the performance of parameter-efficient tun-
ing on diverse tasks and different pretrained mod-
els (i.e., LlaMA-2 7B, LlaMA-2 13B, Gemma 2B).
However, we acknowledge the following limita-
tions: (a) the more super-sized open-sourced LLMs,
such as LlaMA-2 70B, are not experimented due to
limited computation resources. (b) Other tasks in
natural language processing, like information ex-
traction, were also not considered. But our frame-
work can be easily transferred to other backbone
architectures and different types of tasks. It would
be of interest to investigate if the superiority of our
method holds for other large-scaled backbone mod-
els and other types of tasks. And we will explore it
in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the soft prompt based tuning in terms of
better downstream performances whiling pursuing
efficiency. The used datasets are widely used in pre-
vious work and, to our knowledge, do not have any
attached privacy or ethical issues. In this work, we
have experimented with LlaMA-2 models, a mod-
ern large language model series. As with all LLMs,
LlaMA-2’s potential outputs cannot be predicted
in advance, and the model may in some instances

produce inaccurate, biased or other objectionable
responses to user prompts. However, this work’s in-
tent is to conduct research on different fine-tuning
methods for LLMs, not building applications to
general users. In the future, we would like to con-
duct further tests to see how our method affects the
safety aspects of LLMs.

References
Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-

berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv, abs/2106.10199.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, Arvind Krishnamurthy University of Washing-
ton, and Duke University. 2023. Punica: Multi-tenant
lora serving. ArXiv, abs/2310.18547.

Shaoxiang Chen, Zequn Jie, and Lin Ma. 2024. Llava-
mole: Sparse mixture of lora experts for mitigating
data conflicts in instruction finetuning mllms. arXiv
preprint arXiv:2401.16160.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising

17079

https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197

difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Quentin Delfosse, Patrick Schramowski, Alejandro
Molina, and Kristian Kersting. 2021. Recurrent ra-
tional networks. arXiv preprint arXiv:2102.09407.

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juan Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models. ArXiv, abs/2203.06904.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, et al. 2023. Loramoe: Revolu-
tionizing mixture of experts for maintaining world
knowledge in language model alignment. arXiv
preprint arXiv:2312.09979.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang
Xu, Aoxue Li, Dit-Yan Yeung, James T Kwok, and
Yu Zhang. 2023. Mixture of cluster-conditional lora
experts for vision-language instruction tuning. arXiv
preprint arXiv:2312.12379.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
ArXiv, abs/2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022. Sparse structure search for parameter-efficient
tuning. ArXiv, abs/2206.07382.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-
tuning of large language models. arXiv preprint
arXiv:2304.01933.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023.
C-eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. arXiv preprint
arXiv:2305.08322.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Conference on Empirical
Methods in Natural Language Processing.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-based ran-
dom matrix adaptation. ArXiv, abs/2310.11454.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019.
Darts: Differentiable architecture search. ArXiv,
abs/1806.09055.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. ArXiv,
abs/2205.05638.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2023.
Moelora: An moe-based parameter efficient fine-
tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

17080

https://api.semanticscholar.org/CorpusID:9672033
https://api.semanticscholar.org/CorpusID:9672033
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283

Xiangyang Liu, Tianxiang Sun, Xuanjing Huang, and
Xipeng Qiu. 2022b. Late prompt tuning: A late
prompt could be better than many prompts. ArXiv,
abs/2210.11292.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. ArXiv, abs/2110.07602.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In NeurIPS.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and Benjamin Bossan.
2022. Peft: State-of-the-art parameter-efficient fine-
tuning methods. https://github.com/huggingface/
peft.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Alejandro Molina, Patrick Schramowski, and Kristian
Kersting. 2019. Padé activation units: End-to-end
learning of flexible activation functions in deep net-
works. ArXiv, abs/1907.06732.

OpenAI. 2023. GPT-4 Technical Report. arXiv e-prints,
page arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. ArXiv,
abs/2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020a. Transformers: State-of-the-art natu-
ral language processing. In Proceedings of the 2020
conference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020b. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

17081

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:196831891
https://api.semanticscholar.org/CorpusID:196831891
https://api.semanticscholar.org/CorpusID:196831891
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiao-
hong Liu, Yue Fan, Qing Li, and Yuntao Du. 2024.
Parameter-efficient fine-tuning for pre-trained vision
models: A survey. ArXiv, abs/2402.02242.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language mod-
els: A critical review and assessment. ArXiv,
abs/2312.12148.

Shu Yang, Muhammad Asif Ali, Cheng-Long Wang, Li-
jie Hu, and Di Wang. 2024. Moral: Moe augmented
lora for llms’ lifelong learning. arXiv preprint
arXiv:2402.11260.

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. ArXiv,
abs/2303.10512.

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo
Zhu. 2023b. Learned adapters are better than man-
ually designed adapters. In Annual Meeting of the
Association for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
Survey of Large Language Models. arXiv e-prints,
page arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv e-prints, page arXiv:2306.05685.

Wei Zhu. 2021a. Autonlu: Architecture search for sen-
tence and cross-sentence attention modeling with re-
designed search space. In Natural Language Process-
ing and Chinese Computing: 10th CCF International
Conference, NLPCC 2021, Qingdao, China, October
13–17, 2021, Proceedings, Part I 10, pages 155–168.
Springer.

Wei Zhu. 2021b. AutoRC: Improving BERT based rela-
tion classification models via architecture search. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: Student Research Workshop, pages 33–
43, Online. Association for Computational Linguis-
tics.

Wei Zhu, Aaron Xuxiang Tian, Congrui Yin, Yuan
Ni, Xiaoling Wang, and Guotong Xie. 2024. Iapt:
Instruction-aware prompt tuning for large language
models. arXiv preprint arXiv:2405.18203.

Wei Zhu, Xiaoling Wang, Yuan Ni, and Guotong Xie.
2021. Autotrans: Automating transformer design via
reinforced architecture search. In Natural Language
Processing and Chinese Computing, pages 169–182,
Cham. Springer International Publishing.

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,
and Buzhou Tang. 2023. PromptCBLUE: A Chinese
Prompt Tuning Benchmark for the Medical Domain.
arXiv e-prints, page arXiv:2310.14151.

A Appendix: introduction to bi-level
optimization

The bi-level optimization (Liu et al., 2019) opti-
mize Θ conditioned on the optimized parameters
of Ω∗. Denote the training set as Dtrain, and the
validation set as Dval. The inner and outer levels
of optimization are conducted on these two sepa-
rate splits of the task dataset, which is analogous
to validating architectures trained on Dtrain using
a different split Dval to avoid over-fitting. Thus the
optimization objective is:

min
Θ

L(Dval,Ω
∗,Θ),

s.t. Ω∗ = argmin
Ω

L(Dtrain,Ω,Θ), (7)

where L() is the objective function on a given
downstream task, such as cross entropy loss. The
above bi-level optimization problem is approxi-
mated with an alternating optimization strategy.
The gradients of Ω are calculated with batches of
samples from Dtrain, and the gradients of Θ are
calculated on Dval.

B Appendix for the datsets and evaluation
metrics

B.1 Dataset statistics
The detailed statistics of the above tasks’

datasets are presented in Table 6.

B.2 Evaluation metrics/protocols
For the commonsense reasoning and math rea-

soning tasks, since they usually come with a def-
inite answer choice, we will directly consider the
correctness of the final answers. Thus, we report
accuracy (denoted as acc).

For evaluating the quality of instruction tuned
LlaMA-2 7B on the MT-Bench, we follow the cur-
rent common practice of utilizing GPT-4 as a un-
biased reviewer (Zheng et al., 2023). We gener-
ate model responses from a fine-tuned model with
beam size 3 with the generation function in Hug-
gingface Transformers (Wolf et al., 2020a). Then

17082

https://api.semanticscholar.org/CorpusID:267412110
https://api.semanticscholar.org/CorpusID:267412110
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.18653/v1/2021.acl-srw.4
https://doi.org/10.18653/v1/2021.acl-srw.4
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151

Datasets #train #dev #test Type Metrics
Commonsense reasoning tasks

BoolQ 9427 - 3270 Commonsense reasoning acc
OBQA 4957 500 500 Commonsense reasoning acc
ARC-e 2251 570 2376 Commonsense reasoning acc
ARC-c 1119 299 1172 Commonsense reasoning acc
PIQA 16,000 2,000 3,000 Commonsense reasoning acc

Math reasoning tasks
AQuA 97467 254 254 Math reasoning acc

GSM8K 7473 - 1319 Math reasoning acc
Instruction tuning

Alpaca 50k - - Instruction tuning -
LLM evaluation tasks

MT-Bench - - 80 Question answering GPT-4 scores
MMLU - - 14042 Question Answering acc

BBH - - 6,511 Question Answering acc

Table 6: The dataset statistics.

we compare MOELoRA and MiLoRA’s answers
with GPT-4. For each instruction in MT-Bench,
GPT-4 (OpenAI, 2023) is asked to write a review
for both answers from the two methods, and as-
signs a quantitative score on a scale of 10 to each
response.

C Details for the self-attention based
pooler

Our LoRA routers must pool the input prompts
of variable lengths to a fixed length. For the pool-
ing operation, the previous literature often chooses
average pooling or max pooling (Kim, 2014; Zhu
et al., 2021; Zhu, 2021a), which are pointed out
by the literature (Zhu, 2021b) that they are prone
to weaken important words when the input se-
quence is long, thus dropping useful information
during pooling. Thus, in this work, we utilize the
self-attention mechanism in our pooling module
Pooler(). Self-Attention assigns each token in the
input instruction a weight to indicate the impor-
tance of the token. A few crucial tokens to the task
will be emphasized, while the less important tokens
are ignored. Formally, we initialize a learnable
weight matrix Wsa ∈ Rd×1, then the self-attention
based pooler’s calculation processes are:

U = hWsa,

A = Softmax(U),

p = A⊺h, (8)

where p ∈ Rnp×d is the input tesor, Softmax is the
softmax function along the first dimension, and ⊺

denotes matrix transpose. In the above equations,
each column of Wsa is a trainable query vector
designated to determine the self-attention weights
via dot products between this query and each to-
ken. Then, the weights are normalized across the
sequence dimension via the softmax normalization
function. Corresponding to different soft tokens,
different query vectors in Wsa can aggregate the in-
put instructions in different aspects, thus providing
a high-quality summarization of the instruction’s
semantic information.

D Appendix for Experimental settings

Here, we provide more details for experimental
settings.
Hyper-parameters for the baseline PEFT meth-
ods For P-tuning V2, the number of prompt to-
kens at each layer is set to 16, and the soft prompts
are initialized with dimension 640, and then is pro-
jected to dimension 4096. For IAPT, the prompt
length is 4, and the bottleneck dimension for the
prompt generator is 320.

For the Parallel-Adapter and Learned-Adapter,
the bottleneck dimension is set to 160. Adapters
are connected to both the self-attention and FFN
sub-layer.

We adjust the sparsity for SSP so that the number
of tunable parameters is comparable with MiLoRA
and the other baselines. For BitFit, the bias vec-
tors are initialized with dimension 64, and then a
learnable projection layer projects it to the same
dimension with the LlaMA-2 backbone. For (IA)3,

17083

the activation adjusting vectors are added the Query,
Key, and Up activations. The adjusting vectors are
initialized with dimension 128, and then a learnable
projection layer projects it to the same dimension
with the LlaMA-2 backbone.

For LoRA, the rank size r at each LoRA module
is set to 32. For AdaLoRA, the initial rank at each
module is set to 64, and half of the rank budget
is pruned during fine-tuning. For MOELoRA, the
rank size r at each LoRA module is set to 32, and
the LoRA modules is reformulated as 32 single-
rank LoRAs. Then each 4 forms an expert. Thus, a
LoRA module consists of 8 experts, and the router
is top-4 router, activating 4 of the expert for pre-
dicting the next token. DoRA also sets the rank
size r to 32.
Training settings for PEFT methods We use
the HugginFace Transformers (Wolf et al., 2020b),
PEFT (Mangrulkar et al., 2022), or the original
code repositories for implementing all the meth-
ods, and for training and making predictions. For
fine-tuning LlaMA-2 7B model, the maximum se-
quence length is set to 768. The maximum training
epoch is set to 10. The batch size is set between
16 for task with less than 10k training set, and 128
otherwise. We use AdamW as the optimizer with
a linear learning rate decay schedule and 6% of
the training steps for warm-up. The learning rate
is set to 1e-4. For MiLoRA, the load balance loss
coefficient λlb is set to 1e-2. For the bi-level opti-
mization of learnable activations, the validation set
is the same with the dev set. The hyper-parameters
for calculating the gradients of the architectural
parameters are the same with the normal training
procedure, except that the learning rate is 1e-6.
The other hyper-parameters are kept the same with
(Wolf et al., 2020b). In every 200 steps, the model
is evaluated on the dev set to calculate dev set per-
plexity. Patience is set to 10, that is, if the model
does not achieve a lower dev set perplexity for 10
evaluation runs, the training stops early. The best
checkpoint on the dev set is used to run predictions
on the test set.

E Ablation on the pretrained backbones

Our main experiments are conducted on the
LlaMA-2 7B model. To demonstrate that our
method works well regardless of the backbone mod-
els, we now conduct experiments on the LlaMA-2
13B model and Gemma 2B models. The other ex-
perimental settings are kept the same with the main

Method BoolQ PIQA MMLU
(acc) (acc) (acc)

Results for LlaMA-2 13B
MOELoRA 73.5 85.8 50.5

MiLoRA 74.9 86.6 51.2
Results for Gemma 2B

MOELoRA 62.3 79.4 39.8
MiLoRA 63.9 80.3 40.7

Table 7: Results for different PEFT methods on the
BoolQ, PIQA and MMLU benchmarks. The backbone
LMs are LlaMA-2 13B, an Gemma 2B.

experiments (Table 1). We conduct experiments on
the BoolQ, PIQA and MMLU tasks. The results
are reported in Table 7.

17084

