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Abstract

An ideal length-extrapolatable Transformer
language model can handle sequences longer
than the training length without any fine-
tuning. Such long-context utilization capabil-
ity relies heavily on a flexible positional em-
bedding design. Upon investigating the flexi-
bility of existing large pre-trained Transformer
language models, we find that the T5 fam-
ily deserves a closer look, as its positional
embeddings capture rich and flexible atten-
tion patterns. However, T5 suffers from the
dispersed attention issue: the longer the in-
put sequence, the flatter the attention distri-
bution. To alleviate the issue, we propose
two attention alignment strategies via temper-
ature scaling. Our findings show improve-
ment on the long-context utilization capability
of T5 on language modeling, retrieval, multi-
document question answering, and code com-
pletion tasks without any fine-tuning. This sug-
gests that a flexible positional embedding de-
sign and attention alignment can go a long way
toward Transformer length extrapolation. The
code is released at: https://github.com/
chijames/T5-Attention-Alignment

1 Introduction

Pre-training large Transformer language models
on long sequences is inherently expensive due to
self-attention’s quadratic complexity w.r.t the in-
put sequence length (Vaswani et al., 2017). Even
with the help of memory-efficient attention (Rabe
and Staats, 2021; Dao et al., 2022), the maximum
supported input length of current open-source pre-
trained Transformer language models are capped at
4,096 tokens (Touvron et al., 2023), limiting their
efficacy in handling long-context tasks.

One notable research topic aiming to lift
the input length restriction is Length Extrapo-
lation (Press et al., 2022). Ideally, a length-
extrapolatable Transformer language model is
trained on short sequences and can perform equally

Retrieval Tasks

Criteria
Topic Line Passkey

512 15k 512 15k 512 15k
Pmax 0.28 0.12 0.27 0.11 0.32 0.24
H 3.47 6.63 3.47 7.04 3.09 5.97

Table 1: The Dispersed Attention Issue of Flan-T5-
XL Encoder. Pmax is the average maximum probabil-
ity and H is the average entropy. After increasing the
sequence length from 512 to 15k, we observe larger
entropy and smaller maximum probability, implying a
flatter self-attention distribution.

well on longer ones without any further fine-tuning.
This is made possible with carefully designed po-
sitional embeddings (Press et al., 2022; Chi et al.,
2022, 2023). Unfortunately, existing approaches
are tailored for natural language modeling, a task
known to have strong recency bias, and they of-
ten do not perform well on other seemingly simple
tasks such as passkey, topic, and line retrieval (Mo-
htashami and Jaggi, 2023; Li et al., 2023).

To circumvent the recency bias, we sift through
the positional embeddings of existing open-source
large pre-trained Transformer language models,
shown in Table 2, to find a flexible design, and
the T5 family (Raffel et al., 2020) comes to our at-
tention. As visualized in Figure 1, the flexibility of
T5’s positional embeddings allows it to encourage
recency bias on one head and discourage that on
another head. However, there is no free lunch: T5
suffers from the dispersed attention issue as shown
in Table 1. That is, the attention distributions of
long input sequences tend to be flatter than those
of short input sequences. As a remedy, we propose
two fine-tuning-free attention alignment strategies
via Softmax temperature scaling (Yao et al., 2021;
Su, 2021) to mitigate the dispersed attention is-
sue: maximum probability (Pmax) and entropy (H)
alignment.

We validate the effectiveness of our alignment
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Models T5 (2020) OPT (2022) ChatGLM (2022) LLaMA (2023) Falcon (2023) Pythia (2023) XGen (2023) BLOOM (2022) MPT (2023)

PE. Learned Learned Rotary Rotary Rotary Rotary Rotary ALiBi ALiBi
Relative Absolute Relative Relative Relative Relative Relative Relative Relative

Table 2: Open-source Transformer language models and their positional embeddings. T5 is the only model
equipped with learnable relative positional embeddings, which enable its long-context utilization capability.

strategies on tasks including language modeling,
retrieval, multi-document question answering, and
code completion. We also provide a theoretical
analysis of how the alignment strategies work under
the hood by investigating the relation between the
Softmax temperature and data distribution.

2 Related Work

Transformer Positional Embeddings
Transformer-based models rely on positional
embeddings to encode positional information.
We summarize open-source large pre-trained
Transformer language models and their positional
embeddings in Table 2. The relative variants
are widely adopted due to their better empirical
performance (Su et al., 2021) and possible
length-extrapolation capability (Press et al., 2022).
In this work, we place special focus on the T5
positional embeddings due to their flexibility as
shown in Figure 1.

Transformer Length Extrapolation Existing
research on Transformer length extrapolation is
mostly confined to the task of natural language
modeling (Press et al., 2022; Chi et al., 2022, 2023).
Unfortunately, the reported positive results do not
carry over to long-context retrieval (Mohtashami
and Jaggi, 2023; Li et al., 2023). This contrastive
observation can be explained by models’ short em-
pirical receptive field (Chi et al., 2023). In short,
the strong decaying prior of positional embeddings
prevents models from accessing distant tokens that
may be necessary for retrieval tasks. In this work,
we improve the flexible positional embeddings of
T5 to get around this limitation.

Transformer Position Interpolation Instead of
performing direct length extrapolation, a different
line of research conducts model fine-tuning on long
input sequences (Chen et al., 2023), where the main
focus is to identify the most efficient fine-tuning
scheme that can improve long-context utilization.
Positive results have been reported on retrieval
tasks (Li et al., 2023). However, we argue that
fine-tuning incurs additional costs since it needs

1) GPU resources to perform long sequence fine-
tuning with large models and 2) a pre-defined target
sequence length, which still imposes a sequence
length upper limit. Our proposed methods can cir-
cumvent these two limitations.

Retrieval Tasks with Transformers
Transformer-based approaches often consist
of a retriever and a reader to overcome the context
length restriction (Guu et al., 2020; Lewis et al.,
2020; Izacard and Grave, 2021; Borgeaud et al.,
2022). The retriever retrieves relevant text snippets
from a very large database and the reader digests
the retrieved information to generate the correct
output. Our proposed attention alignment strategy
can be used to significantly increase the input
sequence length of the reader, thereby allowing
more retrieved information to participate in
the decision process. For small-scale retrieval
problems, our methods even obviate the need for
context segmentation and the external key-value
store used in prior work (Mohtashami and Jaggi,
2023), serving as a more elegant approach.

Softmax Temperature Scaling To increase the
length extrapolation capability of Transformers,
previous work (Yao et al., 2021; Su, 2021; Peng
et al., 2023) scales the temperature of Softmax log-
arithmically w.r.t the sequence length. Our entropy
alignment strategy is also inspired by this line of
research except that we adopt a different procedure
outlined below in Algorithm 1. Interestingly, our
results in § 7 show that the logarithmic temperature
scaling scheme is more similar to our proposed
maximum probability alignment strategy.

3 Long-context Retrieval Tasks with T5

3.1 Why Retrieval?

As suggested by recent work (Mohtashami and
Jaggi, 2023; Li et al., 2023), the task of long-
context retrieval serves as a controllable bench-
mark to measure how well a Transformer language
model utilizes long-context inputs. One prominent
characteristic of retrieval tasks is that only a subset
of the input is of interest, requiring a model to accu-
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(a) 1st Attention Head (b) 27nd Attention Head

Figure 1: Visualization of T5 Positional Embeddings. To plot figures of bm,n, we set m = 7500 and vary the
value of n from 0 to 15k. Each attention head of a Flan-T5-XL encoder learns a set of positional embeddings that
capture different attention bias. For example, the positional embeddings in the left figure encourage the model to
focus on nearby tokens. In contrast, the ones in the right figure let the model focus on only remote tokens.

rately pick up the necessary information. The other
characteristic is that the key information can sit
anywhere in an input, requiring a model to attend
flexibly. Finally, the controllable aspect allows us
to gradually increase the input sequence length to
test the models’ length extrapolation capability.

3.2 Why T5?
To solve retrieval tasks using Transformer language
models, it is necessary to choose a positional em-
bedding design that permits accurate and flexible
length-extrapolatable attention. After checking
through the existing positional embeddings in Ta-
ble 2, we find that the T5 family (Raffel et al., 2020)
fits our needs. As for other candidates, learnable ab-
solute positional embeddings (Vaswani et al., 2017;
Zhang et al., 2022) must be evaluated within the
training length. ALiBi (Press et al., 2022) and Ro-
tary (Su et al., 2021) have a recency bias; they
cannot extrapolate easily without fine-tuning.

For each attention head, T5 encoder maintains a
bucket (B) of 32 learnable parameters and assigns
the relative positional bias (rpe bias) bm,n as1

bm,n =




B[m− n], if 0 ≤ m− n < 8

B[n−m+ 16], if − 8 < m− n < 0

B[min(15, 8 + b log((m−n)/8)
log(128/8)

· 8c)], if 8 ≤ m− n
B[min(31, 24 + b log((n−m)/8)

log(128/8)
· 8c)], if m− n ≤ −8,

where 0 ≤ m < L and 0 ≤ n < L are two
position indices. bm,n will be added to the (m,n)-

1https://github.com/huggingface/transformers/
blob/v4.33.2/src/transformers/models/t5/
modeling_t5.py#L390

th entry of the L × L self-attention matrix. The
summation becomes the input to the temperature-
scaled Softmax. We plot the learned rpe bias of a
T5 encoder in Figure 1. We can tell that its attention
heads encode rich attention patterns. For example,
head 1 learns to focus on the nearby tokens whereas
head 27 learns to ignore the nearby tokens and
allow access to faraway tokens.

3.3 The Dispersed Attention Issue of T5
Encoder

Unfortunately, directly applying T5 models on re-
trieval tasks does not yield perfect results. Upon
inspecting the intermediate model states, we find
that a longer input sequence consists of more to-
kens competing for the same amount (i.e., Softmax
sums to 1) of attention, resulting in the dispersed at-
tention issue. In Table 1, we see that the longer the
input sequence, the flatter the self-attention distri-
bution. The situation is not hopeless if the desired
information still attains a higher attention weight
than the remaining tokens. Our proposed solution
in § 4 will let the key information stand out.

4 Proposed Methods

A natural solution to the dispersed attention issue
described in § 3 is to sharpen the self-attention dis-
tribution. This can be achieved by reducing the
temperature τ during extrapolation. We set the ex-
trapolation temperature τex such that the sharpness
during training with τtr = 1 and that during extrap-
olation with τex < 1 are roughly the same. As a
measurement of sharpness, we explore the maxi-
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Algorithm 1 Attention Alignment Strategies
Require: A short sequence of length Ltr and a long sequence

of length Lex > Ltr . Encoder E. Alignment mode M .
Ensure: The Softmax temperature τ

function FINDS(τ , M )
Set temperature of all Softmax to τ
s← [ ]
for operation in E do

Perform the operation
if operation is Softmaxτ (l) then

if M is Maximum Probability then
Append max(Softmaxτ (l)) to s

else if M is Entropy then
Append H(Softmaxτ (l)) to s

end if
end if

end for
return avg(s)

end function
Str(1)← FINDS(1.0,M)
for τex = 1.0, 0.95, 0.9, · · · , 0.5 do

Sex(τex) = FINDS(τex,M)
end for
return τex s.t. Sex(τex) ≈ Str(1)

mum probability or entropy of a distribution. In
other words, our proposed solution is to align the
maximum probability or entropy of training and
extrapolation distributions by adjusting τex.

Concretely, let l(i) ∈ RL be the i-th pre-Softmax
logit vector of a T5 encoder, where L ∈ {Ltr, Lex}
is the sequence length. The post-Softmax distri-
bution of l(i) is P(i)(τ) = Softmaxτ (l(i)). The
maximum probability and entropy of P(i)(τ) are
P
(i)
max(τ) and H(i)(τ), respectively.
Take the maximum probability alignment strat-

egy as an example: We first run the forward
pass and compute the average maximum proba-
bility under temperature τ over all logit vectors:
Pmax(τ) = (1/N)

∑
i P

(i)
max(τ) where N = R ×

H×L is the number of logit vectors in a T5 encoder
with R layers, H heads, and length-L sequences.
Since the temperature is 1 during training and τex
during extrapolation, we denote the average max-
imum probability during training as Ptrmax(1) and
that during extrapolation as Pexmax(τex). Finally, to
align the maximum probabilities, we adjust τex s.t.
Pexmax(τex) ≈ Ptrmax(1). In practice, we do a grid
search on τex from 1.0 to 0.5. We outline the pro-
cedure of the alignment strategies in Algorithm 1.

Note that our proposed methods do not require
any model fine-tuning or gradient computations.
The only overhead is estimating the temperature
τex using Algorithm 1 and a few length Lex se-
quences. Once the temperature is decided, it will
be held fixed, rendering our methods simple and

efficient. In addition, our fine-tuning free meth-
ods do not lead to performance regression on short
Ltr sequences commonly observed on long-context
fine-tuned models (Roziere et al., 2023).

5 Experiments

We compare the two alignment strategies against
the length-only Softmax temperature scaling
scheme τ = logLex Ltr (Yao et al., 2021; Su, 2021)
and LongChat-13B-16K (Li et al., 2023). Note that
LongChat-13B-16K (Li et al., 2023), the best base-
line, was fine-tuned from LLaMA (Touvron et al.,
2023) on long sequences of length 16k while our
proposed methods do not need any fine-tuning. Our
experiments are conducted on an A6000 GPU.

Language Modeling

Models
Sequence Length (Lex)

1024 2048 4096 8192 15000 Avg.
T5-Large-LM 35.9 40.1 >1k >1k >1k > 1k
w/ Pmax 34.7 45.5 45.2 45.5 52.7 44.7
w/ H 40.2 43.9 45.6 54.6 56.0 48.1
w/ logLex Ltr 39.8 38.2 47.4 45.3 55.9 45.3
T5-XL-LM 28.3 >1k >1k >1k >1k > 1k
w/ Pmax 30.2 36.0 31.6 41.7 50.0 37.9
w/ H 30.4 36.8 38.4 53.3 63.4 44.4
w/ logLex Ltr 27.3 29.4 31.7 39.3 45.8 34.7
T5-XXL-LM 109 >1k >1k >1k >1k > 1k
w/ Pmax 32.2 29.7 29.5 36.6 44.3 34.5
w/ H 26.8 28.1 34.2 37.8 43.8 34.1
w/ logLex Ltr 27.1 36.1 33.9 246 43.8 77.5

Table 3: Language Modeling Performance. We re-
port the average perplexity of 500 sequences. The
lower the better.

5.1 Language Modeling
We use the LM-Adapted T5 models2 for this experi-
ment. We set Ltr = 512. Following previous work
on Transformer length extrapolation, we perform
an intrinsic evaluation on language modeling (Press
et al., 2022; Chi et al., 2022, 2023). Ideally, our
proposed methods should alleviate the perplexity
explosion problem during extrapolation. As we
can see in Table 3, both alignment strategies dra-
matically improve (lower) the perplexity. We also
observe that scaling the temperature solely based
on sequence lengths is not the optimal strategy, as
indicated by the sudden perplexity increase of the
logLex Ltr strategy. We will provide an in-depth

2https://github.com/google-research/
text-to-text-transfer-transformer/blob/main/
released_checkpoints.md#lm-adapted-t511lm100k
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Retrieval Tasks

Models
Topic, # of topics Line, # of lines Passkey, # of sentences

Avg.
5 10 15 20 25 200 300 400 500 600 680 20k 30k 40k 50k 55k

Flan-T5-Large 99 100 97 97 83 97 100 92 96 93 92 62 47 31 16 9 76
w/ Pmax 96 90 86 94 98 99 98 98 98 98 100 84 90 85 79 85 92
w/ H 59 32 16 0 3 97 90 94 83 93 88 29 25 21 15 22 48
w/ logLex Ltr 88 79 75 61 55 99 99 98 99 97 98 74 63 51 41 35 76
Flan-T5-XL 100 100 100 100 100 96 90 77 57 45 26 100 100 100 100 100 87
w/ Pmax 100 100 100 100 100 97 90 89 80 70 62 100 99 100 100 100 93
w/ H 99 98 97 96 96 95 87 88 79 70 71 100 100 100 100 100 92
w/ logLex Ltr 99 100 100 100 100 98 88 81 86 60 67 100 100 100 100 99 92
Flan-T5-XXL 100 100 100 99 99 100 100 98 95 84 82 100 100 100 100 100 97
w/ Pmax 100 100 100 99 99 97 99 96 97 94 95 100 98 100 100 100 98
w/ H 100 100 97 98 94 99 92 92 76 58 58 100 100 100 100 100 92
w/ logLex Ltr 100 100 99 98 92 100 98 94 93 84 90 100 100 100 100 100 97
LongChat 100 100 100 99 89 100 91 93 83 78 59 100 100 99 100 99 93

Table 4: Performance of Retrieval Tasks. Each number is the averaged accuracy computed over 100 sequences.
The LongChat model corresponds to LongChat-13B-16K (Li et al., 2023). It is a LLaMA-13B (Touvron et al.,
2023) model fine-tuned on sequences of length 16k using positional interpolation (Chen et al., 2023). Flan-T5-
XXL has 11B parameters. The maximum sequence lengths (Lex) of the three tasks are around 14.5k to 15.5k
tokens.

discussion on this topic in § 7. Note that perplexity
is not our primary focus since it often cannot accu-
rately reflect the long-context utilization capability
of Transformers on practical tasks (Li et al., 2023).

5.2 Long-context Retrieval

The tasks are formulated in the Question Answer-
ing (QA) format; therefore, we use the Flan-T5
models to leverage their instruction-following ca-
pability. We set Ltr = 512. Inspired by recently
proposed retrieval tasks, we evaluate the proposed
alignment strategies on three of these. Topic re-
trieval requires a model to retrieve the first topic
in a long and multi-topic conversation (Li et al.,
2023). Line retrieval has a long series of key-value
pairs, and a model needs to retrieve the value corre-
sponding to the given key (Li et al., 2023). Passkey
retrieval hides a passkey in a long junk text snip-
pet, and a model needs to return that passkey (Mo-
htashami and Jaggi, 2023).

As we can see in Table 4, the retrieval perfor-
mance is greatly boosted after the Flan-T5 models
are equipped with our proposed attention alignment
strategies. In particular, the maximum probability
alignment strategy provides better results across the
board. Other baselines such as MPT (Team, 2023)
and ChatGLM2 (Du et al., 2022) perform worse
than LongChat. Please refer to Li et al. (2023)
for more details. We also present the optimal tem-
perature given by Algorithm 1 in Table 10 in Ap-

pendix A.5. In short, the temperature decreases
when the input sequence length increases. We will
provide additional temperature analysis below, in
§ 7.

5.3 Multi-document Question Answering

We again use the Flan-T5 models to leverage their
instruction-following capability. We set Ltr = 512.
We follow the multi-document question-answering
task settings and data splits detailed in Liu et al.
(2023). In short, the input consists of a question
Q and multiple documents extracted from Natu-
ralQuestions (Kwiatkowski et al., 2019) related to
Q, where one of the documents (golden doc) con-
tains the ground truth answer to Q. As shown in
Table 5, when a model is equipped with the pro-
posed maximum probability alignment strategy, it
consistently outperforms the original model across
model sizes and number of input documents.

Apart from the better task performance, we be-
lieve that the attention dispersed attention issue
discussed in § 3 can help demystify the lost-in-the-
middle phenomenon (Liu et al., 2023) of this task:
Transformer models tend to perform worse when
the ground truth sits near the middle of the input
context. Let us recall the relative positional embed-
ding of head 27 learned in Figure 1, if the ground
truth answer sits in the middle, it will have long
contexts from both sides competing for the atten-
tion weight. If this hypothesis is correct, we can
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Multi-document Question Answering

Models
10 Docs 20 Docs 30 Docs, golden doc at different positions

Avg. Avg. 0 4 9 14 19 24 29 Avg.
Flan-T5-Large 52.4 43.3 52.6 42.0 36.5 34.0 33.9 33.9 37.9 38.7
w/ Pmax 53.1 44.2 50.8 44.5 39.5 36.4 35.9 35.8 37.0 40.0
Improvement +0.7 +0.9 -1.8 +1.5 +3.0 +2.4 +2.0 +1.9 -0.9 +1.3
w/ H 52.1 43.2 47.6 41.1 35.2 33.5 32.2 33.3 34.2 36.7
w/ logLex Ltr 53.2 44.5 50.6 44.1 39.3 36.3 35.8 35.8 37.2 39.9
Flan-T5-XL 59.4 51.2 58.4 44.6 40.0 39.9 41.7 46.4 54.8 46.5
w/ Pmax 61.1 53.6 60.9 49.1 46.0 44.9 46.3 49.1 55.7 50.3
Improvement +1.7 +2.4 +2.5 +4.5 +6.0 +5.0 +4.6 +2.7 +0.9 +3.8
w/ H 60.5 52.4 52.4 43.5 42.1 40.3 42.0 42.9 51.3 44.9
w/ logLex Ltr 60.9 53.6 61.0 49.1 46.1 44.7 46.1 48.7 55.4 50.2
Flan-T5-XXL 63.6 56.9 58.9 49.1 48.1 47.5 48.9 53.1 61.2 52.4
w/ Pmax 63.7 57.7 60.4 52.5 51.0 50.2 51.3 53.5 59.1 54.0
Improvement +0.1 +0.8 +1.5 +3.4 +2.9 +2.7 +2.4 +0.4 -2.1 +1.6
w/ H 63.6 57.1 61.0 53.4 50.8 50.3 50.7 51.9 55.7 53.4
w/ logLex Ltr 63.9 57.6 61.5 53.3 51.3 50.3 51.1 53.0 57.2 54.0

Table 5: Performance of Multi-document QA. Numbers are accuracy. Full score is 100. The maximum sequence
length (Lex) of 30 documents is around 5k. The improvement row represents the absolute accuracy improvement
after a Flan-T5 model is equipped with our proposed maximum probability alignment strategy. For the full perfor-
mance breakdown, please refer to Table 15 in Appendix A.7.

expect the performance boost to be more promi-
nent when the answer appears near the middle. We
reveal the performance breakdown when the num-
ber of input documents is 30. As we can see in
the improvement row, those cases indeed achieve
greater improvements.

Our strategies are not always perfect: The per-
formance drops if the ground truth answer is at
position 29. We believe T5 might have already han-
dled this case pretty well due to the recency bias
learned on some attention heads, and our additional
temperature scaling sharpens the distribution too
aggressively. We acknowledge this trade-off in § 9.

5.4 Code Key Retrieval and Completion

To test the generalizability of the alignment strate-
gies, we apply our methods to the CodeT5+
model (Wang et al., 2023)3 that was pre-trained
on code data with 770M parameters. We set
Ltr = 768. We do not experiment with larger
CodeT5+ models since they do not follow the
T5 architecture, but use other positional embed-
dings. We conduct two experiments on the LCC
dataset (Guo et al., 2023), which is highly similar
to the classic PY150 dataset (Raychev et al., 2016)
except that the input context length is much longer.

For the code key retrieval experiment, we sample

3https://huggingface.co/Salesforce/
codet5p-770m-py

several code files from LCC along with a special
function that only returns an integer from 1 to 100.
We concatenate them and ask a model to gener-
ate the returned integer at the end (Roziere et al.,
2023). Considering that this is essentially a passkey
retrieval task in the code domain, we briefly report
the average accuracy of 100 test cases when the
input sequence length is around 16k: 0 (Original
CodeT5+), 87 (w/ Pmax), 80 (w/ H), and 85 (w/
logLex Ltr). We can see that the maximum proba-
bility alignment strategy performs the best.

For the code completion experiment, a model
needs to generate the next line of code given some
prior code as the context. The metrics are Exact
Match (EM) and Edit similarity (ES) on a per line
basis (Svyatkovskiy et al., 2020). We report the re-
sults in Table 6 using the context length bucketing
format. While both alignment strategies improve
the performance substantially, Pmax is better; how-
ever, its EM performance lags behind logLex Ltr
when the sequence length increases. We addition-
ally include an extrapolation-free baseline, trunca-
tion, that truncates the long input context to the
most recent Ltr = 768 tokens. Both Pmax and
logLex Ltr perform better than this baseline when
Lex < 6000, indicating that they can indeed benefit
from longer (6000/768 = 7.8x) contexts without
any fine-tuning.
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Code Completion Exact Match

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k
CodeT5+ 19.6 19.0 11.3 2.6 0.1 0.0
w/ Pmax 21.1 22.5 21.7 21.5 19.3 22.7
w/ H 19.5 18.7 13.7 9.0 7.9 9.0
w/ logLex Ltr 21.6 23.0 22.1 22.0 20.6 24.3
w/ truncation 20.0 19.2 19.3 19.2 17.1 21.4

Code Completion Edit Similarity

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k
CodeT5+ 62.4 59.6 53.1 38.9 18.3 10.4
w/ Pmax 65.9 65.7 65.3 65.6 63.1 64.9
w/ H 64.8 62.5 54.1 43.0 43.0 44.8
w/ logLex Ltr 66.3 66.1 65.2 66.4 63.0 66.1
w/ truncation 65.3 64.2 64.2 65.6 62.2 66.9

Table 6: Code Completion Performance. Full score is 100. We set Ltr = 768. The bucket nk contains the data
with length in [nk, (n+1)k), n ∈ [1, 6]. For example, the bucket 3k contains data with length in [3000, 4000). See
Table 13 and 14 in Appendix A.6 for the full performance breakdown of Lex up to 16k tokens.

5.5 Overall Observations

First, the maximum probability alignment strategy
is the most reliable and best-performing method
across most tasks and settings, echoing our discus-
sion in § 3.1: For most data, only a subset of the
input is useful for a model process at a time. The
maximum probability alignment strategy captures
this characteristic naturally, thereby outperform-
ing the entropy alignment strategy that cares more
about the holistic distribution.

Second, deciding the optimal temperature solely
based on sequence lengths, e.g. τ = logLex Ltr,
is not robust enough. For example, the perplexity
of logLex Ltr suddenly increases (worse) on T5-
XXL-LM, in Table 3, while the other strategies
maintain stable results. As another example, it
fails to improve the retrieval performance on the
Flan-T5-Large model, shown in Table 4.

5.6 Application to Other Models

We also tried applying our proposed method to
models using Rotary positional embeddings. How-
ever, we are not able to achieve the same length-
extrapolatable performance without fine-tuning.
Two immediate questions follow:

Why is fine-tuning needed when we apply our
method to Rotary-based models? Because Ro-
tary still suffers from the recency bias issue as we
discussed in § 3.2, while T5 does not. To the best
of our knowledge, such recency bias can only be
overcome via long sequence fine-tuning. Take a
concurrent work that focuses on models equipped
with Rotary, YaRN (Peng et al., 2023), as an exam-
ple: If we omit its fine-tuning step, its performance
on the passkey retrieval task drops substantially as
shown in Table 7.

How costly is the long sequence fine-tuning
step? Let us take a look at the numbers reported

by the authors of YaRN4: “Our run was around
300s/epoch on an 8x A100 node as well. Took
about 24 hours to train for 400 steps.” Using AWS,
the fine-tuning expenses will be 32.77*24=786.48
USD.5 In contrast, finding the optimal softmax scal-
ing temperature of the longest inference sequence
of a task using our method with a T5 model only
takes 20 seconds on an A6000 GPU.

6 Theoretical Analysis

6.1 Assumptions

To shed more light on the underlying mechanisms
of the two alignment strategies, we establish the
connection between the softmax temperature τ and
data distribution under empirically verified assump-
tions. We focus on the 0-th layer (closest to the
input embeddings) and take the average over all
logit vectors across attention heads. Note that this
is just a crude approximation of Algorithm 1 for
analysis purposes since 1) a Transformer language
model typically encompasses multiple layers, and
2) in Algorithm 1, we take the maximum probabil-
ity or entropy of individual logit vectors as opposed
to the average one.

Assumption 1. The length L average logit vector
is normally distributed, i.e., its entry li ∼ N(0, σ2).

To compute the average logit vector, we start
with a input sequence of length L. Using a Trans-
former model with H attention heads (specifically,
a T5 Encoder in our context), we generate H × L
pre-softmax logit vectors, each with a length of L.
Here, the number of layers is 1 because we focus
on the 0-th layer. These logit vectors are then indi-
vidually sorted, and we subsequently calculate the

4https://github.com/jquesnelle/yarn/issues/32
532.77 is the on-demand price per hour of a p4d.24xlarge

instance.
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Model
Sequence Length

512 1024 2048 4096 8192
YaRN w/ fine-tuning 100 100 100 100 95

YaRN w/o fine-tuning 85 85 75 50 30
Ours Flan-T5-XL w/o fine-tuning 100 99 100 100 100

Table 7: The Effect of Fine-tuning for Passkey Retrieval. Numbers are accuracy. Full score is 100. The
flexibility of T5 allows our method to extrapolate well on long sequences without any fine-tuning. In contrast,
YaRN (Peng et al., 2023) requires a costly fine-tuning step on long sequences to regain performance.

average of all H × L sorted logit vectors, resulting
in the average logit vector of length L.

To assess whether the average logit entries fol-
low a Gaussian distribution, we make use of QQ
plots, as illustrated in Figure 2. The linearity of the
plot serves as an indicator – the closer the points
are to the identity line, the more Gaussian the dis-
tribution.

Figure 2: QQ plots of Flan-T5-XL. We experiment
with short and long sequences. The red reference line
is y=x. We use sequences of length around 512 for this
plot. The plot for sequences of length around 15k looks
highly similar. Please refer to Appendix A.1 for details.

Assumption 2. The largest logit entry of the aver-
age logit vector during training and extrapolation
is the same: lexmax = ltrmax. See Table 8.

Retrieval Tasks

Criteria
Topic Line Passkey

512 15k 512 15k 512 15k
lmax 8.61 8.80 8.71 8.97 8.75 8.85

Table 8: Largest Logit Entry of Flan-T5-XL. lmax is
the largest logit entry of the average logit vector.

6.2 Maximum Probability Alignment

Proposition 1. Under Assumption 1 and 2, we
can adjust the temperature τ to align the maximum

probability Ptrmax = Pexmax

τ ≈ logLtr + log Ptrmax + σ2tr/2

logLex + log Ptrmax + σ2ex/(2τ
2)
.

=
B

A+ C
τ2

=
Bτ2

Aτ2 + C
.

Assuming τ 6= 0, we solve the quadratic equation
Aτ2−Bτ+C = 0 to get τ . We pick the larger root
as our final solution. See proof in Appendix A.2.

6.3 Entropy Alignment
Proposition 2. Under Assumption 1, we can adjust
the temperature τ to align the entropy Htr = Hex

τ ≈ σex√
σ2tr + 2 log Lex

Ltr

See proof in Appendix A.3.

Figure 3: Language Modeling Temperature Analy-
sis. Curves are from Proposition 1 & 2. Dots and
crosses are from Algorithm 1.

7 Discussion

The goal of this section is to explain the obser-
vations made in § 5 via the lens of temperature
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Figure 4: Topic Retrieval Temperature Analysis.
Curves are from Proposition 1 & 2. Dots and crosses
are from Algorithm 1.

analysis. We visualize Proposition 1 and 2 by plot-
ting the temperature curves in Figure 3 and 4. We
evaluate Ptrmax and σtr at the training length and
σex at every extrapolation length considering only
the 0-th layer. You may find the temperature curves
for the other tasks in Appendix A.4.

First, while both proposed strategies lower the
temperature when the input sequence length in-
creases, the entropy alignment strategy does so
more aggressively, possibly leading to its inferior
performance observed in Table 4 and 5 (w/ H). This
can be seen by comparing the curves from Proposi-
tions 1 and 2 or dots from Algorithm 1.

Second, deciding the optimal temperature based
on sequence lengths, e.g. τ = logLex Ltr, is not the
most robust method. It gives too high of a tempera-
ture in Figure 3 compared to Algorithm 1. In other
words, it does not sharpen the distribution enough,
possibly explaining its perplexity spike in Table 3.
On the other hand, it overly lowers the temperature
in Figure 4, thereby failing to improve the retrieval
performance on Flan-T5-Large in Table 4.

8 Conclusion

In this paper, we show that the T5 model family has
great potential when it comes to Transformer length
extrapolation. We propose the maximum probabil-
ity and entropy alignment strategies to fix T5’s
dispersed attention issue without model fine-tuning.
We conduct experiments on natural language mod-
eling, retrieval, multi-document question answer-
ing, and code completion tasks to demonstrate the
effectiveness of our proposed methods. Finally, we

present a simplified theoretical analysis to elucidate
how the temperature is scaled to achieve attention
alignment. We hope that our work can inspire fu-
ture length-extrapolatable Transformer designs.

9 Limitations

We base our theoretical analysis on a simplified
Transformer language model, which might be fur-
ther improved by taking all the layers and their in-
teractions into account. In addition, we find that dif-
ferent layers have different degrees of distribution
flatness, which could be leveraged in future work to
perform per-layer fine-grained attention alignment.
Finally, our temperature scaling scheme sometimes
sharpens a distribution too aggressively in the multi-
document question-answering and code completion
experiments. This drawback could be possibly im-
proved by designing a more fine-grained attention
alignment strategy.

10 Ethics Statement

Our work improves the amount of context a Trans-
former language model can process. Inappropriate
usage of the proposed technique might lead to neg-
ative societal impacts including the potential loss
due to wrong predictions and ethical challenges on
the improper use of the model. However, these im-
plications apply to most language model research
and are not unique to this specific work.
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A Appendix

A.1 QQ Plots for Assumption 1

A QQ plot (Wilk and Gnanadesikan, 1968) is
a graphical technique used for comparing two
probability distributions by plotting their quantiles
against each other. A point (x, y) corresponds to a
quantile from the second distribution (y-coordinate)
plotted against the same quantile from the first dis-
tribution (x-coordinate). When the two distribu-
tions under comparison are similar, the points in
the QQ plot will roughly align with the identity line,
y = x. In our case, where we aim to determine the
degree of Gaussian behavior in the average logit
vector, the linearity of the plot serves as an indica-
tor – the closer the points are to the identity line,
the more Gaussian the distribution.

We present the QQ plots for two lengths, 512 and
15k, on the three retrieval tasks in Figure 5. They
are all close to the red reference line, indicating
that their form is highly Gaussian.

A.2 Detailed Derivation of Proposition 1

Let lmax be the largest value in the logit vector l.
Let τ be the temperature of the Softmax function.
The probability of the largest entry is

Pmax =
elmax/τ

∑L
i=1 e

li/τ
.

Since Softmax is shift-invariant, the logit vector
can always be made zero-mean:

∑
i li = 0. Next,

according to Assumption 1, the denominator of
Softmax can be approximated as

L∑

i=1

eli/τ ≈ L · E[eli/τ ] = L · eσ2/(2τ2) (1)

This implies Pmax is approximately

Pmax ≈
elmax/τ

Leσ2/(2τ2)

During the training stage, the temperature τ is 1

Ptrmax ≈
el
tr
max

Ltreσ
2
tr/2

,

which gives an expression of the largest logit entry
during the training stage

ltrmax ≈ log
(
PtrmaxLtre

σ2
tr/2
)

(2)

According to Assumption 2, the largest probability
during the extrapolation stage can be simplified as

Pexmax ≈
el
ex
max/τ

Lexeσ
2
ex/(2τ

2)

A. 2
=

el
tr
max/τ

Lexeσ
2
ex/(2τ

2)

(2)≈

(
PtrmaxLtre

σ2
tr/2
)1/τ

Lexeσ
2
ex/(2τ

2)

Since τ is a free parameter during extrapolation,
we adjust it to carry out the maximum probability
alignment strategy. Rearranging the terms gives
Proposition 1.

A.3 Detailed Derivation of Proposition 2
The entropy of a discrete probability computed by
Softmax is

H = −
∑

i

eli/τ

D
log

eli/τ

D
= logD−

∑
i
li
τ e

li/τ

D
,

where D =
∑

i e
li/τ is the denominator of Soft-

max, which can be approximated using Eq. (1). On
the other hand, we note that

∑
i lie

li ≈ LE[lel].
When l ∼ N(0, σ2), E[lel] is approximated as

E[lel] =
∫ ∞

−∞

lel

σ
√
2π
e−

l2

2σ2 dl

=

∫ ∞

−∞

l

σ
√
2π
e

2σ2l−l2
2σ2 dl

=

∫ ∞

−∞

l

σ
√
2π
e−

(l−σ2)2−σ4
2σ2 dl

= eσ
2/2

∫ ∞

−∞

l

σ
√
2π
e−

(l−σ2)2
2σ2 dl

= eσ
2/2σ2

(3)

Thus, combining Eq. (1) and (3), the entropy H is
approximated as

H ≈ logL+
σ2

2τ2
− Leσ

2/(2τ2) σ2

τ2

Leσ2/(2τ2)

= logL− σ2

2τ2

Since τ is set to 1 during the training stage, we
have Htr ≈ logLtr − σ2

tr
2 . During extrapolation,

we align the entropy (i.e., Hex = Htr) by adjusting
τ .

logLex −
σ2ex
2τ2
≈ Hex = Htr ≈ logLtr −

σ2tr
2
.

Since τ is a free parameter during extrapolation,
we adjust it to apply the entropy alignment strategy.
Rearranging the terms gives Proposition 2.
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(a) Short sequences around 512 (b) Long sequences around 15k

Figure 5: QQ plots of Flan-T5-XL. We experiment with short and long sequences. The red reference line is y=x.
The more closely the scatter plots follow the red reference line, the more Gaussian they are.

A.4 More Real-world Temperature Plots

We verify Proposition 1 and 2 on the remaining
tasks by plotting the temperature curves in Fig-
ure 6, 7, 8, and 9. We empirically evaluate σtr
at the training length and σex every extrapolation
length considering only the 0-th layer.

The real temperatures given by Algorithm 1 are
usually higher than those derived from the two
propositions. After checking the per-layer atten-
tion distributions, we find that the 0-th layer has
flatter distributions compared to higher layers. Be-
cause the two propositions are derived based on the
0-th layer and a flatter distribution needs a lower
temperature to correct, the temperatures given by
them tend to be lower than the ones given by Al-
gorithm 1 that takes the average of temperatures
across all layers.

A.5 Detailed Temperature Breakdown

We report the temperatures for all tasks across
model sizes given by Algorithm 1 in Table 9, 10, 11,
and 12.

A.6 Performance Breakdown of Code
Completion

We report the performance breakdown of Exact
Match and Edit Similarity across lengths in Ta-
ble 13 and 14.

A.7 Performance Breakdown of
Multi-document Question Answering

We report the performance breakdown of different
numbers of input documents in Table 15.

Figure 6: Line Retrieval Temperature Analysis.
Curves are given by Proposition 1 and 2. Cross signs
and dots are given by Algorithm 1. logL 512 is given
by Yao et al. (2021); Su (2021).

B Scientific Artifacts

The pretrained models we used belong to the T5
model family, which is released under the Apache
2.0 license. The models are used in this work for re-
search purposes only. For the data used to train T5
models, please refer to Raffel et al. (2020); Lester
et al. (2021); Chung et al. (2022) for details. Ex-
cept for the LCC Python data, other task data is
written in English. We already report the number of
data instances in § 5 for the language modeling and
retrieval tasks. As for the multi-doc QA and code
related tasks, we follow the original data splits.
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Figure 7: Passkey Retrieval Temperature Analysis.
Curves are given by Proposition 1 and 2. Cross signs
and dots are given by Algorithm 1. logL 512 is given
by Yao et al. (2021); Su (2021).

Figure 8: Multi-doc QA Temperature Analysis.
Curves are from Proposition 1 & 2. Dots and crosses
are from Algorithm 1.

Figure 9: Code Completion Temperature Analysis.
Curves are given by Proposition 1 and 2. Cross signs
and dots are given by Algorithm 1. logL 768 is given
by Yao et al. (2021); Su (2021).

Language Modeling

Models
Sequence Length (Lex)

1024 2048 4096 8192 15000
T5-Large-LM
w/ Pmax 0.9 0.85 0.8 0.75 0.7
w/ H 0.8 0.7 0.6 0.5 0.5
T5-XL-LM
w/ Pmax 0.9 0.85 0.75 0.7 0.6
w/ H 0.85 0.7 0.55 0.5 0.5
T5-XXL-LM
w/ Pmax 0.9 0.85 0.65 0.55 0.5
w/ H 0.85 0.7 0.7 0.55 0.5
w/ logLex Ltr 0.9 0.82 0.75 0.69 0.65

Table 9: Temperatures of Language Modeling. We
search the optimal temperature from 1.0, 0.95, 0.9, · · · ,
0.5. We set Ltr = 512.
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Retrieval Tasks

Models
Topic, # of topics Line, # of lines Passkey, # of sentences

5 10 15 20 25 200 300 400 500 600 680 20k 30k 40k 50k 55k
Flan-T5-Large
w/ Pmax 0.85 0.8 0.75 0.75 0.75 0.85 0.8 0.8 0.75 0.75 0.75 0.85 0.80 0.80 0.75 0.75
w/ H 0.7 0.6 0.55 0.5 0.5 0.65 0.55 0.55 0.5 0.5 0.5 0.6 0.55 0.5 0.5 0.5
Flan-T5-XL
w/ Pmax 0.8 0.75 0.7 0.65 0.65 0.8 0.75 0.75 0.7 0.70 0.7 0.85 0.8 0.75 0.75 0.75
w/ H 0.7 0.55 0.55 0.5 0.5 0.6 0.55 0.55 0.5 0.5 0.5 0.7 0.65 0.6 0.6 0.6
Flan-T5-XXL
w/ Pmax 0.85 0.8 0.75 0.75 0.75 0.8 0.8 0.75 0.75 0.75 0.75 0.85 0.8 0.8 0.75 0.75
w/ H 0.75 0.65 0.6 0.55 0.55 0.65 0.6 0.6 0.55 0.55 0.55 0.65 0.6 0.55 0.55 0.5
w/ logLex Ltr 0.79 0.72 0.69 0.67 0.65 0.74 0.71 0.69 0.67 0.66 0.65 0.73 0.69 0.67 0.66 0.65

Table 10: Temperatures of Retrieval Tasks. We search the optimal temperature from 1.0, 0.95, 0.9, · · · , 0.5. The
maximum lengths of the three tasks are all around 14.5k to 15.5k tokens (Lex). We set Ltr = 512.

Multi-document Question Answering

Models
10 Docs 20 Docs 30 Docs
Lex = 1700 Lex = 3300 Lex = 5000

Flan-T5-Large
w/ Max. 0.9 0.85 0.8
w/ Ent. 0.75 0.65 0.6
Flan-T5-XL
w/ Max. 0.85 0.75 0.75
w/ Ent. 0.75 0.65 0.55
Flan-T5-XXL
w/ Max. 0.9 0.8 0.8
w/ Ent. 0.75 0.7 0.65
w/ logLex Ltr 0.84 0.77 0.73

Table 11: Temperatures of Multi-document Ques-
tion Answering. We search the optimal temperature
from 1.0, 0.95, 0.9, · · · , 0.5. Different golden doc-
ument positions have the same temperature. We set
Ltr = 512.
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Code Completion

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k 16k
CodeT5+
w/ Pmax 0.95 0.8 0.75 0.75 0.7 0.7 0.6 0.6 0.6 0.6 0.55 0.55 0.55 0.55 0.5 0.5
w/ H 0.85 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
w/ logLex Ltr 0.96 0.87 0.83 0.8 0.78 0.76 0.75 0.74 0.73 0.72 0.71 0.71 0.7 0.7 0.69 0.69

Table 12: Temperatures of Code Completion. We search the optimal temperature from 1.0, 0.95, 0.9, · · · , 0.5.
The maximum length is around 16k tokens (Lex). We set Ltr = 768.

Code Completion Exact Match

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k
CodeT5+ 19.6 19.0 11.3 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w/ Pmax 21.1 22.5 21.7 21.5 19.3 22.7 16.1 14.4 13.4 20.6 16.0 15.3 12.3 16.7 4.5
w/ H 19.5 18.7 13.7 9.0 7.9 9.0 10.3 8.8 10.8 12.1 11.7 10.2 9.2 11.1 2.3
w/ logLex Ltr 21.6 23.0 22.1 22.0 20.6 24.3 20.7 18.6 19.1 22.4 13.8 20.3 15.4 19.4 11.4
w/ truncation 20.0 19.2 19.3 19.2 17.1 21.4 21.1 18.0 19.1 25.2 18.1 20.3 16.9 27.8 15.9

Table 13: Full Exact Match Breakdown of Code Completion Edit Similarity. We set Ltr = 768. Numbers in
red are higher than their counterpart in the w/truncation row. The bucket nk contains the data with length in [nk,
(n+1)k), n ∈ [1, 15].

Code Completion

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k
CodeT5+ 62.4 59.6 53.1 38.9 18.3 10.4 6.1 4.0 4.5 5.0 6.7 5.1 6.4 4.4 3.5
w/ Pmax 65.9 65.7 65.3 65.6 63.1 64.9 60.0 60.0 58.1 57.5 56.2 56.0 52.1 56.9 39.9
w/ H 64.8 62.5 54.1 43.0 43.0 44.8 47.7 47.0 47.6 51.2 44.3 49.7 50.3 57.4 42.0
w/ logLex Ltr 66.3 66.1 65.2 66.4 63.0 66.1 61.9 58.8 61.6 57.8 54.2 57.9 48.7 52.2 48.6
w/ truncation 65.3 64.2 64.2 65.6 62.2 66.9 66.8 61.8 64.1 65.1 63.5 63.9 61.5 67.6 60.8

Table 14: Full Edit Similarity Breakdown of Code Completion. We set Ltr = 768. Numbers in red are
higher than their counterpart in the w/truncation row. The bucket nk contains the data with length in [nk, (n+1)k),
n ∈ [1, 15].
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Multi-document Question Answering

Models
10 Docs 20 Docs 30 Docs

0 4 9 0 4 9 14 19 0 4 9 14 19 24 29
Flan-T5-Large 60.6 48.5 48.0 54.5 44.0 39.6 38.0 40.2 52.6 42.0 36.5 34.0 33.9 33.9 37.9
w/ Max. 60.9 49.8 48.6 53.5 45.6 40.8 39.7 41.3 50.8 44.5 39.5 36.4 35.9 35.8 37.0
w/ Ent. 58.9 50.1 47.3 52.4 45.2 40.4 38.0 40.0 47.6 41.1 35.2 33.5 32.2 33.3 34.2
w/ logLex Ltr 60.2 51.1 48.4 53.8 46.0 41.4 39.4 41.7 50.6 44.1 39.3 36.3 35.8 35.8 37.2
Flan-T5-XL 64.0 55.4 58.9 60.6 47.9 45.1 47.3 55.3 58.4 44.6 40.0 39.9 41.7 46.4 54.8
w/ Max. 65.3 57.3 60.8 62.2 51.6 49.0 49.4 56.0 60.9 49.1 46.0 44.9 46.3 49.1 55.7
w/ Ent. 64.7 56.7 60.0 59.3 50.1 47.9 49.8 55.1 52.4 43.5 42.1 40.3 42.0 42.9 51.3
w/ logLex Ltr 65.1 57.0 60.6 62.2 51.7 48.8 49.5 56.0 61.0 49.1 46.1 44.7 46.1 48.7 55.4
Flan-T5-XXL 65.1 61.0 64.6 61.1 53.9 52.4 54.7 62.4 58.9 49.1 48.1 47.5 48.9 53.1 61.2
w/ Max. 66.2 61.8 63.2 62.8 55.9 54.4 55.6 59.6 60.4 52.5 51.0 50.2 51.3 53.5 59.1
w/ Ent. 67.3 62.1 61.3 63.2 56.1 54.1 54.3 57.6 61.0 53.4 50.8 50.3 50.7 51.9 55.7
w/ logLex Ltr 66.7 61.9 63.1 63.1 56.0 54.7 55.1 59.0 61.5 53.3 51.3 50.3 51.1 53.0 57.2

Table 15: Full Performance Breakdown of Multi-document Question Answering. The numbers are accuracy.
Full score is 100. 0, 4, 9... indicate the position of the golden document that contains the answer to a question.
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