@inproceedings{moslemi-zouaq-2024-tagdebias,
title = "{T}ag{D}ebias: Entity and Concept Tagging for Social Bias Mitigation in Pretrained Language Models",
author = "Moslemi, Mehrnaz and
Zouaq, Amal",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.101",
doi = "10.18653/v1/2024.findings-naacl.101",
pages = "1553--1567",
abstract = "Pre-trained language models (PLMs) play a crucial role in various applications, including sensitive domains such as the hiring process. However, extensive research has unveiled that these models tend to replicate social biases present in their pre-training data, raising ethical concerns. In this study, we propose the TagDebias method, which proposes debiasing a dataset using type tags. It then proceeds to fine-tune PLMs on this debiased dataset. Experiments show that our proposed TagDebias model, when applied to a ranking task, exhibits significant improvements in bias scores.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moslemi-zouaq-2024-tagdebias">
<titleInfo>
<title>TagDebias: Entity and Concept Tagging for Social Bias Mitigation in Pretrained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mehrnaz</namePart>
<namePart type="family">Moslemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amal</namePart>
<namePart type="family">Zouaq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained language models (PLMs) play a crucial role in various applications, including sensitive domains such as the hiring process. However, extensive research has unveiled that these models tend to replicate social biases present in their pre-training data, raising ethical concerns. In this study, we propose the TagDebias method, which proposes debiasing a dataset using type tags. It then proceeds to fine-tune PLMs on this debiased dataset. Experiments show that our proposed TagDebias model, when applied to a ranking task, exhibits significant improvements in bias scores.</abstract>
<identifier type="citekey">moslemi-zouaq-2024-tagdebias</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.101</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.101</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1553</start>
<end>1567</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TagDebias: Entity and Concept Tagging for Social Bias Mitigation in Pretrained Language Models
%A Moslemi, Mehrnaz
%A Zouaq, Amal
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F moslemi-zouaq-2024-tagdebias
%X Pre-trained language models (PLMs) play a crucial role in various applications, including sensitive domains such as the hiring process. However, extensive research has unveiled that these models tend to replicate social biases present in their pre-training data, raising ethical concerns. In this study, we propose the TagDebias method, which proposes debiasing a dataset using type tags. It then proceeds to fine-tune PLMs on this debiased dataset. Experiments show that our proposed TagDebias model, when applied to a ranking task, exhibits significant improvements in bias scores.
%R 10.18653/v1/2024.findings-naacl.101
%U https://aclanthology.org/2024.findings-naacl.101
%U https://doi.org/10.18653/v1/2024.findings-naacl.101
%P 1553-1567
Markdown (Informal)
[TagDebias: Entity and Concept Tagging for Social Bias Mitigation in Pretrained Language Models](https://aclanthology.org/2024.findings-naacl.101) (Moslemi & Zouaq, Findings 2024)
ACL