
Findings of the Association for Computational Linguistics: EACL 2024, pages 17153–17166
November 12-16, 2024 ©2024 Association for Computational Linguistics

Unified Active Retrieval for Retrieval Augmented Generation

Qinyuan Cheng1,2* Xiaonan Li1* Shimin Li1 Qin Zhu1 Zhangyue Yin1

Yunfan Shao1,2 Linyang Li2 Tianxiang Sun1 Hang Yan2 Xipeng Qiu1,3,†

1Fudan University
2Shanghai AI Laboratory

3Shanghai Collaborative Innovation Center of Intelligent Visual Computing
chengqy21@m.fudan.edu.cn {lixn20, xpqiu}@fudan.edu.cn

Abstract
In Retrieval-Augmented Generation (RAG), re-
trieval is not always helpful and applying it
to every instruction is sub-optimal. Therefore,
determining whether to retrieve is crucial for
RAG, which is usually referred to as Active
Retrieval. However, existing active retrieval
methods face two challenges: 1. They usually
rely on a single criterion, which struggles with
handling various types of instructions. 2. They
depend on specialized and highly differentiated
procedures, and thus combining them makes
the RAG system more complicated and leads to
higher response latency. To address these chal-
lenges, we propose Unified Active Retrieval
(UAR). UAR contains four orthogonal crite-
ria and casts them into plug-and-play classifi-
cation tasks, which achieves multifaceted re-
trieval timing judgements with negligible extra
inference cost. We further introduce the Uni-
fied Active Retrieval Criteria (UAR-Criteria),
designed to process diverse active retrieval sce-
narios through a standardized procedure. Ex-
periments on four representative types of user
instructions show that UAR significantly out-
performs existing work on the retrieval timing
judgement and the performance of downstream
tasks, which shows the effectiveness of UAR
and its helpfulness to downstream tasks.

1 Introduction
With the rapid development of large language mod-
els (LLMs) (Brown et al., 2020; Touvron et al.,
2023; Zeng et al., 2023; Yang et al., 2023; Cai
et al., 2024; Bai et al., 2023), AI assistants based on
LLMs become unbiquitous and show remarkable
abilities on various types of instructions, e.g., cod-
ing, writing and reasoning (OpenAI, 2022; Taori
et al., 2023; Chiang et al., 2023; Sun et al., 2024;
OpenAI, 2023; Anthropic, 2023; Anil et al., 2023).
However, LLMs often generate fabricated and non-
factual information (Lin et al., 2022b; Cheng et al.,

*Equal contribution
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InstructionType
Could you help me research this question?The user wants to

use retrieval Retrieve information first, and then answer.

Write a rap about staying positive.Doesn’t require
factual knowledge Write a few lines of an original poem.

Who is the CEO of Google?Facts change over 
time Who is the current Prime Minister of Japan?

Where is the capital of the United States?Facts do not 
change & The
model knows Who is the author of Harry Potter?

What is the name for the lump in a human throat?Facts do not 
change & Model
does not know In which country was Michael J. Fox born?

Figure 1: Different types of user instructions, which can
not be handled by single active retrieval criteria.

2023; Wang et al., 2023a), which is called “halluci-
nation” and makes LLMs’ responses not trustwor-
thy in real-world scenarios.

Retrieval-Augmented Generation (RAG) is a
prevailing approach to address LLM’s hallucina-
tion (Guu et al., 2020; Gao et al., 2024). Given a
user query, it usually first retrieves relevant docu-
ments and then uses them to augment the LLM’s
factual correctness. However, retrieval is not al-
ways helpful and applying it to every instruction is
sub-optimal. When faced with instructions that do
not require external knowledge, RAG can impair
the creativity and versatility of LLMs (Asai et al.,
2023).

If irrelevant knowledge is retrieved, it will hin-
der the LLM from utilizing its internal knowledge
effectively and make it produce low-quality re-
sponses (Shi et al., 2023; Yoran et al., 2023). Mean-
while, compared with only LLM, RAG involves an
additional retrieval process and the longer LLM
input, resulting in significantly longer response la-
tency. Therefore, applying RAG for all instructions
is sub-optimal and unnecessary, and determining
the correct timing for retrieval is crucial for LLMs’
real-world application, which is often reftered to
as Active Retrieval (Jiang et al., 2023; Asai et al.,
2023).

In general, there are two lines of active retrieval
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UAR
(our work)

FLARE
(Jiang et al., 2023)

Self-RAG
(Asai et al., 2023)

SKR
(Wang et al., 2023b)

Intent Awareness? ✓ ✗ ✗ ✗
Knowledge Awareness? ✓ ✗ ✓ ✗
Time Awareness? ✓ ✗ ✗ ✗
Self Awareness? ✓ ✓ ✗ ✓

Table 1: Comparison of UAR to other active retrieval methods. Exciting methods only consider a single active
retrieval criterion, while UAR unifies four orthogonal criteria and can handle various types of user instructions.

methods. One is the “knowledge-aware” method,
based on the instruction’s factual relevance, e.g.,
Self-RAG (Asai et al., 2023). If the instruction
requires factual information, the retrieval will be
triggered. Another line of work is the “self-aware”
method, based on the LLM’s self awareness (Wang
et al., 2023b). The retrieval is only triggered when
the LLM thinks that it does not know the answer,
i.e., when it is uncertain. In this way, the retrieval
can supplement knowledge for the LLM when nec-
essary and avoid unnecessary retrieval cost. Al-
though these methods can determine retrieval tim-
ing for specialized scenarios, they still face two
challenges: 1. Previous work usually relies on a
single criterion, which struggles with diverse sce-
narios. For instance, the self-aware method (Wang
et al., 2023b; Liu et al., 2024; Ding et al., 2024)
struggles with various instructions such as time-
sensitive queries or those with user’s explicit re-
trieval intent. For time-sensitive questions, it is
challenging for a static LLM to judge whether
it possesses the correct knowledge for a rapidly
changing answer. Additionally, these methods of-
ten overlook user’s intent in real-world scenarios,
such as when a user seeks a verifiable answer that
requires external information sources, necessitating
retrieval. Therefore, correctly determining whether
to retrieve requires multifaceted decision-making.
2. Existing methods rely on specialized procedures,
complicating the integration within the RAG sys-
tem and increasing computational load. For exam-
ple, FLARE (Jiang et al., 2023) uses the confidence
of generation and Rowen (Ding et al., 2024) re-
lies on response divergence for the same question.
These highly differentiated approaches are difficult
to unify, making it very difficult to extend them to
new scenarios.

To address these challenges, we propose Unified
Active Retrieval (UAR), a unified and comprehen-
sive framework for judging whether to retrieve for
various types of user instructions. UAR consists
of various orthogonal criteria of retrieval timing
and casts them into unified classification tasks, and

thus can judge the LLM’s retrieval timing both
comprehensively and efficiently. Specifically, UAR
consists of four orthogonal criteria for determin-
ing the retrieval timing: 1) Intent-aware: whether
the user desires retrieval / external information;
2) Knowledge-aware: whether the question re-
quires fact knowledge; 3) Time-Sensitive-aware:
whether the question is time-sensitive; 4) Self-
aware: whether the LLM has the internal knowl-
edge. As shown in Table 1, compared with previ-
ous methods of single criterion (Jiang et al., 2023;
Wang et al., 2023b; Asai et al., 2023), UAR can
comprehensively handle various types of user in-
structions and call retrieval accurately consider-
ing multiple active retrieval criteria. To efficiently
achieve judgements of multiple criteria, UAR uni-
fies each criterion’s judgement into binary classifi-
cation tasks using lightweight classifiers. For each
criterion ci, we train a plug-and-play binary clas-
sifier on the last layer’s hidden states of a fixed
LLM, to judge whether the input requires retrieval
according to ci. In this way, UAR does not change
LLMs’ parameters, avoiding the costly LLM fine-
tuning and performance degradation (Yang et al.,
2024). Meanwhile, the classifiers and LLM gener-
ation share the same input encoding, which makes
UAR only need to encode the input once and thus
achieves multifaceted retrieval timing judgements
with negligible extra inference cost.

To handle various instructions in an unified pro-
cedure, we further propose Unified Active Retrieval
Criteria (UAR-Criteria), which specifies priorities
for multiple retrieval criteria and unifies them into a
single multifaceted decision tree. As shown in Fig-
ure 2, UAR-Criteria can trigger retrieval for time-
sensitive or LLM-unknown instructions, which
facilitates necessary external information supple-
ment. Meanwhile, UAR-Criteria cancels retrieval
for those non-knowledge-intensive or LLM-known
instructions, which avoids the negative effect of un-
necessary retrieval. In this way, UAR-Criteria uni-
fies the process to comprehensively decide whether
to retrieval for various types of user instructions,
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which facilitates more effective RAG.
Experiments on four representative types of user

instructions show that UAR significantly outper-
forms existing work on the retrieval timing judge-
ment accuracy and the performance of downstream
tasks, which verifies the effectiveness of UAR and
its helpfulness to downstream tasks. We summarize
our contributions as follows:

• We propose an active retrieval framework
named Unified Active Retrieval (UAR) for
Retrieval-Augmented Generation (RAG). To
the best of our knowledge, UAR is the first
work to propose multifaceted criteria for ac-
tive retrieval and demonstrate its necessity.

• We curate the Active Retrieval benchmark
(AR-Bench) for evaluating the accuracy of
retrieval timing and conduct comprehensive
experiments on AR-Bench and downstream
tasks. The results show that UAR significantly
outperforms existing work and achieves more
efficient RAG.

• We release the code, data, models and relevant
resources to facilitate future research1.

2 Related Work

2.1 Active Retrieval

Compared to applying retrieval for every instruc-
tion (passive retrieval), active retrieval has ad-
vantages such as not hurting the versatility of
the model, reducing the number of retrievals,
and preventing interference from low-quality re-
trieval results. Self-RAG (Asai et al., 2023) con-
struct active retrieval data using GPT-4 and teach
the model to not retrieve when encounter non-
knowledge-intensive instructions. FLARE (Jiang
et al., 2023) proposes forward-looking active re-
trieval augmented generation based on model’s
confidence, only retrieving information when the
model’s uncertainty for the prediction is high. SKR
(Wang et al., 2023b), RA-ISF (Liu et al., 2024)
and Self-DC (Wang et al., 2024) first determines
whether the model knows the questions and then
retrieves only when the model does not know. How-
ever, current active retrieval methods mostly con-
sider only a single scenario and are unable to adapt
to complex situations in real-world applications.

1https://github.com/xiami2019/UAR

2.2 Time-awareness of LLMs
There are some papers focus on the time awareness
of large language models. Chen et al. (2021) con-
struct a time-sensitive QA dataset called TimeQA
to evaluate the model’s ability to handle tempo-
ral questions. Fierro et al. (2024) create a bench-
mark named MULAN for evaluating the ability of
language models to predict mutable facts. They
find representations classification can distinct im-
mutable and mutable facts, which means language
models have a certain degree of temporal aware-
ness. Zhao et al. (2024) investigate whether lan-
guage models can align their internal knowledge
to a target year. They construct a dataset which
contains time-sensitive questions.

2.3 Self-awareness of LLMs
Self-awareness means that large language model
can be aware of what they know and what they
don’t know. Kadavath et al. (2022) find that lan-
guage models can be well-calibrated when using a
multiple-choice template. And they also finetune
a value head to predict whether language models
know the answer to the given question. Lin et al.
(2022a) finetune GPT-3 to express uncertainty in
words on math questions. Yin et al. (2023) collect
some unanswerable questions to evaluate whether
language models can express uncertainty to these
unanswerable questions. Zhang et al. (2023) utilize
supervised fine-tune to teach large language models
to refuse questions which beyond their knowledge
scope. Cheng et al. (2024) explore more align-
ment methods beyond supervised fine-tuning to
teach language models know and express what they
don’t know, like preference optimization. Results
of previous work show that we can enhance lan-
guage models’ self-awareness with corresponding
dataset.

3 Methodology
UAR is a plug-and-play active retrieval framework.
As shown in Figure 2, we fix the parameters of
the LLM and train a lightweight classifier for each
active retrieval criteria using the model’s hidden
states, which is far more efficient than fine-tuning
the entire model. Besides, UAR determines the
need for active retrieval following the UAR-Criteria
shown on the right side of Figure 2, invoking re-
trieval when necessary and avoiding unnecessary
across various scenarios, making RAG more ef-
fective and efficient. For instructions requiring
retrieval, we append the retrieved documents to the
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AI Assistant

User Instruction

Generation
with Retrieved
information

Generation
with Internal
knowledge

Intent-aware
Classifier

Knowledge-
aware Classifier

Time-aware
Classifier

Self-aware
Classifier

Retrieve

Not Retrieve

Retrieve

Not Retrieve Retrieve

MLP1 MLP2 MLP3 MLP4

Need Retrieval: Yes Need Retrieval:No

Inference with UAR CriteriaUnified Active Retrieval

T1 T2 T3 T4 T5 … Tn

H1 H2 H3 H4 H5 …

Tokenization

Hn

Figure 2: Overview of the UAR framework. indicates that we freeze these parameters. indicates that we
update these parameters. Each MLP is a fully connected layer, with an input dimension equal to the model’s hidden
state dimension and an output dimension of 2.

original instruction, which means that UAR does
not introduce extra LLM inference cost. We in-
troduce the details of our UAR framework in the
following sections.

3.1 UAR Classifiers Training
We construct distinct training data tailored to each
scenario.

Self-aware In the self-aware scenario, the model
must determine if it knows the answer to a given
question. Following the methodology in Cheng
et al. (2024), we create model-specific IDK (I don’t
know) datasets. For example, with the Llama2-7B-
chat model, we use the TriviaQA (Joshi et al., 2017)
dataset, sampling ten responses for each question.
If all responses are correct, the question is marked
as known; otherwise, it is unknown. 10% of the
TriviaQA training set is used for validation, with
the rest designated as the training set.

Time-aware In the time-aware scenario, it is
critical to determine if a user’s question is time-
sensitive, meaning the answer changes over time.
We utilize questions from TAQA’s (Zhao et al.,
2024) training and validation sets as time-sensitive
questions. In contrast, we sample an equivalent
number of questions from the TriviaQA training
set to represent non-time-sensitive questions, which
typically have static answers.

Knowledge-aware In the knowledge-aware sce-
nario, identifying whether a user’s instruction re-
quires factual knowledge is essential. We use non-

retrieval instruct-following data from the Self-RAG
(Asai et al., 2023) training set, which GPT-4 classi-
fies as non-knowledge-intensive. We select 2,000
entries for our validation set and 22,801 for train-
ing. Additionally, we incorporate all entries from
our time-aware data’s training and validation sets
as knowledge-intensive instructions to complete
the final knowledge-aware training and validation
sets.

Intent-aware In the intent-aware scenario, it’s
crucial to identify users’ intentions to use retrieval-
augmented generation. Due to a lack of data with
explicit retrieval intentions, we use Self-Instruct
(Wang et al., 2023c) to generate 3,000 user intents
from ten handwritten intents. We allocate 2,000
for training, 500 for validation, and 500 for testing.
We assemble user queries by sampling 52,949 en-
tries from Self-RAG’s non-retrieval-required data,
and factual knowledge questions from TAQA and
TriviaQA for the training set, with an additional
5,000 for validation. We integrate half of these data
with user retrieval intents, alternating the position
of intents before and after user inputs, to create
inputs with retrieval intents. The remaining data
are used as inputs without retrieval intents.

For each scenario, we train a single-layer MLP
as the classifier, using the hidden states from the
last token in the input as the input to the classifica-
tion head. In this way, UAR can achieve various
criteria’s judgements with negligible extra com-
putational cost. We include details of classifiers’
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training in Appendix E.

3.2 UAR Criteria
We further propose UAR-Criteria to unify the
judgements of different types of user instructions
in to one unified procedure. During the inference
stage, UAR sequentially utilizes four classifiers
according to different priorities to determine the
correct timing for retrieval calls, and we introduce
its details as follows.

Initially, UAR checks whether the user in-
tends to use retrieval augmentation. If so, re-
trieval is triggered. If not, UAR evaluates
whether the input is knowledge-intensive. For non-
knowledge-intensive tasks, retrieval is not used.
For knowledge-intensive tasks, UAR further as-
sesses whether the knowledge is time-sensitive.
Retrieval is necessary for time-sensitive questions.
For non-time-sensitive, knowledge-intensive tasks,
UAR checks whether the model already has the
relevant knowledge, activating retrieval only for
unfamiliar questions. In this way, UAR can han-
dle various types of instructions. Specifically,
UAR-Criteria activates retrieval for instructions
that are time-sensitive, unknown to the model, and
have explicit retrieval intent, which facilitates nec-
essary external information supplement. Mean-
while, UAR-Criteria cancels retrieval for those non-
knowledge-intensive or LLM-known instructions,
which avoids the negative effect of unnecessary re-
trieval. Meanwhile, since UAR achieves the judge-
ment of multifaceted criteria by linear classifiers,
the introduced extra computational cost is negligi-
ble.

3.3 Generation with Relevant Information
For instructions requiring retrieval augmentation,
we append the retrieved external information with
a RAG template to the original user input. Since
most of the prevailing LLMs are based on the
decoder-only architecture (Brown et al., 2020),
UAR can avoid the need to recompute the original
instruction. The retriever might fetch information
irrelevant to the question, our prompt instructs the
model to utilize only the information relevant to
the question. This approach helps prevent irrele-
vant information from misleading the model. An
example of our RAG prompt is as follows:

{question}
Here are some additional reference passages:
{reference passages}
You can refer to the content of relevant
reference passages to answer the questions.

Now give me the answer.

For instructions that do not require retrieval, we
allow the model to generate outputs in its original
format.

4 Experiments

4.1 Benchmarking Retrieval Timing
We curate an Active Retrieval Benchmark (AR-
Bench) to evaluate the accuracy of various active
retrieval methods in determining the timing of re-
trieval. The AR-Bench includes four sub-tasks:
intent-aware, knowledge-aware, time-aware and
self-aware, covering all the active retrieval scenar-
ios mentioned in this paper. Each sub-task is a bi-
nary classification task comprising 8,000 samples,
with a 1:1 ratio of positive to negative examples,
and these samples do not overlap with the train-
ing data of UAR. These four sub-tasks separately
evaluate one single active retrieval criterion and we
control variables to ensure that each task’s retrieval
decision solely depends on one single criterion. We
introduce details of AR-Bench construction in Ap-
pendix A.

4.2 Downstream Tasks
We select six datasets to test UAR’s performance
in real downstream tasks and its adaptability to
different active retrieval scenarios. Since the intent-
aware judgement focuses on satisfying users’ re-
trieval intent, which is not reflected on the objec-
tive downstream performance, the selected datasets
cover the remaining three scenarios: knowledge-
aware, time-aware, and self-aware. For knowledge-
aware scenario, we use DROP (Dua et al., 2019)
and (Cobbe et al., 2021). For time-aware scenario,
we use TAQA (Zhao et al., 2024) and FreshQA
(Vu et al., 2023). For self-aware scenario, we use
TriviaQA (Joshi et al., 2017) and WebQuestions
(WQ) (Berant et al., 2013). We provide a detailed
introduction to these datasets in Appendix F. In
these six datasets, we only use the training sets
of TriviaQA anf TAQA for UAR’s training, and
thus the remaining evaluation dataset can reflect
the UAR’s out-of-distribution (OOD) performance,
which can further verify the effectiveness of UAR
in complicated real-world scenarios.

4.3 Baselines
We choose three active retrieval methods as our
baseline methods: FLARE (Jiang et al., 2023), Self-
RAG (Asai et al., 2023), and SKR (Wang et al.,
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Scenario Intent-aware Knowledge-aware Time-aware Self-aware Overall

7B Models

FLARE 61.95 56.76 53.69 53.59 56.50
Self-RAG† 64.26 72.82 47.45 55.95 60.12
SKR 58.73 42.94 76.61 70.28 62.14

UAR 91.88 90.38 86.69 72.32 85.32

13B Models

FLARE 65.49 53.54 55.20 54.61 57.21
Self-RAG† 67.80 64.85 54.44 52.49 59.89
SKR 59.00 43.18 79.91 68.70 62.70

UAR 92.49 91.04 87.94 73.84 86.33

Table 2: Comparisons of active retrieval accuracy on our active retrieval benchmark (AR-Bench). †: Self-RAG is
fine-tuned from Llama2-base models. Other methods are based on Llama2-chat models.

2023b), covering two main active retrieval criteria.
FLARE determines whether external retrieval is
needed by assessing the model’s uncertainty about
the generated responses. SKR first collects model’s
self-knowledge (knowns and unknowns) data, then
trains a BERT-based (Devlin et al., 2019) classi-
fier to determine whether the model knows a cer-
tain question. For questions the model does not
know, retrieval augmentation is used. Self-RAG
gathers a large amount of knowledge-intensive and
instruction-following data (no fact knowledge re-
quired), then trains the pre-trained model to only
use retrieval augmentation for knowledge-intensive
tasks. For downstream tasks, we also include gen-
eration with never-retrieval and always-retrieval as
baseline methods. The original SKR and FLARE
are not based on Llama2, so we re-implement these
methods on the Llama2 model. The details of our
re-implementation are provided in Appendix B.

4.4 Retrievers
For time-sensitive datasets TAQA and FreshQA,
we follow the settings in FreshQA Vu et al. (2023)
and use Google Search. For other datasets, follow-
ing the settings in Self-RAG, we use off-the-shelf
Contriever-MS MARCO (Izacard et al., 2022) and
retrieve up to ten documents for each input. Dur-
ing generation, we use the top five retrieved docu-
ments. For other datasets, following the settings in
Self-RAG, we adopt off-the-shelf Contriever-MS
MARCO (Izacard et al., 2022) and use the top-5
documents.

4.5 Evaluation Metrics
Following previous work (Asai et al., 2023; Mallen
et al., 2023; Schick et al., 2023), we check whether
gold answers are included in model’s generations
to evaluate performance on the DROP, TriviaQA,

and WQ datasets, instead of strictly requiring exact
matching. For GSM8K, we use the prompts for
answer extraction in Kojima et al. (2022) to extract
model’s answers and then use exact matching to cal-
culate the accuracy. For TAQA and FreshQA, since
the golden answers are too long to conduct lexical
matching, we use ChatGPT to evaluate whether the
model’s answers are correct. Details of ChatGPT
evaluation are included in Appendix C. Further-
more, for downstream tasks, we also report the
percentage of samples that invoke retrieval. For
AR-Bench, we use accuracy as the metric. Since
AR-Bench is a binary classification task with an
equal number of positive and negative samples, ac-
curacy and micro F1 score are equivalent.

4.6 Comparisons on AR-Bench

We show the results in Table 2. We observe that
UAR outperforms existing active retrieval methods
across all AR-Bench scenarios, demonstrating its
versatility and effectiveness. Since baseline meth-
ods depend on a single criterion, they struggle with
various active retrieval scenarios, which demon-
strates the limitation of single criterion and the ne-
cessity of multifaceted decision for active retrieval.
Additionally, we find FLARE struggle with self-
aware scenario, which it is targeted at. We think
it is because its uncertainty estimation heavily de-
pends on model calibration and this leads to its
poor performance on less calibrated models like
chat models (He et al., 2023) or those with fewer pa-
rameters. Self-RAG uses the knowledge-intensive
nature of tasks as the retrieval criterion, performing
well in knowledge-aware scenarios but poorly in
others. SKR bases retrieval on the model’s knowl-
edge of an answer, excelling in self-aware and time-
aware scenarios but failing in others. Additionally,
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Dataset Drop GSM8K TriviaQA WQ TAQA FreshQA Overall

7B Models

Never-Ret 57.67(0%) 26.91(0%) 62.15(0%) 59.79(0%) 16.43(0%) 35.64(0%) 43.10
Always-Ret 49.57(100%) 23.65(100%) 68.73(100%) 53.99(100%) 34.49(100%) 65.35(100%) 49.23

Active Retrieval

Self-RAG† 39.17(5.7%) 16.07(4.9%) 61.68(53.5%) 43.01(61.9%) 11.09(42.1%) 44.88(51.2%) 35.98
SKR 53.00(61.4%) 26.38(35.3%) 65.39(48.9%) 58.96(26.8%) 30.63(79.9%) 48.84(39.3%) 47.17
FLARE 56.98(9.6%) 26.76(45.8%) 65.98(58.8%) 55.46(67.9%) 28.08(63.5%) 57.76(57.4%) 48.50
UAR 52.55(49.7%) 26.91(0.1%) 69.02(50.1%) 60.53(25.0%) 34.46(99.7%) 59.74(78.5%) 50.49

13B Models

Never-Ret 58.76(0%) 40.64(0%) 63.18(0%) 57.63(0%) 11.14(0%) 34.98 (0%) 44.39
Always-Ret 54.16(100%) 37.68(100%) 71.02(100%) 54.08(100%) 34.20(100%) 62.05(100%) 52.09

Active Retrieval

Self-RAG† 44.68(0.1%) 21.00(0.0%) 62.53(30.0%) 42.37(51.9%) 15.42(37.0%) 39.60(39.3%) 37.60
SKR 56.58(50.9%) 39.35(27.6%) 67.21(49.2%) 56.20(31.5%) 31.66(89.2%) 50.17(45.9%) 50.16
FLARE 58.12(17.5%) 38.05(61.2%) 68.00(54.9%) 53.64(69.6%) 25.40(60.9%) 50.17(55.8%) 48.90
UAR 58.55(3.7%) 40.64(0.0%) 71.71(48.5%) 59.20(31.2%) 34.14(99.6%) 55.45 (73.3%) 53.26

Table 3: Comparisons of downstream tasks performance. Never-Ret means that retrieval augmentation is never used
during generation, while Always-Ret means that retrieval augmentation is used in every generation.†: Self-RAG is
fine-tuned from Llama2-base models. Other methods are based on Llama2-chat models.

since SKR uses BERT as the classifier, whose inter-
nal knowledge has a significant gap with Llama, it
underperforms UAR with value heads based on the
Llama’s representation, in the self-aware scenario.

4.7 Comparisons on Downstream Tasks
For Self-RAG, we use inference scripts provided by
the authors. For FLARE, SKR, UAR, and always-
retrieval methods, we use the same prompts to gen-
erate responses by incorporating the retrieved in-
formation. We introduce the details of generation
in Appendix D.

The results are shown in Table 3. We see that
UAR leads to the best overall performance across
different downstream task scenarios, which indi-
cates its effectiveness. The percentage inside the
parentheses represents the proportion of retrieval-
invoked samples to the total samples. We analyze
each scenario as follows.

UAR does not invoke retrieval when factual
knowledge is not needed. The DROP and
GSM8K dataset do not require fact knowledge, and
using retrieval enhancement will interfere with the
model. The results of always-retrieval are worse
than never-retrieval. UAR only invokes a small
amount of retrieval, while SKR and FLARE in-
correctly invoke retrieval extensively. And since
UAR avoid unnecessary retrieval2 and thus pre-

2UAR based on the 7B model incorrectly invokes retrieval
50% of the time on the DROP dataset. We speculate that
this may be due to the limited representation capacity of the

vents affecting the original capabilities of the LLM,
it achieves the best results among all active retrieval
methods on DROP and GSM8K, coming close to
the results of never-retrieval. Although Self-RAG
does not incorrectly invoke retrieval, its final per-
formance is not very good because it is fine-tuned
based on the base model rather than leveraging the
capabilities of the chat model.

UAR accurately invokes retrieval for time-
sensitive questions. Since the questions in
TAQA and FreshQA are time-sensitive and their
answers keep changing, each question requires the
retrieval of the latest information. It is evident
that the always-retrieval method based on Google
Search performs significantly better than the never-
retrieval method. For TAQA, UAR almost perfectly
invokes retrieval. For FreshQA, UAR also invokes
retrieval for most of the questions. In contrast,
other methods invoke retrieval less frequently and
therefore do not use the latest information for re-
sponses, resulting in lower accuracy compared to
UAR.

UAR accurately assesses the model’s knowledge,
avoiding poor retrieval impacts. For questions
in TriviaQA and WQ whose answers do not change
over time, always-retrieval is sub-optimal and the
reason is two-fold: 1. For questions which model
knows, retrieval increases unnecessary latency. 2.

7B model’s hidden states. In contrast, the 13B model only
incorrectly invokes retrieval 3.7% of the time.

17159



Potential incorrect external information will inter-
fere correct internal knowledge. Retrieving infor-
mation only for knowledge that the model does not
know can mitigate this issue. Compared to SKR,
UAR can more accurately determine whether the
model knows a particular piece of knowledge. Al-
though SKR and UAR use a comparable number
of retrieval calls, the accuracy of SKR’s answers
is lower than that of UAR, indicating that SKR’s
retrieval calls are less precise than UAR’s. We
believe this is because SKR uses independent mod-
els, whereas our approach uses hidden states of the
original model, resulting in better generalization.
Moreover, UAR outperforms always-retrieval with
fewer retrieval calls, demonstrating the superiority
of the Active Retrieval method.

5 Analysis

5.1 Single Classifiers vs UAR

Scenario Single Classifier UAR

Intent-aware 98.29 91.88
Knowledge-aware 99.66 90.38
Time-aware 99.41 86.69
Self-aware 72.56 72.32

Table 4: Comparison between single classifiers and
UAR based on Llama2-7B-chat.

Different scenarios have varying levels of dis-
crimination difficulty. As shown in Table 4, the
single classifier for the self-aware scenario has the
lowest accuracy, which implies that determining
whether the model is self-aware is a relatively chal-
lenging task. We can also observe that the accuracy
of each single classifier is higher than UAR in their
respective scenarios. The self-aware classifier may
become the bottleneck restricting the performance
of UAR, which also results in the accuracy of UAR
on the AR-Bench being lower than the accuracy of
using a single classifier alone.

5.2 Using the Whole LLM as Classifier

Self-aware Only Value Head Whole LLM

Llama2-7B-chat 72.56 75.65
Llama2-13B-chat 73.48 76.28

Table 5: Comparison of the performance between train-
ing a value head as the classifier and training a entire
large language model as the classifier.

To improve the performance bottleneck of the
self-aware classifier, we attempt to fine-tune the
entire large language model as the classifier. From
the results in Table 5, we can observe that on both

7B and 13B models, fine-tuning the entire model
only achieves slight higher accuracy compared to
just fine-tuning a lightweight value head. Using a
whole LLM as the classifier, UAR’s inference la-
tency and required parameters will significantly in-
crease. Therefore, we use lightweight value heads
as classifiers, ensuring the efficiency of the entire
framework with minimal performance loss.

5.3 The Impact of Document Number
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Figure 3: The impact of the number of reference docu-
ments on model performance.

We evaluate performance on the TriviaQA (TQ)
and WebQuestions (WQ) datasets by varying the
number of reference documents from 1 to 10. The
results, shown in Figure 3, indicate that on the
WQ dataset, the always-retrieval method performs
worse than the never-retrieval method, possibly be-
cause some documents disrupt the correct knowl-
edge within the model. UAR reduces retrieval fre-
quency, enabling more precise retrieval calls and
outperforming the never-retrieval method. On the
TQ dataset, always-retrieval outperforms never-
retrieval, and performance improves with more
documents, suggesting useful information might
be in lower-ranked documents. UAR performs best
with fewer documents. With more documents, it
matches the performance of always-retrieval, al-
though it requires significantly fewer retrieval calls.

6 Conclusion

In this paper, we introduce UAR, a unified active
retrieval framework for retrieval-augmented gen-
eration. Unlike existing methods that rely on a
single criterion, UAR incorporates four orthogonal
criteria into plug-and-play classification tasks, en-
abling comprehensive retrieval timing judgments
with minimal inference cost and no loss of model
capabilities. We also introduce UAR-Criteria for
processing various active retrieval scenarios uni-
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formly. We curate the Active Retrieval Benchmark
(AR-Bench) to assess the retrieval timing accuracy
of active retrieval methods across different scenar-
ios. Experimental results demonstrate that UAR
significantly outperforms existing methods on AR-
Bench and downstream tasks, highlighting its effec-
tiveness and benefits to downstream applications.

Limitations

We summarize limitations of our work as follows:

• Our experiments primarily focus on the gen-
eration of short texts, such as in knowledge-
based question answering, and involve only a
single retrieval call. How to implement mul-
tiple active retrieval calls within longer text
responses remains an area for future investiga-
tion.

• Our active retrieval criteria are primarily de-
rived from our experience in practical appli-
cations, which may overlook some active re-
trieval scenarios.

• Our classifier is based on a single-layer MLP
network. Whether using a deeper network can
further enhance performance remains to be
explored.
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A Details of AR-Bench Construction

For the self-aware task, we employ the same
method as described in Section 3.1 to construct test
samples on the TriviaQA validation set. Questions
the model does not know are marked as requiring

retrieval. The test set comprise 4000 questions the
model knows and 4000 questions it does not.

For the time-aware task, we use 4000 time-
sensitive questions from the TAQA test set as inputs
requiring retrieval, and 4000 questions the model
knows from the TriviaQA validation set as inputs
not requiring retrieval.

For the knowledge-aware task, we use 4000 sam-
ples from the Self-RAG non-retrieval training data
as inputs not requiring retrieval, and combine 2000
time-sensitive questions from the TAQA test set
with 2000 questions the model does not know from
the TriviaQA validation set as inputs requiring re-
trieval.

For the intent-aware task, we use 4000 questions
the model knows from the TriviaQA validation
set and 4000 instructions from the Self-RAG non-
retrieval training data, half of which are concate-
nated with user retrieval intents as inputs requiring
retrieval, and the other half as inputs not requiring
retrieval.

It is important to note that the self-aware data for
different models may vary, leading to different AR-
Benches for different models. In our experiments,
we curate two separate AR-Benches for Llama2-
7B-chat and Llama2-13B-chat respectively.

B Details of Baselines Re-implementation

B.1 FLARE
In implementing FLARE, we make two modifica-
tions. First, we conduct experiments based on the
Llama2-chat series of models, rather than using
text-davinci-003. Second, we eliminate the initial
retrieval step in FLARE since our setting is active
retrieval rather than passive retrieval. We find that
FLARE based on Llama2 struggle to achieve sat-
isfactory results, which we suspect may be due
to poor calibration of the Llama2-7B-chat and
Llama2-13B-chat models. The uncertainty estima-
tion in FLARE heavily relies on model calibration,
making it challenging to adapt to poorly calibrated
models. Therefore, on the AR-Bench, we conduct
a direct search for the best retrieval thresholds for
FLARE, ultimately setting them at 0.006 and 0.02
for the Llama2-7B-chat and Llama2-13B-chat mod-
els, respectively.

B.2 SKR
In implementing SKR, we first use the 849 original
pieces of data provided by the authors of SKR
and collect self-knowledge data for the Llama2-7B-
chat model according to the scripts in SKR’s code
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Training Hyper-parameters

Optimizer AdamW
Warmup Steps 0
Learning Rate 2e-5
Batch Size 32
Train Epochs 5
LR Scheduler Linear
Max-seq-length 512

Table 6: Training hyper-parameters of SKR.

repository. We obtain 15 questions that the model
does not know and 143 questions that it knows,
and find that these data are not sufficient to train
an effective BERT classifier. Therefore, we use
the data from our training data of the self-aware
classifier to train the BERT classifier for SKR. Our
training hyper-parameters are shown in Table 6.

C ChatGPT Evaluation

We use gpt-3.5-turbo-instruct as the evaluator. Dur-
ing the evaluation, we input the correct answer and
the answer to be evaluated into gpt-3.5, and then
let the model compare the correct answer with the
answer to be evaluated to determine if the latter is
correct. Following Shao et al. (2023), we use the
following prompt for evaluation.

In the following task, you are given a Question,
a model Prediction for the Question, and a
Ground-truth Answer to the Question. You should
decide whether the model Prediction implies the
Ground-truth Answer.

Question:
{question}

Prediction:
{predicted answer}

Ground-truth Answer:
{ground-truth answer}
Does the Prediction imply the Ground-truth
Answer? Output Yes or No:

D Details of Generation

D.1 Self-RAG

We use the inference script provided by the Self-
RAG authors for generation. We determine the
need for retrieval by whether the retrieval special to-
ken appears in the generated response. For datasets
using Contriever-MS MARCO as the retriever, we
provide all 10 documents retrieved to Self-RAG for
generation.

D.2 Generation without Retrieval
For the DROP dataset, we use the following
prompt:
Please answer the question based on the given
passage.
Passage: {passage in the dataset}
Question: {question}
Now give me the answer.

For the GSM8K dataset, we use the following
prompt:
Answer the math word question step by step. Your
answer needs to end with ’The answer is’.
Question: {question}
Let’s think step by step and give me the answer.

For other datasets, we directly input the question
to the model:
{question}

D.3 Generation with Retrieval
For the DROP dataset, we use the following
prompt:
Please answer the question based on the given
passage.
Passage: {passage in the dataset}
Question: {question}

Here are some additional reference passages:
{retrieved documents}

You can refer to the content of relevant
reference passages to answer the questions.
Now give me the answer.

For the GSM8K dataset, we use the following
prompt:
Answer the math word question step by step. Your
answer needs to end with ’The answer is’
Question: {question}

Here are some additional reference passages:
{retrieved documents}

You can refer to the content of relevant
reference passages to answer the questions.
Let’s think step by step and give me the answer.

For other datasets, we use the following prompt:
{question}

Here are some additional reference passages:
{retrieved documents}

You can refer to the content of relevant
reference passages to answer the questions.
Now give me the answer.

E Details of UAR Training

When training the UAR classifiers, we set the batch
size to 32 and train for a total of 10 epochs, saving
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after each epoch and selecting the checkpoint that
perform best on the validation set. We conduct a
grid search on the validation set and ultimately de-
termine the learning rate to be 5e-5. Our classifier
is a fully connected layer with an input dimension
equal to the hidden state dimension and an output
dimension of 2.

F Downstream Task Datasets

For knowledge-aware scenario, we use the valida-
tion set of DROP (Dua et al., 2019) and the test
set of GSM8K (Cobbe et al., 2021) as the test
sets. DROP is a reading comprehension bench-
mark, which needs the model to answer questions
based on given paragraphs. GSM8K is a dataset
containing diverse grade school math word prob-
lems, primarily used to assess the reasoning ability
of models. These two datasets evaluate the model’s
abstract abilities, e.g., reading comprehension and
math reasoning, and thus do not require extra fact
knowledge. Therefore, they can measure the abil-
ity of active retrieval methods to avoid unnecessary
retrieval for scenarios that requires little fact knowl-
edge.

For time-aware scenario, we use the test set of
TAQA (Zhao et al., 2024) and questions whose an-
swers will change over time from FreshQA (Vu
et al., 2023) (We remove questions with false
premises). Since these questions are time-sensitive,
the active retrieval system need to retrieve real-time
information for every question.

For self-aware scenario, we use the validation set
of TriviaQA (Joshi et al., 2017) and the test set of
WebQuestions (WQ) (Berant et al., 2013). These
test samples are non-time-sensitive questions. The
active retrieval system only needs to retrieve ques-
tions which the model does not know, and try to
achieve high answer accuracy with an appropriate
number of retrieval calls.
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