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Abstract

Many pretrained multilingual models exhibit
cross-lingual transfer ability, which is often at-
tributed to a learned language-neutral represen-
tation during pretraining. However, it remains
unclear what factors contribute to the learn-
ing of a language-neutral representation, and
whether the learned language-neutral represen-
tation suffices to facilitate cross-lingual trans-
fer. We propose a synthetic task, Multilingual
Othello (mOthello), as a testbed to delve into
these two questions. We find that: (1) mod-
els trained with naive multilingual pretraining
fail to learn a language-neutral representation
across all input languages; (2) the introduction
of “anchor tokens” (i.e., lexical items that are
identical across languages) helps cross-lingual
representation alignment; and (3) the learning
of a language-neutral representation alone is
not sufficient to facilitate cross-lingual transfer.
Based on our findings, we propose a novel ap-
proach – multilingual pretraining with unified
output space – that both induces the learning of
language-neutral representation and facilitates
cross-lingual transfer1.

1 Introduction

One of the primary desired properties of multilin-
gual models is their cross-lingual transfer ability –
the ability to enhance task performance in a target
language when being finetuned exclusively with
labeled data from the same task, but in a differ-
ent source language. Many pretrained multilin-
gual models, such as mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020a), are found to
exhibit this ability across a wide range of tasks,
such as natural language inference, named entity
recognition, and part-of-speech tagging (Pires et al.,
2019; Wu and Dredze, 2019; K et al., 2020). Cross-
lingual transfer also serves as a central justification

*Equal contribution.
1All resources will be available at https://github.com/

ethahtz/multilingual_othello

Figure 1: Illustration of three multilingual training ap-
proaches. Blue and green blocks represent contexts in 2
different languages, and tokens from the same language
have the same color. A multilingual model M consumes
a,b,c,d and predicts the corresponding output e. Top:
A model is trained on multilingual corpora, with an
objective to predict the next tokens specific to each lan-
guage. Middle: A model is trained on multilingual
corpora, where there are tokens shared across language
pairs. These tokens are named as anchor tokens. The ob-
jective is still to predict the next tokens specific to each
language. Bottom: A model is trained on multilingual
corpora, with an objective to predict the next tokens in
a unified output space.

for why we would prefer multilingual models over
a collection of monolingual models, since the multi-
lingual setting might introduce competition among
languages on the model capacity, which has been
referred to as “the curse of multilinguality” (Con-
neau et al., 2020a).

The cross-lingual transfer ability of pretrained
multilingual models is often attributed to a shared,
language-neutral space, which is formed during
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multilingual pretraining (Pires et al., 2019; Li-
bovický et al., 2020; Chang et al., 2022). However,
there is no consensus on what factors lead to such
language-neutral representations (Wu and Dredze,
2019; K et al., 2020; Deshpande et al., 2022). Ad-
ditionally, to our knowledge, it remains unclear
whether a shared, language-neutral space is by it-
self sufficient to facilitate cross-lingual transfer.

In this work, we use a controlled language learn-
ing environment to investigate the essential factors
for learning language-neutral representations and
whether they are sufficient to facilitate the cross-
lingual transfer ability of multilingual models. To
approach these questions, we introduce Multilin-
gual Othello (mOthello), a sequence modeling task
based on the Othello board game (Li et al., 2023).
In mOthello, a model is given a sequence of game
moves in a specific “language” Lk, and the task
is to predict the next legal move in the same “lan-
guage” Lk. This environment is appropriate for
our purposes, since it separates the ground truth
“world” (i.e., the game state) which is assumed to
be singular, from the language used to describe it,
which can take any number of forms (languages).

With mOthello, we first train GPT2-based (Rad-
ford et al., 2019) models (mOthelloGPTs) and ana-
lyze under what conditions language-neutral repre-
sentations are learned. To quantitatively measure
the alignment of representations across languages,
we propose cross-lingual alignment probing, which
is to recover board states in language L2 using a
probe trained on language L1. We observe that
mOthelloGPTs trained with the naive multilingual
pretraining (Figure 1(a)) do not learn language-
neutral hidden space across all languages.

Following, we show that anchor tokens (i.e.,
shared tokens across languages, Figure 1(b)) fa-
cilitates mOthelloGPTs to learn aligned represen-
tations across all languages connected via the an-
chor tokens. However, we observe that these mod-
els do not show cross-lingual transfer. This con-
tradicts with the common hypothesis that cross-
lingual representation alignment suffices for cross-
lingual transfer ability of multilingual models.

Lastly, we further investigate what encourages
the emergence of cross-lingual transfer ability. We
propose the use of a unified language-neutral output
space during multilingual pretraining (Figure 1(c)),
which brings both aligned representations across
languages and cross-lingual transfer.

To summarize, our main contributions are:

• We find that models trained with naive mul-
tilingual pretraining fail to learn a language-
neutral hidden space across all languages.

• The introduction of anchor tokens helps cross-
lingual representation alignment.

• We observe that the learning of a language-
neutral space alone is not sufficient to facili-
tate cross-lingual transfer.

• We propose an alternative training approach,
multilingual pretraining with a unified output
space, which both induces the learning of the
language-neutral space and facilitates cross-
lingual transfer.

2 Related Works

2.1 Pretrained Multilingual Models and
Cross-lingual Transfer

Since the success of pretrained English transformer
models such as GPT (Radford et al., 2019) and
BERT (Devlin et al., 2019), there have been in-
terests to replicate this success in the multilingual
domain. Multilingual-BERT (mBERT) is trained
on a concatenation of monolingual corpora from
104 languages (Devlin et al., 2019), and is found
to achieve decent cross-lingual performance and
transfer ability (Pires et al., 2019). XLM-RoBERTa
(XLM-R) (Conneau et al., 2020a), with a larger
model size and trained on more multilingual data,
even achieves on par performance on the GLUE
and XNLI task to its monolingual counterparts.

Cross-lingual transfer refers to the capability of
pretrained multilingual models to enhance task per-
formance in a target language when being finetuned
exclusively with labeled data from the same task,
but in a different source language. There have been
extensive work showing the cross-lingual transfer
capability of pretrained multilingual models such
as mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020a)) and mT5 (Xue et al., 2021).

Different hypotheses on the factors associated
with a model’s ability to transfer across languages
have been proposed in previous works, including
the amount of shared sub-word tokens across lan-
guages (Wu and Dredze, 2019; Pires et al., 2019;
Conneau et al., 2020b; K et al., 2020; Deshpande
et al., 2022), typological and structural similar-
ity across languages (Pires et al., 2019; K et al.,
2020), comparability of training corpora (Dufter
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and Schütze, 2020), and nature of the task finetuned
for cross-lingual transfer (text classification versus
text generation) (Li and Murray, 2023).

In the above works, many have attributed the
success of cross-lingual transfer to the language-
neutral representations in pretrained multilingual
models. However, this hypothesis has not been
thoroughly tested, given that the intrinsic character-
istics of natural languages impose constraints in the
training process of pretrained multilingual models.
Our work aims at explicitly testing this hypothesis
in a controlled laboratory setting, via the mOthello
task, which allows us to have full control over the
training data and training approaches.

2.2 Language-Neutral Representation
Because of the hypothesized importance of
language-neutral representations in cross-lingual
transfer, previous works have developed meth-
ods to evaluate the extent to which representa-
tions of inputs in different languages are language-
neutral. These works introduce methods such as
measuring the similarity of sentence-level repre-
sentations of parallel sentences (Pires et al., 2019;
Libovický et al., 2020), conducting statistical anal-
ysis of the representational space to separate the
language-agnostic and language-specific compo-
nents (Chang et al., 2022) and investigating token
embedding alignment across languages, which is
found to be strongly correlated with models’ cross-
lingual transfer performance (Deshpande et al.,
2022). These work all show that in pretrained mul-
tilingual models, language-neutral representations
are learned. In our work, we want to investigate
whether language-neutral representations alone are
sufficient for the emergence of multilingual models’
cross-lingual transfer ability.

2.3 Probing Neural Network Representations
Probes, typically low-complexity classifiers, have
become a standard tool for investigating the infor-
mation encoded in the hidden representations of
language models (Alain and Bengio, 2017; Tenney
et al., 2019; Belinkov and Glass, 2019). In Othello-
GPT (Li et al., 2023), states of the game board can
be recovered from a GPT (Radford et al., 2019)
learned to model game moves via trained probes.
In this work, we propose cross-lingual alignment
probes, which are to reconstruct board states in a
target language using a probe trained in a differ-
ent source language, to quantitatively measure the
alignment of representations across languages.

3 Methods

3.1 Othello Game

Othello is a strategy board game designed for two
players. It is played on an 8x8 grid, totaling 64
tiles. Each player, using either black or white game
pieces, takes turns placing a piece on one of the
tiles. The game’s unique dynamic lies in its limited
legal move options at each turn, which involve flip-
ping the opponent’s pieces by sandwiching them
along a straight line. In the study conducted by Li
et al. (2023), the Othello game was transformed
into a sequence modeling task. In their adapta-
tion, the model is required to predict the next legal
moves based on a sequence of previous moves.

3.2 Multilingual Othello Game

An instance of Multilingual Othello (mOthello)
with M languages is defined by2:

1. A set of Othello game sequences S. For every
sequence si = [m1,m2, ...,m|si|], each move
mj (where 1 ≤ j ≤ |si|) is an integer within
the range of [1, 64].

2. Assume we have M languages. For each lan-
guage Lk, we define a function fk, which
maps each game move to a unique language-
specific token. See Figure 2a for an illus-
tration of the language-specific functions. A
game sequence si can be translated into lan-
guage Lk by applying fk on each move in
that sequence. The translated sequence in lan-
guage Lk can be written as [fk(mj)]

|si|
j=1. The

token space of language Lk is essentially the
range of function fk, which can be noted as
[tk1 , ..., tk64]. Note that for all p, q ∈ [1, ..M ],
the semantic meaning of tokens tpj and tqj are
the same, since they represent the same under-
lying move mj .

Using the functions defined in an instance of
mOthello, language-neutral game sequences can
be mapped to sequences in different languages. The
mOthello task is to predict the next legal move in
language Lk, given a sequence of previous moves
in language Lk. The mOthello task mimics mul-
tilingual language modeling, since one not only
needs to generate the following natural language

2For simplicity, we assume that there is a one-to-one token-
level correspondence across all languages here. We will relax
this constraint when we introduce the “Split” and “Composi-
tional” language variants.
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(a) Language-specific Functions (b) Multilingual Corpus Generation

Figure 2: An illustration of mOthello. Left: We map game moves to language-specific tokens tkj by using a
function fk for language Lk. Right: We create multilingual Othello corpus by mapping Othello game sequences to
multilingual Othello language-specific sequences.

tokens, but also generate so in the correct language
based on the previous context.

3.3 mOthelloGPT & mOthello Languages

We use the same Transformer-architecture used in
Li et al. (2023), which is decoder-only GPT2-style
(Radford et al., 2019) model. We name this model
mOthelloGPT. Each mOthelloGPT is trained on M
languages, defined by an mOthello instance.

To test the generalizability of our findings be-
yond the simple mOthello languages, we introduce
two variants of mOthello languages to mirror fea-
tures of natural languages.

The Atomic language maps each game move
to a single (atomic) language-specific token. For
example, moves [a1, a2, b1] are mapped to [a1,
a2, b1] in an atomic language.

The Split language simulates the scenario when
a semantic unit is represented by one or more to-
kens. In the context of mOthello, this means that
each game move can be mapped to one or more to-
kens in a split language. For example, moves [a1,
a2, b1] are mapped to [a11, a12, a21, b11,
b12, b13] in a split language. The number of to-
kens each move is split into is sampled randomly
from 1 to 3.

The Compositional language represents moves
by decomposing each of them into its horizontal
and vertical location on the board. In this type of
language, tokens are reused to represent different
moves in a compositional way. For example, moves
[a1, a2, b1] are mapped to [a, 1, a, 2, b,
1] in a compositional language.

Concretely, we investigate whether mOthelloG-
PTs trained with combinations of Atomic, Split,
and Compositional languages can learn language-
neutral representations and whether and how cross-
lingual transfer ability automatically emerge in
these mOthelloGPTs.

3.4 Cross-lingual Alignment Probes

To investigate to what extent the hidden represen-
tations of semantically similar tokens across lan-
guages align with one another, we propose cross-
lingual alignment probes, which is a probe P l

src

trained to recover the board states with input se-
quences in language Lsrc to recover the board
states given input sequences in another language
Ltgt, in a zero-shot fashion. If a cross-lingual align-
ment probe can reconstruct the board states in an-
other language accurately, this reflects that there is
a shared latent space for language Lsrc and Ltgt.

To compute cross-lingual alignment probe ac-
curacy from language L1 to language L2, we first
train the probe on input sequences of L1. A probe
P l
k is trained on the activations at layer l of an

mOthelloGPT, running on input sequences in lan-
guage Lk. The input to the probe, xli, is a contextu-
alized representation of the i-th token in the input
sequence at layer l of this mOthelloGPT. We can
think of the contextualized token representation as
encoding the information of the state of the board
after the first i moves in the input sequence. Fol-
lowing this reasoning, the ground-truth labels for
training the probe can be computed by running an
Othello-simulator on the first i moves. See Figure
3 for an illustration of the probe training procedure.

After probes P l
1 is trained, we conduct cross-
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Figure 3: An illustration of the probe training procedure and the cross-lingual alignment probing set-up. Left: we
train a probe P l

1 on the activations at layer l of an mOthelloGPT, using only input sequences in language L1. The
ground-truth labels are obtained by interacting with Othello environment. Right: after probe P l

1 is trained, we use it
to recover the board state given activations at layer l of the same mOthelloGPT model, but using sequences from
another language L2 .

lingual alignment probing by using P l
1 to recover

board states on input sequences in language L2,
as illustrated in Figure 3. A predicted board is
then compared with the corresponding ground-truth
board. A board consists of 64 tiles, which each can
be empty, occupied by a black piece, or occupied
by a white piece. To calculate the accuracy, we
count the number of predicted tiles which match
the ground-truth, and divide it by the total number
of tiles on the board. For non-atomic languages
that represent a move with multiple tokens, we take
the contextual representation of the last token of a
move for cross-lingual alignment probes.

4 Experimental Setup

4.1 Implementation Details

We use the synthetically generated sequences in Li
et al. (2023) as the underlying game sequences for
the mOthello task.

Figure 2b illustrates the corpus generation proce-
dure, which results in the data used to train mOth-
elloGPTs. First, for each game sequence si, we
randomly select a language Lk. Next, we translate
si into language Lk using the corresponding map-
ping function fk. The resulting translated sequence
is then added to the training corpus.

mOthelloGPT models consist of 8 transformer
blocks, each having 8 heads, and a model dimen-
sion of 512. mOthelloGPTs are trained on a dataset

containing 20 million sequences in M languages
with the next-token prediction objective. They are
trained for 9 epochs with a batch size of 1024.

4.2 Probe Training

All probes used in this study are two-layer Multi-
Layer Perceptrons (MLPs) with a hidden size of
512. Each probe is trained on a set of 800 randomly
generated Othello game sequences, which are all
translated into a specific language. This results
in approximately 48K pairs of activation data and
corresponding board states. The probes are trained
for 16 epochs, with a batch size of 1024. In this
study, probes are trained with activations collected
at layer 6 of the mOthelloGPT models, since probes
trained with layer 6 activations achieve the highest
accuracy compared to probes trained with other lay-
ers’ activations, providing the highest upper bound
for the cross-lingual alignment probe accuracy3.

4.3 Cross-lingual Transfer Data

In cross-lingual transfer experiments, mOthelloG-
PTs initially undergo pretraining on a dataset of
460K sequences for 40 epochs. This phase in-
cludes the use of a 30K-sequence validation dataset
for early stopping. These training and validation
data for pretraining contain game sequences that
all share the same 3 first moves – this is to ensure

3For further details, see Appendix A.1.
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#Anchor tokens 0 1 2 4

Atom+Atom 0.53 0.82 0.97 0.97
Atom+Split 0.47 0.47 0.73 0.97
Atom+Compositional 0.51 0.59 0.67 0.97

Table 1: Effect of introduced anchor tokens on the align-
ment of representations across languages in bilingual
mOthelloGPTs. Accuracy averaged across 3 different
seeds. We find that as the number of introduced an-
chor tokens increases, the cross-lingual alignment probe
accuracy increases, indicating a better alignment of rep-
resentations across languages.

that the pretrained models perform sub-optimally
on the general game move prediction task, thus
leaving space for performance improvement after
finetuning. During the finetuning phase, models
are finetuned on a smaller dataset containing 102K
sequences for 4 epochs. The 102K game sequences
in the finetuning data are randomly sampled from
the 20 million sequences used in the general model
training setup, which include game sequences with
arbitrary combinations of the first three moves, thus
representing a better distribution.

4.4 Cross-lingual Transfer Set-up

We use the following procedure for the cross-
lingual transfer experiments: first, we pretrain
mOthelloGPTs on a prefix-filtered subset of the
Othello corpus4, translated to M languages; then,
we finetune the pretrained model with a non-prefix-
filtered subset of Othello corpus5, but only in one
of the languages; finally, we record 5 checkpoints
for each epoch of the finetuning process and mea-
sure the alignment and performance for each model
checkpoint. The performance is measured by calcu-
lating the top-1 accuracy of legal move prediction
in each language.

5 Results

5.1 Do Cross-Lingual Representations Align
under Naive Multilingual Pretraining?

We first explore whether hidden representations au-
tomatically align across different languages within
an mOthelloGPT trained on mOthello sequences.

4By prefix-filtered subset, we mean that all the sequences
in that subset share the same first few moves. We use prefix-
filtered subset as the pretraining corpus because we do not
want the pretrained model to generalize too well, hence leaving
room for improvement during the finetuning process.

5The non-prefix-filtered subset better represents the true
distribution of the Othello game sequences.

The first column of Table 1 shows the pairwise
cross-lingual alignment probe accuracy at layer 6
in mOthelloGPTs trained on 3 pairs of languages
(i.e., an atomic+atomic language pair, atomic+split
language pair and atomic+compositional language
pair). We observe that for mOthelloGPTs trained
on each of the three pairs of languages, there is
a lack of strong alignment in the representations
across the languages, implying that naive bilingual
pretraining without any inductive biases may not
yield representation alignment across languages.

Following, we further scale up the bilin-
gual pretraining to multilingual pretraining with
5/10/20/100 languages. Figure 4 shows the pair-
wise cross-lingual alignment probe accuracy at
layer 6 in mOthelloGPTs trained on 20 atomic
languages6. We observe an interesting pattern in
models trained with more languages (e.g., 20 and
100): the representations across different languages
tend to form clusters. Within these clusters, the ac-
curacy of cross-lingual alignment probes for any
pair of languages is high. Conversely, for pairs
of languages from different clusters, this accuracy
decreases. This pattern demonstrates that some lan-
guages may share the same latent space after naive
multilingual pretraining, but it is hard to control
which set of languages will be aligned together.
Despite the formation of language clusters, the mis-
alignment between different clusters reflects that
models trained with naive multilingual pretraining
are not truly multilingual.

5.2 Multilingual Pretraining with Anchor
Tokens Brings Representation Alignment

Multilingual Othello allows us to introduce anchor
tokens, which are the shared tokens across lan-
guages. With anchor tokens, we study their effects
on the alignment of cross-lingual representations.
To approach this, we train mOthelloGPTs on a lan-
guage pair with different number of anchor tokens
and measure the alignment of representations of the
language pair. Table 1 shows the averaged cross-
lingual transfer probe accuracy based on 3 random
seeds for 3 language-pair types.7 We observe that
as the number of shared anchor tokens across two
languages increases, the alignment of representa-
tions increases. More specifically, with 4 shared

6Results for mOthelloGPT trained on 5 and 100 atomic
languages can be found in Appendix (Figure 7 and Figure 8).

7For some probing experiments, we observed an unex-
pected phenomenon and we adjusted our calculation of the
probe accuracy. Details can be found in Section A.5.
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Figure 4: Pairwise cross-lingual alignment probe accu-
racy for mOthelloGPT trained on 20 atomic languages
with naive multilingual pretraining. Each cell c(i,j) re-
flects the cross-lingual alignment probe accuracy from
language Li to Lj . For instance, cell c(0,1) indicates the
accuracy of board state prediction from input sequences
in language L1 with probe trained on language L0 to be
0.52. We observe clusters of languages whose represen-
tations are aligned with each other, while the alignment
of representations across clusters are poor.

anchor tokens, the representations already reach
nearly perfect alignment for all three language-pair
types. These observations reflect that anchor to-
kens significantly helps models to learn aligned
representations across languages.

5.3 Does Cross-Lingual Representation
Alignment Facilitate Cross-Lingual
Transfer Learning?

Next, we study whether aligned cross-lingual repre-
sentations lead to cross-lingual transfer ability for
mOthelloGPTs. We conduct cross-lingual transfer
experiment on mOthelloGPTs. The first and second
columns in Figure 5 present cross-lingual transfer
results of mOthelloGPTs trained with or without
anchor tokens. First, we observe that when cross-
lingual representations do not align well, mOthel-
loGPT finetuned on one language does not benefit
another language, which means this model does
not have cross-lingual transfer ability. Surprisingly,
we find that even when the cross-lingual representa-
tion alignment is high for an mOthelloGPT, cross-
lingual transfer still does not occur. This finding
goes against the common belief that cross-lingual

representation alignment is a sufficient condition
for the emergence of cross-lingual transfer ability
in multilingual models.

5.4 Multilingual Pretraining with Unified
Output Space Brings Representation
Alignment and Cross-Lingual Transfer
Ability

So far, we have seen that the alignment of represen-
tations is not sufficient to guarantee cross-lingual
transfer learning across languages. Inspired by
methods proposed to improve cross-lingual transfer
via intermediate-task training (Phang et al., 2020)
and language-independent entity prediction task
training (Calixto et al., 2021), we introduce multi-
lingual pretraining with unified output space to fa-
cilitate cross-lingual representation alignment and
cross-lingual transfer ability. Specifically, we train
an mOthelloGPT which consumes sequence in two
source languages, Lsrc1 and Lsrc2, and predicts se-
quences in a unified output space, noted as Ltgt. We
then measure representation alignment in the two
source languages, as well as model’s cross-lingual
transfer ability.

The third column in Figure 5 shows the results
of representation alignment and cross-lingual trans-
fer learning under the multilingual pretraining with
unified output space. We observe that pretraining
with unified output space brings mOthelloGPTs
not only cross-lingual alignment, but also cross-
lingual transfer ability. Specifically, for mOthel-
loGPT pretrained with Atomic language pairs, the
cross-lingual alignment probe accuracy remains
at around 90%, indicating that Lsrc1 and Lsrc2 are
well aligned. Moreover, we observe that despite not
encountering any sequences from language Lsrc2
during finetuning, this mOthelloGPT still manages
to enhance its performance in predicting next legal
moves in language Lsrc2 to the same extent as in
language Lsrc1. This indicates that this mOthel-
loGPT achieves cross-lingual transfer under the
unified output space approach. We notice that
the cross-lingual transfer ability of mOthelloGPTs
trained with Split or Compositional language pairs
is slightly weaker, but the pattern that finetuning
on Lsrc1 benefits next move prediction in Lsrc2 still
holds, especially at early finetuning phase.

The improvement in performance of Lsrc2 across
three language pairs of structurally different lan-
guages implies that multilingual pretraining with
unified output space is an effective approach for
inducing cross-lingual alignment and cross-lingual
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Figure 5: Cross-lingual transfer performance under naive, anchor tokens and unified output space training approaches,
of mOthelloGPTs trained on different pairs of languages. Columns (left to right): 1) when 0 anchor tokens are
introduced, poor language-neutral representations are learned, which is indicated by the low cross-lingual alignment
probe accuracy, 2) when 8 anchor tokens are introduced, rich language-neutral representations are learned in all
language pairs, yet cross-lingual transfer performance is poor, indicated by the declining of the target language
performance, and 3) when the unified output space approach is taken for training and fine-tuning, we observe that in
all language pairs representations are well aligned – moreover, cross-lingual transfer is also observed, indicated by
the improvement of the target language performance.

transfer ability and is robust to structural differ-
ences across languages.

5.5 Multilingual Pretraining with More than
Two Languages

In previous sections, we explored how different
training approaches affect alignment of representa-
tions and cross-lingual transfer in bilingual mOthel-
loGPT models. Here, we explore whether our find-
ings hold for multilingual models that are trained
with more than two languages. Figure 6 shows the
cross-lingual representation alignment and cross-
lingual transfer performance of mOthelloGPTs
trained with 4 languages consisting of different lan-
guage types. We find that the results are consistent
with our findings on bilingual mOthelloGPTs: (1)
While anchor tokens improve representation align-
ment across languages, it does not help the model
to achieve its cross-lingual transfer ability; (2) With
the introduction of the unified output token space

during multilingual pretraining, both cross-lingual
representation alignment and cross-lingual transfer
are achieved. This result suggests that the unified
output space approach also generalizes to scenarios
when a multilingual model is trained on more than
two languages.

6 Discussions

In Section 5.4, we introduced the unified output
space approach to induce both representation align-
ment and cross-lingual transfer in mOthelloGPTs.
However, it is important to note that modeling
mOthello is considerably simpler than modeling
natural languages. While it is simple to identify a
next token in the unified output space in mOth-
ello, it is comparatively challenging to identify
a language-neutral next token for each language-
specific context in natural languages. Neverthe-
less, our results could inform future strategies in
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Figure 6: Cross-lingual transfer performance under naive, anchor tokens and unified output space training approaches,
of mOthelloGPTs trained on 4 languages consisted of multiple types. Cross-lingual alignment probe accuracy is
computed as the average of the accuracy between the finetuning language and each of the target languages. Under
the naive training (left figure), the average cross-lingual alignment probe accuracy is low and the improvement of
the finetuning language does not transfer to the target languages; under the introduction of anchor tokens, although
the average representation alignment is better, still no cross-lingual transfer is found; under the unified output space
approach, both well aligned representation and cross-lingual transfer are observed.

designing training objectives for multilingual mod-
els. Traditional training of such models primarily
focuses on the causal task of predicting the next
language-specific token. Our results suggest that
incorporating a language-neutral next-token pre-
diction task into the training process could poten-
tially enhance the cross-lingual transfer abilities of
multilingual models. Some such approaches have
been explored in (Phang et al., 2020; Calixto et al.,
2021).

7 Conclusion

In this paper, we propose the Multilingual Othello
(mOthello) sequence modeling task as a testbed
to investigate the factors which help align repre-
sentations across languages, and to study the re-
lationship between representation alignment and
cross-lingual transfer in multilingual models. We
introduce a new metric, the cross-lingual alignment
probe accuracy, on measuring the alignment of rep-
resentations across languages. We train mOthel-
loGPTs on the mOthello task, and conducted anal-
yses on the representation alignment. We found
that models trained with a naive approach fail to
learn a language-neutral hidden space across all
input languages, but the introduction of anchor to-
kens helps the alignment of representations. Then,
we conduct finetuning experiments on mOthelloG-
PTs pretrained on a prefix-limited training corpus.
To our surprise, we found that the learning of a
language-neutral space alone is not sufficient to
facilitate cross-lingual transfer. Upon further in-
vestigation, we propose an alternative training ap-
proach – the unified output space approach – that

both induces the learning of the language-neutral
space and facilitates cross-lingual transfer.

Limitations

Our study used the toy task mOthello and its syn-
thetic variants to investigate the alignment of repre-
sentations across languages and the cross-lingual
transfer ability in multilingual models. However, it
is important to note that in real-world scenarios, the
vocabulary size of each language is substantially
larger than the token space in mOthello, which
contains only less than 180 tokens per language.
Additionally, our experiments were conducted on
models with a decoder-only transformer architec-
ture. This focus leaves out a significant portion
of state-of-the-art multilingual models, many of
which employ encoder-decoder and encoder-only
architectures. These factors should be considered
when interpreting the applicability of our findings
to broader, more complex linguistic contexts.
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A Appendix

A.1 Layer Choice for Cross-lingual
Alignment Probes

Not all layers are suitable for training probes and
computing cross-lingual alignment probe accuracy.
In the Othello work, the authors found that the
probes are particularly good at extracting board
states when trained on activations from layer 5 to
layer 7. To select a layer for training probes, we
have computed the original and cross-lingual align-
ment probe accuracy across all layers in Table 2
for a bilingual mOthelloGPT trained naively. We
chose layer 6 for our study because it exhibits the
highest original probe accuracy (i.e. the probe is
trained and tested on sequences from a same lan-
guage). This original probe accuracy serves as
an approximate upper-bound for the cross-lingual
alignment probe accuracy, i.e. the cross-lingual
alignment probe do not outperform the original
probe in its prediction accuracy. Our aim is to
ensure this upper-bound accuracy is as high as pos-
sible such that: if we observe low cross-lingual
alignment probe accuracy, it suggests that the issue
is not due to an inherent inability for any probe to
accurately predict the board state, but rather that the
representations between languages are unaligned,
thereby showcasing the low performance of the
cross-lingual alignment probe. This distinction is
crucial for correctly interpreting the implications
of low cross-lingual alignment probe accuracy.

A.2 Validating Probes through Intervention
Experiments

To see whether the probes trained in this study are
extracting causally significant board states with
regard to the model’s legal move predictions, we
run the same intervention analysis as in Li et al.
(2023). From Table 3, we can see that probes are
capable of intervening with the model’s internal
representation and alter its legal move predictions
based on the edited game board state. The cross-
lingual alignment probe, when used to intervene
the board states given inputs from a different but
aligned language, can perform almost as good as
the probe that has been originally trained on that
language.

A.3 Effect of Random Initialization on
Representation Alignment

We also delve into the impact of random initializa-
tion on naive multilingual pretraining. Based on

Figure 7, we observe that language clusters some-
times may appear, but there is no perfect alignment
across all languages, which serves as another evi-
dence that naive multilingual pretraining does not
yield alignment of language representation.

A.4 Indirect Effect of Anchor Tokens

To explore the indirect effect of anchor tokens, we
focus on mOthelloGPT models trained on three
atomic languages for which two out of three pairs
of languages share some anchor tokens. For in-
stance, consider the set of languages L1, L2, and
L3 as an example. We make L1 and L2 share some
anchor tokens, and L2 and L3 share some other an-
chor tokens. We select the anchor tokens in a way
such that languages L1 and L3 have completely
disjoint token spaces so that we can explore the
indirect effect of anchor tokens. Results are shown
in Table 4, showing a significant indirect effect of
anchor tokens on language pairs that do not share
any anchor tokens directly.

A.5 Color-Flipped State Predictions of the
Cross-lingual Alignment Probes

During the process of measuring cross-lingual
alignment probe accuracy for Table 1, we found
that some cross-lingual alignment probes, when
being use to predict board states in a different split
or compositional language, predict the near-perfect
color-flipped state of the game board (i.e. the black
pieces are predicted to be white pieces, and the
white pieces black pieces). On a representation
level, it is reasonable to argue that mOthelloG-
PTs still learn a shared representation of the game
board across languages even if the probe predicts
a color-flipped state of the board, since a color-
flipped state of the board encodes exactly the same
information as its counterpart, and the probe’s pre-
diction of black and white pieces is subject to the
arbitrarily chosen labels during the training of the
probe. Therefore, to better capture a more flexible
notion of board-state representation, we take the
maximum of the plain probe prediction accuracy
and the color-flipped probe prediction accuracy as
the final cross-lingual alignment probe accuracy.
This change does not affect cross-lingual alignment
probe accuracy for unaligned representations since
even if the predicted colors of all pieces are flipped,
the resulting accuracy still will be no better than
the plain prediction accuracy.
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Layer index 0 1 2 3 4 5 6 7 8

Original Probe acc. 0.539 0.837 0.892 0.932 0.953 0.963 0.965 0.953 0.769
Cross Probe acc. 0.486 0.570 0.578 0.570 0.552 0.537 0.527 0.516 0.468

Table 2: Original probe accuracy and cross-lingual alignment probe accuracy computed using probes trained across
all layers from a bilingual mOthelloGPT.

Non-Aligned Aligned

Original Probe 0.28 0.19
Cross Probe 2.75 0.20
Null (Li et al., 2023) 2.68

Table 3: Average error using original probe and cross-
lingual alignment probe on mOthelloGPTs that learned
non-aligned or aligned language representations. In the
non-aligned group, using the original probe leads to a
much lower intervention error, while intervening with
the cross-lingual alignment probe leads to an error rate
no better than null-intervention baseline. In the aligned
group, we found that the intervention error using the
original probe and the cross-lingual alignment probe
are similar, and both significantly outperforms the null
baseline.

Language Pairs

(0,1) (0,2) (1,2)

2 anchor tokens per (0,1) and (0,2)
Cross Probe Acc. 0.91 0.97 0.90

4 anchor tokens per (0,1) and (0,2)
Cross Probe Acc. 0.97 0.97 0.97

Table 4: Indirect effects of anchor tokens. For each
experiment, the third column shows the extent to which
the representations of language L1 and language L2

align with each other. Whenever the representations
of language pairs (L0,L1) and (L0,L2) are aligned, the
representations between languages L1 and L2 are also
aligned. The second experiment illustrates an example
where language pair (L0,L1) is less aligned, which led
to language pair (L1, L2) aligning less as well.

B Computational Resources

For each pretrained mOthelloGPT, we train it with
1 A40 GPU for 24 hours.
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Figure 7: Pairwise cross-lingual alignment probe accuracy for mOthelloGPTs initialized with 9 different seeds, each
trained on sequences from 5 atomic languages.
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Figure 8: Pairwise cross-lingual alignment probe accuracy for an mOthelloGPT trained on sequences from 100
atomic languages.
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