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Abstract

Error type information has been widely used to
improve the performance of grammatical error
correction (GEC) models, whether for gener-
ating corrections, re-ranking them, or combin-
ing GEC models. Combining GEC models that
have complementary strengths in correcting dif-
ferent error types is very effective in producing
better corrections. However, system combina-
tion incurs a high computational cost due to
the need to run inference on the base systems
before running the combination method itself.
Therefore, it would be more efficient to have a
single model with multiple sub-networks that
specialize in correcting different error types.
In this paper, we propose a mixture-of-experts
model, MoECE, for grammatical error correc-
tion. Our model successfully achieves the per-
formance of T5-XL with three times fewer ef-
fective parameters. Additionally, our model
produces interpretable corrections by also iden-
tifying the error type during inference.1

1 Introduction

Grammatical error correction (GEC) is a task that
aims to detect and correct any errors in a given
text. Through scientific progress over the past
decades, grammatical error correction has out-
grown its name. GEC not only deals with gram-
matical errors but also includes the correction of
misspellings, orthographic errors, semantic errors,
and more (Bryant et al., 2023).

A GEC model receives a possibly erroneous text
and should produce a corrected version of the text
with minimal modification. An example is given
in Table 1. In the early days of GEC, people ap-
proached this problem by building a specific classi-
fier for each error type, which was later replaced by
data-driven approaches adopted from the machine
translation task (Chollampatt et al., 2016).

1The source code and models can be accessed at https:
//github.com/nusnlp/moece.

Even after adopting end-to-end approaches using
neural network models, the error type information
remains useful. Some recent models approach the
problem by separating the error detection and cor-
rection models (Yuan et al., 2019; Li et al., 2023),
training a single model for both detection and cor-
rection (Omelianchuk et al., 2020), or training a
model to predict the edit/transformation tag, which
can include the error type (Stahlberg and Kumar,
2020).

Error type information is useful not only for
building the grammar correction model but also
for reranking the outputs of GEC models (Sorokin,
2022; Chollampatt and Ng, 2018) and combining
outputs of GEC models (Kantor et al., 2019; Lin
and Ng, 2021; Qorib and Ng, 2023). GEC sys-
tem combination has been very effective in improv-
ing the state of the art, and it has been repeatedly
demonstrated that it works best when the base sys-
tems have complementary strengths (Susanto et al.,
2014; Han and Ng, 2021), such as which error types
they can correct more accurately. However, system
combination is computationally expensive because
it needs to run inference on each base system first
before running the combination method itself.

It would be desirable to just have one model
with multiple sub-networks that specialize in dif-
ferent aspects, such as which error types it can
correct more accurately. The capability of a neural
network to correct one error type is not necessar-
ily transferable to correcting other error types, as
Qorib et al. (2022) report that state-of-the-art GEC
models are often less accurate in correcting certain
error types than weaker GEC models. This could
be caused by task interference during the training
of the model. When fine-tuning T5-v1.1-Base for
grammatical error correction, we observe that the
model becomes less accurate at correcting punctu-
ation (PUNCT) and preposition (PREP) error types
when it has the best overall (ALL) performance (Fig-
ure 1). We also notice that the model’s accuracy
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Source The rich people will buy a car but the poor people always need to use a bus or taxi .
Correction Rich people will buy a car , but poor people always need to use a bus or taxi .
Edits (0, 2, ’Rich’, DET), (7, 7, ’,’, PUNCT), (8, 9, ”, DET)

Table 1: Example of a GEC source sentence, its correction, and the edits. Each edit is represented by the start index,
the end index, the replacement string, and the error type. DET denotes a determiner error while PUNCT denotes a
punctuation error.

Figure 1: F0.5 scores of a T5-v1.1-Base model on the six most frequent error types and all error types (ALL) in the
BEA-2019 development set at different numbers of training steps.

in correcting preposition errors decreases when its
accuracy in correcting punctuation errors increases
(e.g., training step 1600 to 2000 in Figure 1).

As such, a neural network that has separate sets
of parameters that specialize in correcting different
error types could be beneficial in modeling gram-
matical error correction. Such a model is compu-
tationally more efficient as it does not need to go
through multiple threads of inference necessary in
system combination. For that purpose, we propose
a mixture-of-experts model for grammatical error
correction. To the best of our knowledge, we are
the first to do so. This study focuses on building
an MoE model for GEC through transfer learn-
ing from a non-MoE (dense) sequence-to-sequence
model.

2 Mixture of Experts

Mixture of experts (MoE) is a learning procedure
for a system that can be decomposed into multiple
separate networks, with each network representing
an expert at a particular task (Jacobs et al., 1991).
Mixture of experts has been reported to perform
well on tasks that can be broken down into different
sub-tasks, such as multilingual machine translation
(Kudugunta et al., 2021), and single tasks that have
multiple objectives, such as video recommendation

(Li et al., 2020).
When used with the transformer architecture,

MoE is typically applied by replacing the feed-
forward layer f(x) in a transformer block with
an MoE layer2 f ′(x). MoE is applied indepen-
dently to some or all transformer blocks in the
network. An MoE layer consists of a set of ex-
perts {E1, E2, . . . , EM} with parameters ϕi, i ∈
{1, . . . ,M}, a router or a gating function r that
selects a subset of K experts, and optionally an
aggregation function gi that produces the weight
for expert i. The aggregation function can also be
the same as the router. Let x denote the vector
representation of a token from the previous layer.
We formalize the MoE layer in Equation 1 below:

f ′(x) =
K∑

k=1

gk(x)∑K
j=1 gj(x)

Ek(x;ϕk) (1)

One problem that may arise in MoE is one ex-
pert getting chosen more often than others, mak-
ing it receive more gradient updates and subse-
quently making it more preferred by the router,
a self-reinforcing problem. To avoid this is-
sue, the number of tokens in a sequence X =

2The notation of f ′(x) represents a function that replaces
f(x), rather than the derivative of f(x).
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Figure 2: Illustration of a transformer block with an MoE layer with M = 4 and K = 2. To simplify the notation,
x represents the input of the MoE layer and the feed-forward layer instead of the transformer block.

{x1,x2, . . . ,xN} that an expert can process is of-
ten limited to a threshold called expert capacity,
and a load balancing loss is used to encourage a
more balanced expert allocation. If an expert al-
ready reaches the maximum capacity, subsequent
tokens that are assigned to that expert do not go
through the expert layer. The load balancing losses
are calculated based on the fraction of the input
that goes into expert i, represented by wi.

2.1 GShard

Lepikhin et al. (2021) propose to penalize the
model based on the mean square of wi, but the
top-k operation to select the experts is not differen-
tiable. As such, it approximates the loss function
by multiplying the average routing score for expert
i on all tokens (vi) with the fraction of tokens that
are allocated to it (wi), then takes the average of
that score from all experts. The loss function is
formalized in Equation 2 below.

vi =
1

N

∑

x∈X
gi(x)

Lb =
1

M

M∑

i=1

(wi × vi) (2)

In GShard, the router chooses the top two experts
(Ei1 , Ei2) for each token. However, the second
expert will be ignored if its routing score is too
small. The router sends the token x to the second
expert with a probability proportional to the routing
score gi2(x).

2.2 SwitchTransformer
SwitchTransformer (Fedus et al., 2022b) follows
the balancing loss of GShard, but instead of taking
the average, they take the sum and then multiply
it again with the number of experts, as shown in
Equation 3 below.

Lb = M ×
M∑

i=1

(wi × vi) (3)

The reason is to keep the loss constant and in-
variant to the number of experts. In the case of
uniform routing, wi =

1
M and gi =

1
M , so Lb = 1.

Fedus et al. (2022b) argue that sending each to-
ken to only one expert is sufficient. This challenges
the conjecture of Shazeer et al. (2017) that sending
a token to more than one expert is necessary. They
report that choosing one expert for each token pre-
serves model quality, reduces routing computation,
and performs better.

3 Method

In this section, we explain how we build MoECE
(Mixture of Error Correction Experts), a mixture-
of-experts model for grammatical error correction.

3.1 MoE Layer
We follow the common approach of building MoE
explained in Section 2 with one modification. In-
stead of replacing the feed-forward layer with an
MoE layer, we augment the feed-forward layer with
an MoE layer (Figure 2). The output of the i-th
transformer block in a standard transformer is the
normalized xi + fi(xi) and the output of the trans-
former block in common MoE approaches is the
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normalized xi + f ′
i(xi). In our model, the output

of the transformer block with an MoE layer is the
normalized xi + fi(xi) + f ′

i(xi). While this de-
sign increases the computation cost during training,
no additional cost is incurred during inference by
merging the weights of the feed-forward layer with
the experts.

3.2 Router
We hypothesize that an optimal expert allocation in
a mixture of experts for grammatical error correc-
tion involves having each expert focus on correct-
ing particular error types. With this goal in mind,
the router needs to know what error type the cur-
rent token has, so that the router can direct it to the
appropriate expert. We approach this by adding a
classification head to the router and training it with
an auxiliary loss. As such, for every input token,
the router predicts the error type through the classi-
fication head and determines the expert allocation
through the dispatch head.

We design the router in each MoE layer to be a
2-layer neural network with two outputs (Figure 2).
The input dimension of the gate is the same as the
model dimension of the transformer block. The
output dimension of the classification head is the
number of possible error types |T |, while the output
dimension of the dispatch head is the number of
experts |M |. Let x denote an input token from
the previous layer, and let σ denote the softmax
function. We formally describe the routing function
in Equation (4 – 5) below.

h(x) = Wh × x+ bh

p(x) = σ(Wp × h(x) + bp) (4)

g(x) = σ(Wg × h(x) + bg) (5)

While the classification head guides the hidden
representation of the router h to route the token
based on the error type, the dispatch head may
unsatisfactorily route tokens with different error
types to a single expert. To avoid that, we employ
the expert capacity limitation and load balancing
loss of GShard and SwitchTransformer. Similar to
previous work, we also use the routing function g
as the aggregation function.

3.3 Training Objective
The model is trained to minimize the combination
of three loss functions, the cross-entropy loss Lc

on the prediction of the corrected text, the cross-
entropy loss of the error type Le from the router,

and the load balancing loss Lb from the router. The
contribution of the error type loss is controlled by
a hyper-parameter α while the contribution of the
load balancing loss is controlled by another hyper-
parameter β. Let L denote the number of MoE
layers. The final loss function is given below.

L = Lc + α× 1

L

L∑

l=1

Lel + β × 1

L

L∑

l=1

Lbl (6)

4 Experiments

We transformed the pre-trained T5-v1.1 (Raffel
et al., 2020) language models into mixture-of-
experts models. We trained two sizes of the model,
a base model based on T5-v1.1-Base and a large
model based on T5-v1.1-Large. For each model
size, we trained two models with different routers,
one with the GShard router (MoECE-GS) and an-
other with the SwitchTransformer router (MoECE-
ST). We apply an MoE layer with 7 experts to all
transformer blocks in the decoder except the first
block and share the parameters of the routers in all
transformer blocks.

Name Type # sent # ref
cLang-8 Train 2,372,119 1
BEA-2019 Dev 4,384 1
CoNLL-2014 Test 1,312 2
BEA-2019 Test 4,477 5
CWEB-G Test 3,981 2
CWEB-S Test 2,864 2

Table 2: GEC datasets used in our experiments. # sent
refers to the number of sentences while # ref refers to
the number of reference annotations. Dev refers to the
BEA-2019 development set.

4.1 Implementation
We implement our T5 model using the modifica-
tion of the fairseq framework (Ott et al., 2019)
by Applica AI3 and augment it with the MoE im-
plementation from Fastmoe (He et al., 2021). In
Fastmoe, the GShard loss function is multiplied by
the square of the number of experts (M2) to make
the loss magnitude not affected by the number of
experts in the layer. We follow this implementation
to standardize the experiments. As such, the differ-
ence between the GShard and SwitchTransformer
variants in our model is in the number of experts
selected per token and when the loss is calculated.

3https://github.com/applicaai/fairseq/tree/
applica-t5
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BEA-2019 CoNLL-2014 Test BEA-2019 Test
Model EPC Dev (F0.5) P R F0.5 P R F0.5
T5-v1.1-Base 248M 53.97 72.43 48.38 65.88 72.82 62.11 70.39
MoECE-GS-Base 282M 55.28 73.00 48.53 66.31 74.59 62.11 71.71
MoECE-ST-Base 248M 54.84 72.75 49.31 66.43 73.99 62.00 71.24
T5-v1.1-Large 783M 55.85 73.18 49.46 66.78 75.65 64.59 73.15
MoECE-GS-Large 917M 56.42 74.29 50.21 67.79 76.91 64.54 74.07
MoECE-ST-Large 784M 56.68 73.60 51.25 67.69 75.95 65.78 73.67

Table 3: MoECE performs better than the comparable dense model on the BEA-2019 development set, CoNLL-2014
test set, and BEA-2019 test set. EPC is the effective parameter count.

In GShard, the loss is calculated before limiting the
expert by its capacity, while in SwitchTransformer
it is calculated after.

4.2 Datasets and Evaluation

Following Rothe et al. (2021), we train the model
with the cLang-8 dataset. The cLang-8 corpus is a
GEC dataset that was made by relabeling the raw
version of the Lang-8 dataset with the output of
a big multilingual GEC model. Training a GEC
model with cLang-8 is reported to produce a better
GEC model than training it with the original Lang-
8 dataset (Sorokin, 2022). We augment the training
data with the error types produced by ERRANT
(Bryant et al., 2017). During the development of
the model, we use the BEA-2019 development set
(Bryant et al., 2019) as the validation data to choose
the hyper-parameters.

We evaluate the model on standard GEC bench-
marks, the CoNLL-2014 test set and the BEA-2019
test set. The model is evaluated on the F0.5 score
produced by the M2Scorer (Dahlmeier and Ng,
2012) for the CoNLL-2014 test set and the F0.5

score produced by the official blind scorer4 for the
BEA-2019 test set. In addition to the standard
benchmarks, we also evaluate our model on out-of-
domain datasets, which are CWEB-G and CWEB-
S (Flachs et al., 2020). Most of GEC training and
test data were made from student essays in an aca-
demic setting, but CWEB datasets were made from
texts from various websites on the Internet. The
CWEB-G test set was made from generic websites
while the CWEB-S test set was made from web-
sites of official institutions, such as governments,
schools, and museums. We report the statistics of
the datasets in Table 2. We perform a bootstrap
resampling test on 100 samples of the models’ out-
puts to measure statistical significance.

4https://codalab.lisn.upsaclay.fr/
competitions/4057

We compare our model to baselines and previ-
ous work that have comparable effective parameter
count (EPC) (Fedus et al., 2022a). The effective
parameter count only considers the number of pa-
rameters that are active or used in a single forward
pass. Since in MoE only a few experts are used
at a time to generate the corrections, the unused
experts do not contribute to the computational cost.
Therefore, it is more appropriate to compare an
MoE model based on the effective parameter count
rather than the total number of parameters.

Model CWEB-G CWEB-S
T5-v1.1-Base 36.78 26.83
MoECE-GS-Base 39.22 27.77
MoECE-ST-Base 39.37 27.90
T5-v1.1-Large 42.08 26.14
MoECE-GS-Large 42.82 27.14
MoECE-ST-Large 43.06 27.48

Table 4: MoECE achieves higher F0.5 scores than the
dense model on the CWEB-G and CWEB-S test sets
with a relatively small overhead for the computation in
the router.

5 Results

We report the scores of our models and the com-
parable dense model in Table 3 and Table 4. Our
MoECE-GS-Base model successfully improves the
F0.5 score by 0.43 points on the CoNLL-2014 test
set and 1.32 points on the BEA-2019 test set, while
our MoECE-ST-Base improves the F0.5 score by
0.55 points on the CoNLL-2014 test set and 0.85
points on the BEA-2019 test set. The improve-
ments are statistically significant with p < 0.01.

Without re-training or changing the hyper-
parameters, MoECE also brings improvements
over the dense model on out-of-domain datasets
(Table 4). MoECE-GS-Base improves the F0.5

score on the CWEB-G test set and CWEB-S test set
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(a) CoNLL-2014 test set (b) BEA-2019 test set

Figure 3: F0.5 scores of comparable models that produce the error type of corrections according to the effective
parameter count (in millions). Legends: [1] Lai et al. (2022) [2] Tarnavskyi et al. (2022), [3] Rothe et al. (2021), [4]
Omelianchuk et al. (2020), [5] Stahlberg and Kumar (2020). We do not compare against (Sun and Wang, 2022) and
(Bout et al., 2023) which only produce the correction tokens.

by 2.44 points and 0.94 points respectively, while
MoECE-ST-Base improves the F0.5 score on the
same test sets by 2.59 points and 1.07 points. Our
method still improves the F0.5 scores on all test sets
when we scale up the models to MoECE-GS-Large
and MoECE-ST-Large, and the improvements are
statistically significant with p < 0.01.

Compared to previous work (Figure 3), the per-
formance of our MoECE-GS-Large model is com-
parable to T5-XL (Rothe et al., 2021) despite hav-
ing vastly fewer effective parameters. T5-XL with
3B effective parameters has an F0.5 score of 67.655

on the CoNLL-2014 test set and 73.92 on the BEA-
2019 test set, while MoECE-GS-Large that has
three times fewer effective parameters has an F0.5

score of 67.79 on the CoNLL-2014 test set and
74.07 on the BEA-2019 test set (Table 3). Even if
we include the unused experts, MoECE-GS-Large
with 1.7B parameters is still smaller than T5-XL.
This shows that our model is more efficient in terms
of computation and memory usage than T5-XL.

6 Analysis

6.1 Routing Policy
We analyze whether the error type loss helps the
router in choosing the experts based on the error
type of the token. We take the average routing
score that the last router produces for each error
type. We find that with the error type loss, the
router chooses different combinations of experts
according to the token error type. In Figure 4, we
can see that the router mainly chooses experts #0
and #6 when correcting punctuation errors (PUNCT)
and experts #2 and #5 when correcting preposition

5We use the score from the updated paper on arXiv.

errors (PREP). On the other hand, when the error
type loss is not used, experts #1 and #2 dominate
the routing policy for correcting almost any error
type.

Figure 4: Average routing score of MoECE-GS-Base
for each token based on the error type.

The routing process also leads to the specializa-
tion of experts (Figure 5). For example, in cor-
recting punctuation errors, we observe that expert
#6 and expert #0 achieve the highest accuracy, at
83.7% and 82.6%, respectively. In contrast, the
accuracy of expert #3, expert #2, and expert #4 is
33.3%, 38.1%, and 50.7%, respectively. Similarly,
for orthographical errors, expert #1 achieves 80.9%
accuracy, while expert #3 achieves 66.7% accuracy.
The accuracy of each expert aligns well with the
routing policy, especially for error types frequently
encountered in the training data, with the median
Pearson correlation coefficient being 0.66 for the
top seven error types.

We evaluate the accuracy of error type predic-
tion of the router on the BEA-2019 development
set and find that the overall accuracy of error type
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Router LB ET CoNLL-2014 BEA-2019 CWEB-G CWEB-S Avg
GShard ✓ ✓ 66.31 71.71 39.22 27.77 51.25
GShard ✓ ✗ 66.34 71.80 38.84 27.88 51.22
SwitchTransformer ✓ ✓ 66.43 71.24 39.37 27.90 51.24
SwitchTransformer ✓ ✗ 66.31 69.72 37.97 27.97 50.49
GShard ✗ ✓ 66.23 71.54 39.39 28.55 51.43

Table 5: The effect of the load balancing loss (LB) and error type loss (ET) when training MoECE-Base. The
evaluation is based on the F0.5 scores on the CoNLL-2014 test set, BEA-2019 test set, CWEB-G test set, CWEB-S
test set, and the average of these four test sets.

Figure 5: Experts’ correction accuracy for each token
based on the error type.

prediction by the routers is 92.5%. This provides
evidence that the model is capable of learning the
error type using the classification head in the router
and suggests that the model utilizes this informa-
tion to route the tokens to the appropriate experts.

6.2 Impact of Error Type Loss and Load
Balancing Loss

Despite having a more comprehensible routing de-
cision, models trained with the error type loss do
not strictly perform better than models trained with-
out it (Table 5). This shows that the routing can
learn a different routing policy by itself that per-
forms comparably well, even though the policy is
not based on the error type. However, the routing
policy may be hard to interpret and subsequently
makes it harder to understand if the model makes
weird mistakes. On the other hand, the model
trained with the error type loss will produce both
the corrected text and the error type at the same
time during inference. This will help language
learners understand the reason for the correction
and can help model developers look for the cause
of the issue if the model makes mistakes. On top
of that, the expert allocation for each error type is
quite clear when the model is trained with error
type loss (Figure 4). This allows some degree of
modularity to add, modify, or remove the experts
during deployment.

We also run an experiment of training the model
with the error type loss but without the load bal-
ancing loss. In this experimental setting, we use

the same routing criteria as GShard but set the load
balancing loss multiplier β (Equation 6) to zero.
We also obtain a comparable model to the other
experimental settings. This shows that the error
type loss can serve as an alternative to the existing
load balancing loss.

6.3 Shared Feed-Forward Layer
As explained in Section 3.1, we design our MoE
to be an addition to the main transformer feed-
forward layer, rather than a replacement, during
training. We hypothesize that for a neural network
to correct errors in text, it requires general skills
and specific skills according to the error types. By
adding the output of the MoE with the main feed-
forward layer, the general skills can be learned
by the feed-forward layer that is shared across all
experts. This idea is similar to DeepSeekMoE (Dai
et al., 2024), in which some experts are always
chosen for any input token so that those experts
learn the necessary general skills.

Figure 6: F0.5 scores on the BEA-2019 development set
of three architecture types: MoECE (LAYER SHARING),
MoECE without parameter updates to the shared layer
(FROZEN SHARING), and standard MoE architecture
where the feed-forward layer is entirely replaced by the
MoE layer (NO SHARING).

We investigate the efficacy of our architec-
ture design by comparing three architecture types:
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Exp BEA-2019 CoNLL-2014 Test BEA-2019 Test
# Model Dim EPC Dev (F0.5) P R F0.5 P R F0.5
1 T5-v1.1-Base - 248M 53.97 72.43 48.38 65.88 72.82 62.11 70.39
2 MoECE-ST 2048 248M 54.84 72.75 49.31 66.43 73.99 62.00 71.24
3 MoECE-ST 128 250M 54.86 72.96 48.51 66.28 74.56 61.37 71.49
4 MoECE-GS 128 252M 54.86 72.18 49.22 66.02 73.74 62.42 71.16
5 MoECE-GS 2048 282M 55.28 73.00 48.53 66.31 74.59 62.11 71.71

Table 6: Scores of MoECE-GS(-Base) and MoECE-ST(-Base) with original and low-rank expert dimensions (Exp
Dim) on the BEA-2019 development set (Dev), CoNLL-2014 test set, and BEA-2019 test set. The rows are sorted
from the models with the lowest effective parameter count (EPC) to the highest. The low-rank MoECE-ST-Base has
a higher EPC than the original because the original merges the shared feed-forward layer with the feed-forward
layers in each expert after training.

our MoECE architecture (LAYER SHARING), our
MoECE architecture without parameter updates
to the shared layer (FROZEN SHARING), and the
common mixture-of-experts architecture where the
feed-forward layer is replaced by the MoE layer
(NO SHARING). With no gradient updates to the
shared layer, the shared skill between experts is
limited to what was previously learned during the
pre-training of the language model. On the other
hand, when there is no layer sharing, each expert
must learn the general skills independently without
any information sharing.

In the layer sharing and frozen sharing exper-
imental settings, the feed-forward layer is initial-
ized with the pre-trained weights from the language
model while the experts are initialized randomly.
In the experiment without layer sharing, the feed-
forward layer is removed (replaced entirely by the
MoE layer), so the weights of the feed-forward
layer are used to initialize the experts in the MoE
layer. Small random noise is added to the expert
weights to encourage the experts to specialize in
different aspects rather than becoming copies of
the same network.

We observe that the model with frozen layer shar-
ing produces a similar F0.5 score on the BEA-2019
development set after convergence, but it takes
much longer to train. As seen in Figure 6, the
model with a shared layer reaches an F0.5 score
of 54% after 2,100 parameter updates, while the
model with a frozen feed-forward layer requires
3,100 parameter updates. On the other hand, re-
moving the shared layer entirely results in a lower
score after convergence. Having a shared feed-
forward layer in the transformer block adds in-
significant computational costs during training, and
the costs disappear after merging the layer with
each expert during inference.

6.4 Low-Rank Experts

The MoECE architecture bears some resemblance
to the Low-Rank Adaptation (LoRA) network (Hu
et al., 2022). In MoECE’s architecture, the dimen-
sions of the feed-forward layers in the experts are
the same as those of the main transformer feed-
forward layer. We investigate whether similar per-
formance can be achieved by using experts with
feed-forward layers that project the hidden repre-
sentation into much smaller dimensions and then
project back to the original dimensions, similar to
LoRA. Using this type of expert network reduces
memory usage and disk space, but the main trans-
former feed-forward layer can no longer be merged
into the expert layers due to the difference in di-
mensions.

In Table 6, we observe that while MoECE-GS
with low-rank experts (row #4) does not perform
as well, MoECE-ST with low-rank experts (row
#3) performs comparably to the original MoECE-
ST (row #2), with slightly higher F0.5 score on
the BEA-2019 test set but lower F0.5 score on the
CoNLL-2014 test set. This indicates that low-rank
experts are a good alternative when memory con-
sumption is a concern.

7 Related Work

In this section, we briefly outline previous work
on interpretable grammatical error correction and
recent work on mixture of experts for transformer
models.

7.1 Interpretable GEC

An interpretable GEC model is desirable as it can
help the user understand the rationale behind the
correction produced by a GEC model. Since many
GEC users are language learners, understanding
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the rationale behind the corrections can help them
avoid making the same mistakes in the future.
Stahlberg and Kumar (2020) propose a model that
generates error types during inference, but the main
output of the model is a sequence of edits instead
of the corrected text. Sequence-tagging models
such as GECToR (Omelianchuk et al., 2020) also
provide interpretability from the general transfor-
mation tags that it outputs, but those are only a
small subset of the output tags. Showing the error
types may not be considered complete feedback,
but error types can still serve as useful feedback to
the user (Qorib et al., 2023).

Kaneko et al. (2022) propose a GEC system that
produces a corrected text with an example of a sim-
ilar sentence from the training data to make their
model interpretable. Fei et al. (2023) propose a
GEC system that accompanies the corrections with
the error types and the evidence words. Even so,
these approaches still have their own weaknesses.
More research is needed on interpretable and ex-
plainable grammatical error correction to provide
more useful feedback to language learners.

7.2 Mixture of Experts
Mixture of experts is a classic method that was pro-
posed by Jacobs et al. (1991) and reinterpreted for
neural networks by Shazeer et al. (2017). Shazeer
et al. (2017) reach the state of the art on lan-
guage modeling and machine translation by apply-
ing MoE convolutionally between stacked LSTM
layers.

MoE has recently gained popularity thanks to
its effectiveness in scaling up the number of pa-
rameters of transformer models while maintaining
reasonable computation cost (Fedus et al., 2022a).
Much research has been done on improving train-
ing stability (Du et al., 2021; Zoph et al., 2022),
the router (Zhou et al., 2022; Lewis et al., 2021),
and the load balancing loss (Lepikhin et al., 2021;
Fedus et al., 2022b), but little has been done on
its transferability from dense models. Most MoE
models go through a pre-training process instead
of transferring the weights from a dense model
and transforming it into an MoE during fine-tuning,
which is what we have done in this work. Gao et al.
(2022) propose to expand a pre-trained language
model into a mixture of experts, but they use the
parameter matrix of the matrix product operator
(a tensor decomposition from quantum many-body
physics) to be the expert. Their architecture design
is significantly different from ours which uses the

MoE layer as an addition instead of a replacement
of the transformer feed-forward layer.

8 Conclusion and Future Work

In this paper, we present a new grammatical error
correction model that is more efficient by utilizing
a mixture of experts, called MoECE. Our experi-
ments show that our model can improve the F0.5

scores of the comparable dense model by up to 0.55
points on the CoNLL-2014 test set and 1.32 points
on the BEA-2019 test set. With the same model
and hyper-parameters, the model can improve the
F0.5 score on out-of-domain test sets by up to 2.59
points on CWEB-G and 1.07 points on CWEB-S.
The larger variant of our model, MoECE-GS-Large,
successfully reaches performance slightly better
than a model, T5-XL, that has three times its ef-
fective parameter count and almost double its total
parameter count.

Our proposed error type loss makes our model
interpretable by producing corrections with error
types. Our analysis shows that the error type loss
helps in routing the input token to the appropri-
ate expert based on its error type. In addition, we
find that our error type loss can be an alternative to
existing load balancing loss. We believe that inter-
pretable and explainable grammatical error correc-
tion models are needed to help language learners
with their study and we hope more research ex-
plores this direction.

Limitations

In this work, we only investigate grammatical error
correction for English. Our method is applicable to
grammatical error correction for other languages
when sufficient training data is available. We have
not run experiments on larger models due to limi-
tation of our compute budget, but we believe our
current experimental configurations are sufficient
to empirically demonstrate the effectiveness of our
method. We believe our work does not bring any
direct harm to individuals or society.
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A Task Interference in T5-v1.1-Large

We observe a similar indication of task interference
that we explain in the introduction on the training
of T5-v1.1-Large (Figure 7).

B Compute Budget

We list the total number of parameters of our mod-
els in Table 7. The training of the base models
took about 33.3 hours for each model on a single
NVIDIA H100 GPU, while training the large mod-
els took about 16.5 hours on two NVIDIA H100
GPUs. The reason why the training times of the
base and large models are similar is that large mod-
els converged much earlier.

Model M EPC TPC
MoECE-GS-Base 7 282M 490M
MoECE-ST-Base 7 248M 490M
MoECE-GS-Large 7 917M 1.7B
MoECE-ST-Large 7 784M 1.7B

Table 7: Effective parameter counts (EPC) and total
parameter counts (TPC) of our models.

C Experiments

The parameters that we need to set to train the mod-
els are given in Table 8. The rest follows the de-
fault hyper-parameters of Fairseq6 (Ott et al., 2019).

6https://github.com/facebookresearch/fairseq/
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Figure 7: F0.5 scores of a T5-v1.1-Large model on different error types in the BEA-2019 development set at
different numbers of training steps.

Testing the model does not require specifying the
hyper-parameters. We did not conduct an exten-
sive hyper-parameter search, but we specify our
parameter bounds in Table 9. Note that we perform
hyper-parameter search on the smaller models.

We performed experiments on multiple config-
urations to verify the effectiveness of our method.
Each configuration was only run once, but the re-
sults were verified through statistical significance
tests that we explain in Section 4.2.

Name value
# tokens in one gradient update 524,288
Learning rate 0.0002
Optimizer Adafactor
Max sequence length 128
Expert dropout 0.25
Router hidden dimension 384
α 0.1
β 1.0

Table 8: # tokens in one gradient update is the maxi-
mum number of tokens in one batch × gradient accu-
mulation × # GPU.

Name value
# tokens in one gradient update {524,288,

1,048,576}
Learning rate {0.0002,

0.0004}
Optimizer Adafactor
Max sequence length 128
Expert dropout {0.25, 0.3}
Router hidden dimension 384
α {0.1, 0.5}
β {0.1, 0.5, 1.0}

Table 9: The hyper-parameter search bounds.
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