
Findings of the Association for Computational Linguistics: NAACL 2024, pages 1–12
June 16-21, 2024 ©2024 Association for Computational Linguistics

Structured Pruning for Large Language Models Using Coupled
Components Elimination and Minor Fine-tuning

Honghe Zhang, Xiaolong Shi, Jingwei Sun*, Guangzhong Sun
University of Science and Technology of China

{zhanghonghe, shixiaolong}@mail.ustc.edu.cn, {sunjw, gzsun}@ustc.edu.cn

Abstract

Large language models (LLMs) have demon-
strated powerful capabilities in natural lan-
guage processing, yet their vast number of pa-
rameters poses challenges for deployment and
inference efficiency. Structured model pruning
emerges as a viable approach to reduce model
size and accelerate inference, without requir-
ing specialized operators and libraries for de-
ployment. However, structured pruning often
severely weakens the model’s capability. De-
spite repetitive fine-tuning can restore the capa-
bility to a certain extent, it impairs LLMs’ util-
ity as versatile problem solvers. To address this
issue, we propose a novel structured pruning
algorithm tailored for LLMs. It derives the im-
portance of different components, namely rows
and columns in parameter matrices, based on in-
termediate data dependencies. Then it removes
coupled components across different layers si-
multaneously and preserves dependency rela-
tionships within remaining parameters, avoid-
ing significant performance degradation. The
pruned model requires only few epochs of fine-
tuning to restore its performance, ensuring the
model’s ability to generalize. Empirical eval-
uations on LLaMA, Vicuna, and ChatGLM3
demonstrate our algorithm’s efficacy, yielding
20% parameter reduction while retaining at
least 94.4% of original performance metrics.

1 Introduction

Large language models (LLMs) have demonstrated
powerful capabilities in solving a variety of gen-
eral problems (OpenAI, 2023; Xue et al., 2020),
particularly in language understanding and gener-
ating. However, the large number of parameters
(Radford et al., 2018, 2019; Brown et al., 2020)
in LLMs poses significant challenges for deploy-
ment and inference efficiency. Structured pruning
(Wang et al., 2019; Xia et al., 2022; Zafrir et al.,
2021) has been proved to be a viable approach to

*Corresponding author.

compress deep neural networks. It removes entire
structural components of the neural network, with-
out requiring specialized operators and libraries for
executing the pruned model, so that it is convenient
for deployment and acceleration.

Despite structured pruning algorithms have long
been investigated (Lagunas et al., 2021; He et al.,
2020; Kurtic et al., 2022), they face new challenges
when tackling LLMs. Existing state-of-the-art
pruning algorithms follow an iterative scheme (Han
et al., 2015a; Louizos et al., 2017; Xia et al., 2022;
Zafrir et al., 2021) for specific tasks. This scheme
conducts iterative evaluating, pruning and fine-
tuning on a large model for a single task, achieving
low performance degradation. However, due to the
repetitive fine-tuning on a single task, the pruned
model has much less generalization ability on other
tasks. This is a particularly serious issue for LLMs,
since they are expected to be general-purpose mod-
els solving extensive problems. Simply extending
the fine-tuning on more corpus and tasks to reserve
the generalization ability is still challenging (Ma
et al., 2023), because LLMs require huge volume
of training corpus.

In this study, we propose a novel structured prun-
ing algorithm tailored for LLMs. In contrast to
existing iterative pruning works, our algorithm first
conducts iterative evaluating and pruning, until
the desired sparsity level is achieved. After com-
pleting all the iterations of evaluating and pruning,
it then conducts one stage of fine-tuning, which
involves few epochs of training on a small dataset.
The intuition of our algorithm is to limit the fine-
tuning operations as few as possible, so that the
pruned model will not import too much bias to-
wards specific tasks.

To ensure that the remaining parameters are con-
sistently important and do not need repetitive fine-
tuning to restore performance, we need to precisely
evaluate the importance of structured components,
namely rows and columns in parameter matrices.

1

Embedding

Multi-head
Attention

LayerNorm

FFN

LayerNorm

LM Head

Lyn x

Q K V O

X

QK VO

Y

Hdn x

U G

D

X

UG

Y

T

Inference

Evaluation

T

Pruning

T T

Figure 1: During the pruning process, we determine whether a component should be pruned according to the
inference error caused by removing the component and its coupled components from intermediate results.

More concretely, our algorithm derives the im-
portance and uncertainty of different components
based on intermediate data dependencies, as shown
in Figure (1). According to the Transformer-based
model architecture, we can identify the coupled
components that have data dependency on pruned
components. These coupled components across
different layers can be removed simultaneously,
and the dependency relationships within remain-
ing parameters can be still preserved, avoiding sig-
nificant performance degradation. Moreover, we
employ LoRA (Hu et al., 2022) fine-tuning to re-
store model performance, and use LoRA gradients
(Zhang et al., 2023) instead of full-scale fine-tuning
gradients to reduce the computational overhead dur-
ing pruning. The model pruned by our algorithm
preserves the original architecture with smaller pa-
rameter matrices, thus it is compatible to any other
Transformer-specific optimization techniques, e.g,
FlashAttention (Dao et al., 2022; Dao, 2023). We
have validated our algorithm on LLaMA (Touvron
et al., 2023), Vicuna (Chiang et al., 2023), and
ChatGLM3 (Zeng et al., 2022; Du et al., 2022),
achieving about 20% parameter reduction while
retaining at least 94.4% of original performance
metrics.

Contribution. In this paper, (i) we propose a
new structured pruning algorithm for LLMs that
uses minimal fine-tuning to recover model perfor-
mance. The algorithm effectively reduces the num-
ber of parameters while maintaining model general-
ization. (ii) We propose a novel evaluation method
that evaluates the impact of structured pruning on
an LLM by evaluating coupled components instead
of individual weights. (iii) We conduct our algo-

rithm on representative LLMs, including LLaMA,
Vicuna, and ChatGLM3. By reducing the param-
eter count by 20%, we maintain at least 94.4% of
the model’s performance while reducing MACs by
20%.

2 Related Work

2.1 Iterative Pruning
Iterative pruning is a type of algorithm that iter-
atively evaluates, prunes, and fine-tunes a neural
network model. The process involves calculating
scores for each weight in the model based on spe-
cific criteria, pruning weights with lower scores,
and fine-tuning the pruned model on a dataset.
PLATON (Zhang et al., 2022a) is a typical itera-
tive pruning method for BERT (Devlin et al., 2019)
and ViT (Dosovitskiy et al., 2020). It considers
the sensitivity and uncertainty of different model
components during evaluation, improving the ac-
curacy of the evaluation process. Although iter-
ative pruning has been proved to be effective for
task-specific models, it faces difficulty for general-
purpose LLMs due to the repeated fine-tuning.

2.2 LoRA
LoRA is an efficient fine-tuning algorithm for
LLMs. Due to the large size of the parameter ma-
trices in LLMs, the computational cost of full fine-
tuning is often prohibitively high. In LoRA fine-
tuning, a data bypass is created for the target pa-
rameter W0: W = W0+BA, where W0 ∈ Rn×m,
B ∈ Rn×r, A ∈ Rr×m, and r ≪ min(n,m). Typ-
ically, the parameters in A are initialized with a ran-
dom Gaussian distribution, and the parameters in B
are set to 0. During the subsequent fine-tuning pro-

2

cess, the parameters in W0 are frozen, and only the
parameters in A and B are fine-tuned. LLM-Pruner
(Ma et al., 2023) is a structured pruning algorithm
for LLMs. It combines efficient LoRA fine-tuning
to recover the performance of the pruned model
with fewer fine-tuning epochs. LoRAPrune (Zhang
et al., 2023) is a non-structured pruning algorithm
for LLMs. Due to the high cost of obtaining gradi-
ents in LLM, LoRAPrune leverages LoRA gradi-
ents instead of full fine-tuning gradients to reduce
computational overhead.

3 Method

Our pruning consists of three steps. (i) Partitioning
the model into kernels and features, and grouping
the coupled components formed by kernels. (ii)
Iteratively evaluating and pruning coupled compo-
nents and features until the desired sparsity level
is achieved. (iii) After all evaluating and pruning
finish, a fine-tuning stage is conducted to restore
the model performance.

3.1 Partition of Kernels and Features
In our algorithm, the pruning granularity is rows or
columns in the parameter matrices. The function-
ality of a row or a column varies in different pa-
rameter matrices. For example, in the Transformer
architecture, each word in a sentence is transformed
into a word vector with dm features, the parame-
ter matrix V ∈ Rdm×dk of the Transformer, each
row encounters all the weights in the word vectors
during computation. However, each column en-
counters only one weight in the word vector (Fang
et al., 2023). Therefore, we divide them into ker-
nels and features based on their functionalities in
the inference computation. If a row (or column)
receives all the features of the word vector, we refer
to that row (or column) as a kernel. For example,
each row in the Q ∈ Rdk×dm of a single head, as
well as each column in O ∈ Rdm×dk . If a row
(or column) receives a specific feature of the word
vector, we refer to it as a feature. For example,
each row in O, or each column in Up ∈ Rim×dm

in LLaMA’s intermediate layers.

3.2 Evaluation of Importance
Evaluating coupled components. In the multi-
head attention mechanism of Transformer, the com-
putation of a single head can be represented by the
following equation Eq. (1):

Attn = Softmax
(
XtQtKX√

dk

)
XtV tOt, (1)

where Q,K, V ∈ Rdk×dm represent the Query,
Key, and Value of a single head in the multi-head at-
tention mechanism, respectively, and O ∈ Rdm×dk

represents the projection matrix used to receive the
output of that attention head. X ∈ Rdm×len repre-
sents the sequence of word vectors, where len is
the length of the vector sequence. We can observe
that Q and K are coupled together, and V and O
are coupled together in the equation. The effective
parameters in the multi-head attention mechanism
are QtK and V tOt. Hence, when evaluating the
coupled components of the self-attention layer, we
group Q,K for evaluation, and V,O for another
evaluation. For the evaluation of coupled com-
ponents, we take Q and K as an example. We
consider Q and K as a sum of multiple kernels,
i.e., Q = [qt1, q

t
2, ..., q

t
dk
]t, K = [kt1, k

t
2, ..., k

t
dk
]t,

where Q,K ∈ Rdk×dm , and qi, ki(i ∈ [1, dk]) are
row vectors of dimension dm. In this case, we
expand QtK in Eq.(2):

QtK =

dk∑

i=1

qtiki. (2)

If we prune one qi, we can observe that the corre-
sponding ki will no longer be effective in the infer-
ence process and should be pruned simultaneously.
We have found the coupled component qtiki gener-
ated by Q and K. The same applies to the grouping
of V tOt, where the coupled components become
vtio

t
i. In the intermediate layers of the model, we

can also find a similar relationship. In previous
models such as BERT (Devlin et al., 2019), GPT-
Neo (Black et al., 2022) and OPT (Zhang et al.,
2022b), a two-layer structure was commonly used,
which can be represented by the equation Eq.(3):

Out = fc2F (fc1X). (3)

Here, fc1 ∈ Rim×dm and fc2 ∈ Rdm×im. F rep-
resents the activation function. The partitioning
method at this stage is the same as the partitioning
for QtK. In the LLaMA and ChatGLM3, a three-
layer structure was used in the intermediate layers,
which can be represented by the equation Eq.(4):

Out = Down(F (GateX)⊙ UpX). (4)

Here, Gate, Up ∈ Rim×dm , and Down ∈
Rdm×im. In the LLaMA model, we cannot directly
partition the kernels in the three parameter matri-
ces through computation. However, we can ob-
serve that when any kernel in any of these three
matrices is zero, the corresponding kernels in the

3

remaining two matrices will no longer be effec-
tive. Therefore, we approximate the coupled com-
ponent (di, gi, ui) as two sub-components: dig

t
i

and diu
t
i, where di, gi, ui correspond to the kernels

in Down,Gate, Up, respectively. During the scor-
ing process, we use the sum of scores of the sub-
components digti and diu

t
i to represent the score of

the coupled component (di, gi, ui).
After grouping the kernels, these coupled com-

ponents can be represented as the multiplication
of a column vector α and a row vector β. We de-
note such coupled components as C = αβ, where
C ∈ Rdm×dm . During the evaluation process, we
evaluate the importance of the coupled component
C by measuring the error in neural network predic-
tion when removing this group of coupled compo-
nents. This is defined as the importance IC (Ma
et al., 2023) and can be calculated as Eq.(5):

IC =

∣∣∣∣∣
∑

c∈C

L(c)− L(c = 0)

∣∣∣∣∣

=

∣∣∣∣∣
∑

c∈C

∂L
∂c

c− 1

2

(
∂2L
∂c2

c2
)
+O(c3)

∣∣∣∣∣ .
(5)

For the second-order error term
(
∂2L
∂c2

c2
)

, we ap-

proximate it as
(
∂L
∂c c

)2
based on (Ma et al., 2023;

Yang et al., 2023). Therefore, we have Eq.(6):

IC ≈
∣∣∣∣∣
∑

c∈C

∂L
∂c

c− 1

2

(
∂L
∂c

c

)2
∣∣∣∣∣ . (6)

Additionally, we refer to the evaluation method pro-
posed by PLATON (Zhang et al., 2022a), which
combines the sensitivity of the network to deter-
mine the final score for the coupled components.
The scoring process is as Eq.(7):

Ī
(t)
C = x1Ī

(t−1)
C + (1− x1)I

(t)
C ,

U
(t)
C = |I(t)C − Ī

(t)
C |,

Ū
(t)
C = x2Ū

(t−1)
C + (1− x2)U

(t)
C ,

SC =
∑

t

Ī
(t)
C Ū

(t)
C .

(7)

Here, t represents the current iteration of evalua-
tion for the variable. ĪC represents the smoothed
treatment of importance changes during fine-tuning
(Molchanov et al., 2019; Liang et al., 2021) . UC

represents the uncertainty of current importance
for the coupled component (Zhang et al., 2022a).
ŪC represents the upper bound confidence for ĪC
(Zhang et al., 2022a). Finally, SC is the final score
for the coupled component. The hyperparameters
x1 and x2 are chosen as 0.5 in our experiments.

Evaluating Features. According to the descrip-
tion in the (Fang et al., 2023), in structured pruning,
if we want to prune a feature at a specific position,
we need to prune the corresponding features at that
position in all parameter matrices of the model.
Therefore, we only need to group all corresponding
features at the same position in the model. When
we remove a feature from the model, the resulting
error can be approximated as Eq.(8):

If ≈
∑

C

∣∣∣∣∣∣
∑

c∈C[:,f]∪C[f,:]

∂L
∂c

c− 1

2

(
∂L
∂c

c

)2

∣∣∣∣∣∣
. (8)

Here, C refers to the QtK and V tOt for each at-
tention head in each layer. Taking the grouping of
QtK as an example, we consider Q and K in the
multi-head attention mechanism as the superposi-
tion of multiple features, i.e., Q = [q1, q2, ..., qdm]
and K = [k1, k2, ..., kdm], where qi and ki are col-
umn vectors of dimension dk. If we set all the
values at position j to zero, it is equivalent to set-
ting all the values in the j-th row and j-th column
of the matrix QtK to zero.

In the evaluation of features, we do not con-
sider the impact of intermediate layers. The impor-
tance of features is mainly determined by the self-
attention process of the model, while the role of
intermediate layers is to superimpose multiple self-
attention processes (de Wynter and Perry, 2020). In
our experiments with BERT and ViT (Dosovitskiy
et al., 2020), we find that evaluating features us-
ing only self-attention layers already achieves good
results. Additionally, because the partitioning of
intermediate layers in LLaMA does not strictly con-
sider the computation process, it may also affect
the accuracy of the evaluation.

We also incorporate the scoring process from the
PLATON algorithm into the feature evaluation, as
shown in Equation Eq.(7). In this case, the coupled
components C are replaced by features f .

3.3 Pruning
In pruning self-attention layers, we adopt a simple
uniform strategy to remove unimportant compo-
nents. Our pruning strategy for self-attention lay-
ers is to remove the lowest-scoring self-attention
head for each self-attention layer in each iteration.
The score of a self-attention head is the sum of the
scores of its constituent Q,K, V , and O kernels.

For the pruning of intermediate layers, we also
adopt a uniform pruning strategy. In each iteration,
a fixed number of kernels are pruned for all parame-
ter matrices in these layers. We have observed that

4

Pruning Ratio tune Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=0% - LLaMA-7B 12.62 22.14 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

Ratio=20% w/o
LP-Channel 74.63 153.75 62.75 62.73 41.40 51.07 41.38 27.90 30.40 45.38
LP-Block 19.24 34.09 62.54 75.41 65.99 60.30 61.57 36.69 39.20 57.39

Ours 37.90 74.30 66.57 73.39 62.11 62.90 58.24 35.75 36.20 56.45

Ratio=20% w/
LP-Channel 22.02 38.67 59.08 73.39 64.02 60.54 57.95 35.58 38.40 55.57
LP-Block 17.39 30.20 66.79 77.58 68.48 64.96 64.06 37.88 39.00 59.82

Ours 22.00 42.58 72.26 75.13 68.87 66.53 63.29 38.73 41.40 60.88
Ratio=24% w/o Ours 34.55 72.14 63.36 69.96 55.92 60.37 53.19 33.70 35.40 53.12
Ratio=24% w/ Ours 25.01 46.79 68.47 73.88 65.88 63.53 59.63 35.58 38.00 57.85

Table 1: LLaMA pruning experiments. The evaluation metric for WikiText2 and PTB tests is perplexity, which is the
smaller the better. The evaluation metric for other tasks is accuracy, which is higher the better. In the experiments,
"w/o" indicates that the model did not undergo fine-tuning after the pruning process, and "w/" indicates that the
model underwent fine-tuning after the pruning process.

for most Transformer models, there is a constant
ratio between the number of kernels im in each in-
termediate layer and the number of headnum × dk
in the self-attention layers (de Wynter and Perry,
2020). For example, this ratio is 4 for OPT models
(Zhang et al., 2022b) and around 2.7 for LLaMA
models. Therefore, in each iteration, we prune
r × dk kernels for each parameter matrix in the in-
termediate layers, where r = im/(headnum×dk).

For features, we need to remove the features in
the same positions of all parameter matrices of the
model (Fang et al., 2023). We only need to score
all features in each iteration and remove the lowest-
scoring features. Since most parameter matrices in
the self-attention layers of Transformer models are
square matrices, for simplicity, we prune dk fea-
tures in each pruning operation, which ensures that
the parameter matrices in the pruned self-attention
layers are still square matrices.

Algorithm 1 LLMs Structure Pruning
Input: pre-trained model, number of iterations
Output: pruned model

def EvalandPruning (PreTrainModel)
Partition and Eval kernels and features
for i in [0 : LayerNum)

Remove the head with the lowest score
Remove the r × dk kernels in FFN

end # end for
Remove dk features in every weight matrix
Change the model size

return PrunedModel # end def

Main()
model← initial model
for i in [0 : iterations)
model := EvalandPruning(model)

end # end for
FinalModel:= Finetune(model)

return FinalModel # end Main

3.4 Overall Process

This section summaries the overall process of our
pruning algorithm, as shown in Alg.(1). It begins
by partitioning the parameters using the approach
outlined in section 3.1. Subsequently, we employ
an iterative evaluation and pruning strategy, where
the parameters are evaluated using the methods
described in section 3.2, and the model is pruned
using the approach detailed in section 3.3. Once
the evaluation and pruning process is completed,
we proceed with fine-tuning to restore the model’s
performance.

4 Experiments

4.1 LLaMA and Vicuna Pruning Experiments

We conduct experiments on the LLaMA-7B and
Vicuna-7B which have identical architectures. We
test the performance of these models at sparsity
levels of 20% and 24%. The evaluation tasks we
used are WikiText2 (Merity et al., 2016), PTB
(Marcus et al., 1993), BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-
e, ARC-c (Clark et al., 2018), and OBQA (Mi-
haylov et al., 2018). The evaluation metrics for
WikiText2 and PTB tests are perplexity, which is
the smaller the better. The evaluation metric (Gao
et al., 2023) for other tasks is accuracy, which is
higher the better. We compare the results with the
structurally pruned LLM-Pruner. The experimental
results are shown in Tables 1 and 2. All experi-
ments are conducted on two Nvidia A100 GPUs.

Experimental Details. In every evaluation iter-
ation of LLaMA and Vicuna, we randomly take 10
sentences of length 64 from the C4 (Dodge et al.,
2021) dataset to obtain gradient and magnitude in-
formation. Our algorithm uses LoRA gradients
instead of actual gradients. Since the parameters in

5

the LoRA matrix are randomly initialized, we first
train the LoRA parameter matrix for 5 iterations
with the 10 sentences after concatenating the LoRA
parameter matrices. After the pre-processing of the
LoRA parameter matrix, we collect the gradient
and magnitude information generated by inputting
these 10 sentences into the model for evaluation.

In every prunning iteration, one self-attention
head is pruned for all self-attention layers, and
320 kernels were removed for gate-proj, up-proj,
and down-proj in each layer. Additionally, 128
features (model’s dk = 128) were removed from
all parameter matrices.

To obtain the models with sparsity levels of 20%,
we initially performed 3 iterations of evaluation
and pruning. After the completion of the third
iteration of evaluation-pruning, we obtained the
20% sparse model without fine-tuning. We can
further increase the sparsity to 24% in the same
way, just by changing the number of evaluation-
pruning iterations from 3 to 4. Then we fine-tune
this model for 4 epochs on the Alpaca (Taori et al.,
2023) to restore its performance.

Experimental Analysis. In the LLaMA prun-
ing experiments, we observe that our pruning algo-
rithm performs well even at lower sparsity levels,
even without fine-tuning. At sparsity levels of 20%
and 24%, our algorithm surpasses LLM-Pruner’s
Channel mode at 20% sparsity. After pruning and
fine-tuning, our algorithm achieves slightly higher
perplexity in the WikiText2 and PTB tasks at a
20% sparsity level. Our algorithm outperforms
LLM-Pruner’s Channel and Block modes in aver-
age scores from BoolQ to OBQA, reaching 96%
of the performance of the unpruned network. At
a sparsity level of 24%, our algorithm, after fine-
tuning, outperforms LLM-Pruner’s Channel mode
at 20% sparsity in average scores from BoolQ to
OBQA, with an average score of 91% compared to
the unpruned network.

In the Vicuna pruning experiments, our algo-
rithm exhibits similar performance. At a sparsity
level of 20%, our algorithm’s perplexity perfor-
mance in WikiText2 and PTB is comparable to
LLM-Pruner’s Block mode. Our algorithm outper-
forms LLM-Pruner’s Block mode in average scores
from BoolQ to OBQA, reaching 94% of the perfor-
mance of the unpruned network. Additionally, at
a sparsity level of 24%, our pruned network, after
fine-tuning, shows no significant difference com-
pared to LLM-Pruner’s Block mode 20% sparsity
model. The average score from BoolQ to OBQA

only decreases by 0.17 points compared to LLM-
Pruner, while achieving the performance of the
original unpruned network 92%.

The inference performance and storage overhead
of our pruned models are presented in Table 3. The
evaluation is conducted following the methodology
described in the (Ma et al., 2023). At sparsity lev-
els of 20%, although our algorithm retains more
remaining parameters, it doesn’t exhibit a signifi-
cant difference in memory consumption compared
to LLM-Pruner. Our computational complexity
falls between LLM-Pruner’s Channel mode and
Block mode. Therefore, our algorithm theoreti-
cally offers better acceleration performance than
LLM-Pruner’s Block mode.

4.2 ChatGLM3 Pruning Experiment
We conduct experiments on the ChatGLM3. We
test the model on the datasets same to LLaMA and
Vicuna to evaluate its performance at sparsity lev-
els of 10% and 20%. We compare our pruning
algorithm with random pruning and L2 (Han et al.,
2015b; Li et al., 2016) weight pruning. All exper-
iments are conducted on two Nvidia A100 GPUs.

Experimental Details. Differing from many
Transformer-based models, like LlaMA, BERT,
ViT, etc., ChatGLM3 has a unique structure in its
self-attention layers. In ChatGLM3-6B, there are
32 Query heads and only 2 Key and Value heads
in the multi-head self-attention mechanism. Dur-
ing inference, the model replicates the Key and
Value heads 16 times to match the number of Query
heads, and the subsequent computation follows the
same process as other Transformer models. We
make appropriate adjustments to our pruning algo-
rithm to accommodate ChatGLM3’s computation
approach.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Pruning

Q1 Q2 Q4 Q5 Q7 Q8

Reorder

Q1 Q2 Q5 Q4 Q7 Q8

……

……

……

Figure 2: We reorder the remaining pruned Query heads.
The processing of parameter matrix O follows the same
approach.

We observe that in ChatGLM3, odd-numbered
Query heads correspond to odd-numbered Key

6

Pruning Ratio tune Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=0% - Vicuna-7B 16.11 61.37 76.57 77.75 70.64 67.40 65.11 41.21 40.80 62.78

Ratio=20% w/o
LP-Channel 71.75 198.88 51.77 63.93 42.558 55.17 43.94 29.27 33.40 45.72
LP-Block 26.51 90.87 62.97 74.76 63.40 55.88 64.23 38.14 36.60 58.57

Ours 28.50 92.56 69.69 73.77 58.72 61.79 62.92 35.06 35.40 56.76

Ratio=20% w/
LP-Block 19.47 76.55 66.45 75.84 65.05 60.38 62.37 36.43 39.80 58.05

Ours 22.89 73.23 70.73 74.48 66.29 63.22 65.19 36.00 38.80 59.24
Ratio=24% w/o Ours 34.30 113.18 67.43 70.56 53.34 58.87 58.37 31.99 34.00 53.50
Ratio=24% w/ Ours 26.20 84.12 69.11 73.23 63.52 63.69 63.08 34.98 37.60 57.88

Table 2: The Vicuna pruning experiments.

Method Ratio #Params #MACs Memory
- - 6.7B 424.0G 12884.5MiB

LP-Channel
20%

5.4B 323.7G 10488.4MiB
LP-Block 5.4B 367.5G 10375.5MiB

Ours 5.5B 351.7G 10687.2MiB
Ours 24% 5.2B 328.7G 9998.0MiB

Table 3: Statistic for LLaMA and Vicuna.

and Value heads, and the same applies to even-
numbered heads. Therefore, our previous pruning
strategy becomes removing the Query head with
the lowest score among all odd-numbered heads,
the Query head with the lowest score among all
even-numbered heads, and their corresponding pa-
rameter matrix O. The Key and Value heads remain
unchanged. After pruning, as the order of Query
heads may change from odd to even or vice versa,
we rearrange the Query heads and the parameter
matrix O according to their parity as Figure2.

The model evaluation and fine-tuning process
are the same as in the LLaMA and Vicuna pruning.
The 10% sparse model underwent one iteration
of evaluation and pruning, while the 20% sparse
model underwent two iterations of evaluation and
pruning. After evaluation and pruning, all models
are fine-tuned on the Alpaca dataset for 4 epochs.

For the random pruning and L2 weight prun-
ing experiments, we also use the same grouping
method. The only difference is that during the cou-
pled components and feature evaluation, we don’t
consider the coupling relationship and only per-
form random pruning or evaluate based on the sum
of L2 values of the kernels containing parameters.

Experimental Analysis. Our pruning algorithm
achieves almost no decrease in average scores from
BoolQ to OBQA at a sparsity level of 10%. At a
sparsity level of 20%, our model retains 94% of
the original model’s performance. Furthermore,
by comparing our algorithm with L2 weight prun-
ing, we find that algorithms like L2 pruning, which
are based on pruning based on the magnitude of
model parameters, are almost ineffective in struc-

tured pruning tasks for LLMs. This evaluation
method doesn’t consider the dependencies between
different coupled components, making it unsuitable
for such coarse-grained structured pruning. Our al-
gorithm, on the other hand, considers the coupling
relationship between different components and the
errors that may arise in the model’s inference pro-
cess after eliminating these components. Therefore,
it performs better in structured pruning tasks for
LLMs.

The inference performance and storage overhead
of our pruned models are shown in Table 5. Our
algorithm reduces MACs overhead by 30% at a
sparsity level of 20%.

4.3 More Analysis

Global Pruning vs. Layer-wise Pruning. During
coupled component elimination, we can employ
layer-wise sorted pruning or global sorted pruning
methods. However, during our initial experimen-
tation with global ranking, we find that the global
sorting approach was not effective. In our pruning
experiments, we observe that most low-scoring cou-
pled components are concentrated in the first two
layers. However, removing these coupled compo-
nents results in a significant performance degrada-
tion. Additionally, the pruning in LLM-Pruner ex-
cludes these layers, there is a need for prior knowl-
edge (Ma et al., 2023) in determining the regions
of the model that cannot be pruned. Therefore, we
adopt a simpler strategy of uniform pruning (Sun
et al., 2023) for every layer.

Kernel vs. Head. When pruning the self-
attention layers, we have two options: removing
the same number of kernels for each self-attention
head or maintaining the same number of kernels
per layer but removing one self-attention head in
each layer. Based on our experiments with BERT
and ViT in Figure3, the latter option performs bet-
ter when the number of parameters keeps the same.
This is because the distribution of importance in
the model is not uniform, and low-importance ker-

7

Pruning Ratio tune Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=0% - ChatGLM3-6B 108.15 169.49 69.54 71.10 56.59 60.69 49.03 31.74 37.40 53.72

Ratio=10% w/o
Random 338.39 247.57 55.31 66.48 43.77 55.16 47.10 28.41 38.00 47.74

L2 57580.39 50814.52 53.70 53.10 25.19 49.48 26.26 24.14 36.00 38.26
Ours 176.24 234.40 51.10 67.57 48.41 55.64 46.21 29.77 36.60 47.89

Ratio=10% w/ Ours 75.80 95.44 74.31 71.59 52.14 55.56 50.16 32.16 38.20 53.44

Ratio=20% w/o
Random 967.15 775.58 50.15 60.25 37.46 42.35 34.64 23.46 35.20 40.50

L2 113621.15 110125.40 49.09 52.82 25.15 49.09 25.29 23.03 35.80 37.18
Ours 575.63 702.52 38.07 63.16 38.22 53.11 39.56 28.07 35.00 42.17

Ratio=20% w/ Ours 112.46 140.51 69.54 68.17 47.40 56.35 46.29 30.63 36.60 50.71

Table 4: The pruning experiment for ChatGLM3-6B.

Method Ratio #Params #MACs Memory
- - 6.2B 382.5G 11944.8MiB

Ours 10% 5.5B 337.4G 10542.7MiB
Ours 20% 4.8B 295.1G 9249.1MiB

Table 5: Statistic for ChatGLM3.

400 500 600 700
76

78

80

82

84
Bert-MNLI ACC

Kernel
Head

400 500 600 700

72.5

75.0

77.5

80.0

82.5

85.0
ViT-Cifar100 ACC

Kernel
Head

3200 3400 3600 3800 4000
40

50

60

70

LLaMA-BoolQ ACC

Kernel
Head

3200 3400 3600 3800 4000

50

60

70

Vicuna-BoolQ ACC

Kernel
Head

Figure 3: Pruning experiments on BERT, ViT, LLaMA
and Vicuna, where the x-axis represents the parameter
size of the self-attention layers and the y-axis represents
the accuracy of the tasks.

nels are often concentrated within the same self-
attention head. We observe this phenomenon in
LLaMA and Vicuna as well. Therefore, our prun-
ing strategy for self-attention layers is to remove
the lowest-scoring head in each iteration.

Comparison to LLM-Pruner. Our algorithm
shares similarities with LLM-Prnner’s Channel
mode in terms of pruning granularity. Our al-
gorithm prunes features and removes one self-
attention head per layer, reducing the size of pa-
rameter matrices and the number of self-attention
computations, leading to a significant reduction in
MACs. However, due to the negative impact from
feature pruning, a more accurate evaluation is nec-
essary. Our algorithm evaluates intermediate com-
putation results during inference, offering a more
accurate assessment of the impact of structured
pruning on model inference performance, com-

pared to LLM-Pruner’s element-wise evaluation
and summation.

LLM-Pruner’s Block mode and our individual
kernel-level pruning share similarities in terms of
smaller pruning granularity. These operations have
minimal impact on the model and enable more fine-
grained optimization. However, LLM-Pruner’s
Block mode uses a global pruning strategy, exclud-
ing the first two layers and relying on prior knowl-
edge. In contrast, our algorithm simplifies the pro-
cess by evaluating multiple kernels as self-attention
heads, eliminating the need for prior knowledge.

Furthermore, LLM-Prnner’s Block mode alters
the structure of certain layers in the model, thus
it cannot adopt off-the-shelf libraries for conve-
nient implementation and deployment. In contrast,
our algorithm only modifies the size of parameter
matrices and reduces the number of self-attention
computations while preserving the model’s struc-
ture. Therefore, our pruned model keeps compati-
ble to existing deep learning programming frame-
works, as well as all optimization techniques for
Transformer-based models.

5 Conclusion

In this paper, we propose a structured pruning algo-
rithm for LLMs. Our algorithm categorizes parame-
ters into kernels and features based on their relation-
ships between parameter matrices and word vectors
in computations. We evaluated these components
considering their coupling relationships and the
computational characteristics of Transformer ar-
chitecture. Experimental evaluations on LLaMA,
Vicuna, and ChatGLM3 models demonstrated that
our algorithm achieves compression to 20% of the
original size with minor performance degradation.
Our algorithm preserves the model structure, fa-
cilitating integration with other optimization tech-
niques and practical deployment.

8

Acknowledgements

This work was supported by the GHfund A
(202302016480). The numerical calculations in
this paper have been done on the supercomputing
system in the Supercomputing Center of University
of Science and Technology of China.

Limitations

Our algorithm employed a simple uniform pruning
scheme across different layers of an LLM, which
allows us to avoid acquiring prior knowledge and
assumes equal importance for each layer in the
model. However, most previous global pruning
schemes imply an uneven distribution of impor-
tance across different layers of the model, which
we did not further explore. In addition, we em-
ployed a more empirical approach for intermediate
layer pruning, without further exploring the spe-
cific number of kernel pairs to be pruned in each
layer. Our future work will focus on improving
these aspects.

References
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,

et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov,
and Luming Liang. 2023. Lorashear: Efficient large
language model structured pruning and knowledge
recovery. arXiv preprint arXiv:2310.18356.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising

difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Adrian de Wynter and Daniel J Perry. 2020. Optimal
subarchitecture extraction for bert. arXiv preprint
arXiv:2010.10499.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Mar-
garet Mitchell, and Matt Gardner. 2021. Docu-
menting large webtext corpora: A case study on
the colossal clean crawled corpus. arXiv preprint
arXiv:2104.08758.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi,
and Xinchao Wang. 2023. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 16091–16101.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,

9

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Song Han, Jeff Pool, John Tran, and William Dally.
2015b. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. arXiv preprint arXiv:2203.07259.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10619–10629, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. arXiv preprint arXiv:1608.08710.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained lan-
guage models: From model compression to improv-
ing generalization. arXiv preprint arXiv:2105.12002.

Christos Louizos, Max Welling, and Diederik P Kingma.
2017. Learning sparse neural networks through l_0
regularization. arXiv preprint arXiv:1712.01312.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Advances in Neural Information
Processing Systems.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272.

R OpenAI. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2:13.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. arXiv preprint arXiv:2204.00408.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo
Molchanov, Hai Li, and Jan Kautz. 2023. Global vi-
sion transformer pruning with hessian-aware saliency.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18547–
18557.

10

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen,
and Moshe Wasserblat. 2021. Prune once for all:
Sparse pre-trained language models. arXiv preprint
arXiv:2111.05754.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin
Ou, Xinyi Yu, Bohan Zhuang, et al. 2023. Prun-
ing meets low-rank parameter-efficient fine-tuning.
arXiv preprint arXiv:2305.18403.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022a. Platon: Pruning large transformer
models with upper confidence bound of weight im-
portance. In International Conference on Machine
Learning, pages 26809–26823. PMLR.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022b. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Appendix

A Runtime Analysis

We deployed the pruned model directly on GPUs
to test the inference time, using a batch size of 1
to simulate real-world inference scenarios where
typically only one sentence is inputted into the
model at a time. We tested the time it takes to
generate the next token for sequences of different
lengths on NVIDIA RTX 3080 Ti and NVIDIA
A100.

The runtime of LLaMA-7B and ChatGLM3-7B
on NVIDIA RTX 3080 Ti is shown in Figure 4,
where the missing parts indicate that it was not
feasible to perform actual inference tasks at that
sparsity level. This is mainly due to the fact that,
during inference, besides saving the model parame-
ters to the GPU memory, intermediate computation
results also require GPU memory. This exceeds
the 12 GB memory limit of NVIDIA RTX 3080 Ti.
The experiments on NVIDIA A100, as shown in
Figure 5, demonstrate that the longer the sequence
length, the more noticeable the acceleration effect.

In this study, a cluster with GPU-like SIMT ac-
celerators made in China is also tested. Each node

64 128 256 512 10240
20
40
60
80

100
120
140
160

In
fe

re
nc

e
Ti

m
e

(m
s)

LLaMA-7B Inference Time Comparison on NVIDIA RTX 3080 Ti
Ratio = 0%
Ratio = 20%
Ratio = 24%

64 128 256 512 10240

50

100

150

200

In
fe

re
nc

e
Ti

m
e

(m
s)

ChatGLM3-6B Inference Time Comparison on NVIDIA RTX 3080 Ti
Ratio = 0%
Ratio = 10%
Ratio = 20%

Figure 4: The performance of LLaMA-7B and
ChatGLM3-6B in terms of inference time at different
input sequence lengths on NVIDIA RTX 3080 Ti.

in the cluster includes one CPU and four acceler-
ators. The CPU has four NUMA nodes, where
each NUMA node has eight X86 based proces-
sors. The accelerator adopts a GPU-like architec-
ture with 16 GB HBM2 device memory. Accel-
erators connected to CPU with PCI-E, where the
peak bandwidth of the data transcription between
main memory and device memory is 16 GB/s. The
evaluation result on this accelerator is shown in
Figure 6. Similar to the experimental results on
the NVIDIA A100, the acceleration effect becomes
more pronounced as the sequence length increases.

B Comparison to LoRAShear

We compared our approach with LoRAShear (Chen
et al., 2023), as shown in Table 6. LoRAShear em-
ploys a more effective method during the model
recovery stage, whereas our algorithm uses a sim-
pler LoRA fine-tuning approach. Consequently,
LoRAShear achieves more favorable results in this
aspect, which we lack. We plan to conduct further
research on the model recovery stage in our future
work. Additionally, due to the large pruning granu-
larity of our model, excessively high sparsity levels
are not suitable, leading to poor performance at
50% sparsity. Our future work will also explore
structured pruning methods at high sparsity levels.

11

Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio = 0% LLaMA (Touvron et al., 2023) 76.5 79.8 76.1 70.1 72.8 47.6 57.2 68.59
(Baseline) LLaMA (Ma et al., 2023) 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25
Ratio = 20% LLM-Pruner (Ma et al., 2023) 66.79 77.58 68.48 64.96 64.06 37.88 39.00 59.82

LoRAPrune (Zhang et al., 2023) 65.82 79.31 70.00 62.76 65.87 37.69 39.14 60.05
WANDA (Sun et al., 2023) 65.75 74.70 64.52 59.35 60.65 36.26 39.40 57.23
LoRAShear† 70.17 76.89 68.69 65.83 64.11 38.77 39.97 60.63
LoRAShear 72.78 76.36 69.49 67.63 69.02 39.47 40.78 62.22
Ours w/ 72.26 75.13 68.87 66.53 63.29 38.73 41.40 60.88

Ratio = 50% LLM-Pruner (Ma et al., 2023) 61.56 68.72 46.62 52.64 47.94 29.27 35.40 48.88
LoRAPrune (Zhang et al., 2023) 61.88 71.53 47.86 55.01 45.13 31.62 34.98 49.71
WANDA (Sun et al., 2023) 50.90 57.38 38.12 55.98 42.68 34.20 38.78 45.43
LoRAShear† 62.12 71.80 48.01 56.29 47.68 32.26 34.61 50.39
LoRAShear 63.40 72.15 49.83 56.40 49.45 34.31 35.86 51.63
Ours w/ 62.66 64.52 45.11 54.85 42.46 28.58 31.10 47.04

† Knowledge recovery only on the instructured fine-tuning datasets as other works.

Table 6: Comparison with other algorithms.

64 128 256 512 10240

20

40

60

80

100

In
fe

re
nc

e
Ti

m
e

(m
s)

LLaMA-7B Inference Time Comparison on NVIDIA A100
Ratio = 0%
Ratio = 20%
Ratio = 24%

64 128 256 512 10240
10
20
30
40
50
60
70

In
fe

re
nc

e
Ti

m
e

(m
s)

ChatGLM3-6B Inference Time Comparison on NVIDIA A100
Ratio = 0%
Ratio = 10%
Ratio = 20%

Figure 5: The performance of LLaMA-7B and
ChatGLM3-6B in terms of inference time at different
input sequence lengths on NVIDIA A100.

64 128 256 512 10240

500

1000

1500

2000

2500

In
fe

re
nc

e
Ti

m
e

(m
s)

LLaMA-7B Inference Time Comparison on a GPU-like accelerator
Ratio = 0%
Ratio = 20%
Ratio = 24%

64 128 256 512 10240

200

400

600

800

1000

1200

In
fe

re
nc

e
Ti

m
e

(m
s)

ChatGLM3-6B Inference Time Comparison on a GPU-like accelerator

Ratio = 0%
Ratio = 10%
Ratio = 20%

Figure 6: The performance of LLaMA-7B and
ChatGLM3-6B in terms of inference time at different
input sequence lengths on a GPU-like accelerator.

12

