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Abstract

As the field of Natural Language Processing
(NLP) increasingly adopts transformer-based
models, the issue of bias becomes more pro-
nounced. Such bias, manifesting through
stereotypes and discriminatory practices, can
disadvantage certain groups. Our study focuses
on direct and indirect bias in the model expla-
nations, where the model makes predictions
relying heavily on identity tokens or associ-
ated contexts. We present a novel analysis of
bias in model explanation, especially the subtle
indirect bias, underlining the limitations of tra-
ditional fairness metrics. We first define direct
and indirect bias in model explanations, which
is complementary to fairness in predictions. We
then develop an indirect bias discovery algo-
rithm for quantitatively evaluating indirect bias
in transformer models using their in-built self-
attention matrix. We also propose an indirect
bias mitigation algorithm to ensure fairness in
transformer models by leveraging attention ex-
planations. Our evaluation shows the signifi-
cance of indirect bias and the effectiveness of
our indirect bias discovery and mitigation.

1 Introduction

Discrimination is the unfair treatment or prejudice
directed towards individuals, groups, or certain
ideas or beliefs, intentionally or unintentionally.
It frequently entails making stereotypes about oth-
ers and acting in a manner that disadvantages one
group while favoring another (Webster et al., 2022).
The pervasive nature of bias extends to machine
learning, prominently manifesting in the domain
of Natural Language Processing (NLP) (Bansal,
2022). As NLP becomes increasingly integral to
everyday life, largely due to the advancements
brought by the transformer-based models (Wolf
et al., 2020; Dai et al., 2019), addressing fairness
in this field is of utmost importance.

In recent years, NLP researchers have under-
taken efforts to identify and mitigate discrimina-

tion against specific groups, such as gender (Thel-
wall, 2018), race (Kiritchenko and Mohammad,
2018), age (Diaz et al., 2018), religion (Bhatt et al.,
2022), disability (Venkit and Wilson, 2021), etc.
They focus on the model’s tendency to exploit
spurious correlations (Liusie et al., 2022; Wang
et al., 2022) between the predicted label and ex-
plicit words linked to certain protected attributes,
such as “he”, “she”, “Alice”, “Bob”, “Russian”,
“Muslim”, etc. For instance, in a hate speech detec-
tion task, an unfair transformer-based model would
see the word “Muslim” (also a protected attribute)
in a sentence and classify it as hate speech instantly
by assigning high attention to the word “Muslim”,
rather than understanding the whole message of the
sentence. This is referred to as the legal concept of
disparate treatment (Supreme Court of the United
States, 1971), that is the outcomes have intended
direct discrimination due to choices made explic-
itly based on membership in a protected class. The
existing methods can only handle discriminatory
cases where there is a representative token present
in the text directly associated with the protected
group, e.g., token “Muslim” for the Islam religion.
It also requires the NLP practitioners to manage a
pre-determined list of candidate tokens.

In contrast to disparate treatment, disparate im-
pact (Supreme Court of the United States, 1971) is
the legal theory that outcomes should not be differ-
ent based on individuals’ protected class member-
ship, even if the process used to determine that out-
come does not explicitly base the decision on that
membership but rather on proxy attributes. Even
without the presence of any direct indicating token
in the text, the model still excessively relies on
context learned from biased training data, which
results in unintended subtle indirect discrimination
in the prediction. Such indirect association is case
by case. It is difficult to pre-determine a candidate
token list. Remarkably, no prior studies have ex-
plicitly delved into indirect discrimination in NLP,

1599



(a) Biased Model (b) Unbiased Model

Figure 1: An example of token-wise model explanation.
The darker color indicates a higher importance.

to the best of our knowledge.
In this work, we want to bridge the gap be-

tween disparate treatment and disparate impact in
NLP models. The black-box deep learning models
tend to over-learn the biased data during training,
which results in shortcuts in decision-making with-
out valid explanations. Figure 1 illustrates how a
model trained to mitigate direct bias against Islam
religion through “Muslim” still falsely categorizes
a statement as hate speech because the model’s
attention is biased emphasized on the sensitive con-
text like the word “quran”. An unbiased model
would make a negative prediction based on “not
always”. To investigate bias in the model’s local
explanations, we first define direct and indirect
bias (in Section 4). They complement the tradi-
tional outcome-association-based group fairness
notions, such as demographic parity and equal op-
portunity. We then propose a novel bias discov-
ery method to evaluate transformer-based models
on disparate impact (in Section 5). It leverages a
secondary transformer-based model dedicated to
classifying the protected attribute from the asso-
ciation presented in the training data. We com-
pare the faithful explanations of the primary, poten-
tially biased model, with those of this secondary
model. By examining the similarity between their
decision-making patterns, we quantify indirect bias
through a new proposed metric called the Area Un-
der the Similarity Curve (AUSC). Furthermore,
we then proceed to mitigate the detected indirect
bias through a similarity-based constraint, which
is coupled with mitigating direct bias through data
Resampling and adversarial learning (in Section 6).
In our experiment, we show the significance of in-
direct bias, the effectiveness of our indirect bias
discovery and mitigation algorithms, and the ad-
vantage of mitigating indirect bias in model expla-
nations (in Section 7). Thus, our primary contribu-
tions are threefold: (1) we establish the problem of
fairness in model explanations by formally defining
direct and indirect bias; (2) we propose an Indi-
rect Bias Discovery (IBD) framework tailored to
quantitatively evaluate indirect bias in transformer
models; and (3) we develop a novel Indirect Bias

Mitigation (IBM) algorithm that ensures fairness
using model explanations. Our codes are available
at https://github.com/FarsheedHaque/Indirect-Bias

2 Related Work

2.1 Bias and Mitigation

An increasing body of work has been conducted on
direct bias discovery in NLP and ways to mitigate
it. Researchers have focused on classification tasks
and how societal biases (Hutchinson et al., 2020;
Dinan et al., 2020; Xia et al., 2020), can impact a
model’s prediction. While these studies work on
one type of social bias at a time others have tried to
make a generalized method to quantify any sort of
existing bias (Czarnowska et al., 2021). (Hovy and
Prabhumoye, 2021), argues that these direct biases
originate mainly from five sources. To observe bias
(Bansal, 2022), talks about existing metrics in nlp.

Many attempts have been made to mitigate
bias by solving sub-problems. Generally, all bias
mitigation approaches fall under three categories
(Mehrabi et al., 2021). Pre-processing, when miti-
gation happens before feeding the biased data into
the model. (Kamiran and Calders, 2011) resam-
ples the biased dataset to get an unbiased dataset.
(Brunet et al., 2019) tries to locate the bias that ex-
ists in training data and remove it so that the model
can train on unbiased data. However, the model
has to allow such modification in the training data
(Bellamy et al., 2018). In-processing mitigation is
such, where the model’s algorithm is modified to
tackle bias while training on biased data. Adversar-
ial learning (Zhang et al., 2018), is a prime exam-
ple of in-process bias mitigation. Other solutions
like causal mediation analysis (Vig et al., 2020),
entropy-based attention regularization (Attanasio
et al., 2022) are offered to mitigate bias using regu-
larization terms and (He et al., 2022) uses a differ-
ent model to predict the sensitive attribute to use
their rationale to mitigate bias in the training time.
Finally, post-processing, involves using a separate
set of data, not used during the model’s training, to
evaluate the model after its training phase is com-
plete (d’Alessandro et al., 2017). In (Bolukbasi
et al., 2016), the author introduced an equalization
process for every pair of gender-specific words to
ensure fairness.

2.2 Attention Interpretation

Attention interpretability in NLP is crucial for un-
derstanding the biased decision-making process of
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transformer-based models (Mehrabi et al., 2022).
Self-attention mechanisms are structured as multi-
layered entities, with each layer encompassing
multiple heads. Given the complexity of this
high-dimensional architecture, it is a challenge
to interpret the decision-making process of self-
attention. As a remedy, researchers often project
the self-attention representations into a more man-
ageable lower-dimensional space (Mylonas et al.,
2022). Several operations on heads and layers,
such as averaging (Wang et al., 2019) and summa-
tion (Schwenke and Atzmueller, 2021), have been
proposed to simplify this process. These opera-
tions inherently rank tokens by their significance
by aggregating column-wise data into unified ma-
trices for heads (Schwenke and Atzmueller, 2021;
Mathew et al., 2021; Chefer et al., 2021). Multipli-
cation is also a good layer operation (Chefer et al.,
2021) because it can amplify the signals that might
be muted using other techniques. The careful se-
quencing of these, among other operations, can be
used to aggregate self-attention scores to achieve
an interpretation.

While some scholars (Jain and Wallace, 2019;
Pruthi et al., 2019) suggest that the attention mech-
anism may not serve as a dependable means for
understanding how models make decisions, re-
cent research indicates that methods for measur-
ing faithfulness can effectively assess the utility of
these interpretive approaches. A strong faithful-
ness score implies an effective attention aggrega-
tion technique, which in turn can provide reliable
interpretations. (Mylonas et al., 2022) introduced
Ranked Faithful Truthfulness, aimed specifically at
evaluating methods of attention aggregation. Ad-
ditionally, studies such as (DeYoung et al., 2020)
have developed more generalized metrics, includ-
ing comprehensiveness and sufficiency, to assess
the rationale behind a model’s decisions.

3 Preliminary

Given an input sequence x with a correspond-
ing protected attribute s and a class label y. x
is an ordered sequence of tokens represented as
x = {ti}Ni=1 with ti denoting the i-th token in the
sequence and N is the length of x. The protected
attribute s is the protected group of the person as-
sociated with the text. It can be the composer or
recipient of the text, or the target whom the text
comments on. The value of s = u (e.g., gender is
female) is sometimes already expressed in x as a

sensitive token s (e.g., “she”), i.e., s ∈ x, which
is mostly studied by previous works. In this work,
we do not require the presence of s in x, where the
protected attribute s is a hidden context. The class
label y is the prediction target. A text classification
model f : x → y is trained on labeled text data
(x, y). The model prediction for a sequence x is
denoted as ŷ = f(x). Specifically, we consider a
state-of-the-art transformer-based model.

3.1 Prediction Outcome Fairness
Demographic parity is a notion of group fairness,
where the model prediction is fair w.r.t. the values
of protected attribute s if ŷ and s are independent
of each other (Zhang et al., 2018).

P (ŷ = 1|s = u) = P (ŷ = 1|s = v)

Equality of Opportunity is another notion of
group fairness, where a model’s predictions are
deemed fair w.r.t. a protected attribute s if the true
positive rate of ŷ is the same across different groups
defined by s (Zhang et al., 2018).

P (ŷ = 1|s = u, y = 1) = P (ŷ = 1|s = v, y = 1)

3.2 Self-Attention
When f is a transformer-based model, the self-
attention mechanism in f plays a crucial role in
understanding token relationships within the se-
quence x. For each self-attention layer, the initial
input is an (N × E) matrix where N is sequence
length and E is embedding size. This matrix un-
dergoes linear transformations to produce matrices
Q(query), K(key), and V (value) of the same size.

A = softmax

(
Q.KT

√
E

)
V, (1)

where the dot product between Q and K is com-
puted, and the result is scaled by dividing it by

√
E.

The output undergoes a softmax function, resulting
in (N ×N) matrix called A (Vaswani et al., 2017).
This matrix encapsulates the attention-based rela-
tionships of every token ti in the sequence x to
every other token.

In the classification task, certain tokens play a
vital role in predicting y, and these tokens get high
self-attention scores (Letarte et al., 2018). Let ty

denote the set of these ground-truth centric tokens
where ty ∈ x. The attention score of tokens in
this set, represented as A[ty] is notably high. The
aggregated token-wise attentions often serve as lo-
cal model explanations, which in return help to
identify these ground-truth centric tokens ty.

1601



Figure 2: Indirect Bias Discovery (IBD) Architecture

4 Direct and Indirect Bias

Consider a text classification model f : x→ y that
is trained on labeled text data (x, y). There also
exists a protected attribute associated with x, which
may or not be present in the text in the form of an
identity token. Regardless of the bias in training
data, it is essential to make sure the prediction ŷ
made by the trained model f is unbiased w.r.t. s
not only in the predicted outcomes but also in the
local explanations to justify the prediction. In this
section, we formally define direct and indirect bias
in the model explanations and therefore formulate
new fairness notions.

Direct Bias. In text data, the protected attribute
is sometimes (but not always) already present in
the text sequence, i.e., s ∈ x. If a model explicitly
makes predictions based on the sensitive token s,
we define such bias in the model explanations as
direct bias. For a model f with direct bias, the
sensitive token s is among the key tokens for the
model decision, i.e., s ∈ ty, where ty denotes the
set of important tokens which f makes the predic-
tion ŷ based on. The key token set ty serves as the
deciding factor in the model’s local explanation.

Theorem 1 A model f satisfies no direct bias in
explanations if the sensitive token s is not explicitly
used for model decisions, i.e., s /∈ ty.

Indirect Bias. Other than the sensitive token s,
when the model makes a prediction, it can also
over-exploit context ts in the text which is highly
correlated to s. We define such bias in the model
as indirect bias. For a model with indirect bias, a
subset of the sensitive context tokens ts is among
the key decision-making tokens ty, i.e., ts∩ty ̸= ∅.
Theorem 2 A model f satisfies no indirect bias in
explanations if the sensitive context tokens are not
used for model decisions, i.e., ts ∩ ty = ∅.

5 Indirect Bias Discovery (IBD)

Direct and indirect bias evaluate a model’s fair-
ness in terms of its decision-making process, a.k.a.

model explanations. An unbiased transformer-
based model pays high attention to the set of these
ground-truth centric tokens ty, whereas a model
with indirect bias pays high attention to a set of
tokens ts that is associated with s. In practice, ei-
ther ty or ts is not annotated in the text. A model
f can provide local explanations in the form of ty.
The key challenge to examine indirect bias is to
identify ts. To separate ts from ty and to discover
indirect bias in model f we propose an Indirect
Bias Discovery (IBD) architecture. Figure 2 shows
a general overview of our proposed architecture.
It is divided into three components - model layer,
attention-score aggregation layer, and similarity
detection layer.

Model Layer is used to fine-tune our target
model f on sequence x. The goal of this fine-tuned
f is to successfully predict ŷ where ŷ = f(x). We
also get the attention-score matrix Af [{ti}Ni=1] for
x in model layer which we can use to identify ty

later. This layer also has another helper model g
fine-tuned to predict the protected attribute s of x
such that ŝ = g(x). Model g also gives us the
attention-score matrix Ag[{ti}Ni=1] for x which we
can use to identify ts later. Then, Af and Ag are
fed into the next layer as inputs to get the interpre-
tation of the decision-making process of model f
and g respectively.

Attention-Score Aggregation Layer takes high-
dimensional matrices, Af and Ag and maps them
into one-dimensional vectors, αf and αg. These
vectors encapsulate the importance scores for the
token set {ti}Ni=1 originating from Af and Ag,
respectively. To achieve this we devised a self-
attention score aggregator using different combina-
tions of summation, multiplication, average, and
maximum. From different combinations, we took
one that performs best on the faithfulness metrics
of comprehensiveness and sufficiency (DeYoung
et al., 2020). Sufficiency evaluates how sufficient
an aggregation is for making a prediction, while
comprehensiveness assesses if all the selected ele-
ments are essential for the prediction. A minimal
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reduction in sufficiency and a significant drop in
comprehensiveness suggest a high level of faithful-
ness. Our attention-score aggregator follows the
operations as in Algorithm 1 below.

Algorithm 1 Faithful Attention Aggregator

Require: model f , input instance x
1: L,H ← number of layers and heads in f
2: A[l][h] ← attention matrix of layer l, head h

in f given x
3: for each combination of head_op, layer_op,

token_op in [sum,mul,mean,max] do
4: B = head_op(A[l])
5: C = layer_op(B)
6: α = token_op(C)
7: Evaluate the faithfulness of α
8: end for
9: return Best aggregation combination based on

faithfulness metrics and the corresponding α

Similarity Detection Layer finds the ty and ts

to detect indirect bias in model f . To achieve this,
the layer takes αf and αg as inputs. A subset tkf
is selected from x, which comprises the top k%
importance scores in αf . tkf is a hypothesis of ty

based on f . Consequently, a subset tkg is selected
from x, which comprises the top k% importance
scores in αg. tkg is a hypothesis of ts based on
g. The similarity between the subsets tkf and tkg is
calculated as below.

ϕ = J(tkf , t
k
g) =

|tkf ∩ tkg |
|tkf ∪ tkg |

, (2)

where ϕ stands for the Jaccard similarity measure
between the two subsets (Sunilkumar and Shaji,
2019). To make the similarity metric more robust,
we take multiple percentage values of k and plot a
similarity curve of ϕ against varying k. This Area
Under the Similarity Curve (AUSC) captures the
model behavior under multiple hypotheses. AUSC
is a more robust measurement of the model’s in-
direct bias. The similarity curve also allows us to
choose an optimum value of k to select the most
important tokens in model explanations.

The AUSC functions as a quantitative metric for
assessing indirect bias present within a given text
data denoted as x. This metric primarily targets
the identification of indirect bias at the sentence
level. Nevertheless, the application scope of AUSC
extends beyond individual sentences, allowing for
the calculation of bias across the entire dataset.

This process involves taking the AUSC values from
each sentence and then calculating their average,
which gives an overall measure of indirect bias in
f w.r.t. the entire dataset.

6 Indirect Bias Mitigation (IBM)

In this section, we propose a novel Indirect Bias
Mitigation (IBM) algorithm to guarantee fairness
in model explanations. The goal of our mitigator
is to minimize the influence of protected attribute
s for a given model f : x → y that is trained on
labeled text data (x, y). The underlying hypothesis
posits that during the training phase, f picks up
signals from the context tokens ts associated with
the protected attributes s, consequently leading to
biased predictions ŷ. To mitigate such indirect
bias in model explanations, we design a similarity-
based regularization term R to constrain the model
to only rely on the key prediction centric tokens ty

but not the sensitive context tokens ts.
To obtain R, first, we need a pre-trained helper

model g : x → s (same as the one from IBD).
During the training of our f model, we take the
attention matrix Af from model f and the attention
matrix Ag from g model corresponding to the same
samples to calculate the cosine similarity between
these two matrices using Equation 3.

R = (cos(Af , Ag))
2 . (3)

A greater term R indicates the model f relies on
the sensitive context tokens ts similarly to g. The
preference for cosine similarity over Jaccard simi-
larity is attributed to its differentiable nature, which
is conducive to gradient-based optimization.

To achieve no indirect bias in model explanation,
the model f is trained with the total loss function L
in Equation 4, where we add the similarity regular-
ization term R to the cross-entropy CE(f(x), y).

L = CE(f(x), y) + λR, (4)

where λ is a hyper-parameter that controls the trade-
off for fair explanations.

Our similarity regularization only aims to re-
move indirect bias in model explanations. It can-
not guarantee the prediction outcome fairness men-
tioned in Section 3.1, because the layers after self-
attention in the transformer-based models may still
exploit the bias in the training data. In practice,
it is better to complement direct bias mitigation
for traditional outcome fairness with indirect bias
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mitigation in model explanation. In our evalua-
tion, we show that our indirect bias mitigation is
compatible with pre-process mitigation of resample
(Kamiran and Calders, 2011) to and the most pop-
ular in-process mitigation for prediction outcome
fairness - adversarial debiasing (AD) (Zhang et al.,
2018), thus simultaneously achieving both demo-
graphic parity (or equal opportunity) in predictions
and no indirect bias in model explanations.

7 Experiment

In this section, we evaluate our proposed Indirect
Bias Discovery (IBD) and Indirect Bias Mitiga-
tion (IBM) algorithms on sentiment analysis, toxi-
city detection, and hate speech detection datasets.
Through case studies, we also demonstrate the sig-
nificance of indirect bias in model explanations and
the advantage of mitigating indirect bias.

7.1 Datasets

The Jigsaw Unintended Bias in Toxicity Dataset
(cjadams et al., 2019) is an archive of approxi-
mately 2 million public comments, was released
at the end of 2017 following the shutdown of the
Civil Comments platform. It was labeled for both
the toxicity of the comments and the presence
of several protected attributes. A targeted sub-
set of this dataset, labeled specifically for toxic-
ity towards male and female identities, comprised
21,000 records. Within this subset, 13,000 records
were associated with male identities and 8,000 with
male identities. The comments were classified
based on toxicity levels, with 10,490 identified as
toxic and 10,510 as non-toxic. The dataset has a
risk difference of ∼20%, where the ratio of toxic
comments towards females is higher.

The Amazon Books Review Dataset1, contains
feedback from 3 million users on 212,404 unique
books. Using a gender inferencing model, a subset
of 16,927 users (9,105 male users and 7,822 female
users) was identified with high confidence based
on common male and female names. This results
in a subset of 33,600 reviews (16,965 positive re-
views and 16,635 negative reviews), where those
rated with 4 or 5 stars were classified as positive
and 1-star reviews as negative. The dataset has a
risk difference of ∼20%, where female users make
more positive reviews. The protected attribute in
this dataset is the review author’s (inferred) gen-

1Amazon Books Reviews Dataset

der. Most reviews do not include a gender self-
identification token in them.

The Measuring Hate Speech Corpus
(Sachdeva et al., 2022) comprises 50,070 social
media comments, annotated by 11,143 Amazon
Mechanical Turk contributors to assess hate speech
through the lens of annotator perspectives, utilizing
faceted Rasch measurement theory (RMT). A
specific subset of this dataset, containing 27,818
comments aimed at detecting hate speech, includes
11,418 comments identified as hate speech
and 16,400 as non-hate, with a focus on racial
commentary—7,353 on targeting the white race
and 20,460 on the black race. This subset exhibits
a ∼20% higher True Positive Rate (TPR) gap for
detecting hate speech against the black race.

All the datasets are split into 82% training, 8%
validation, and 10% testing.

7.2 Metrics

We use Accuracy to evaluate the classification util-
ity performance.

For prediction outcome fairness, we use Risk
Difference (RD) to evaluate the demographic par-
ity in model predictions for the Jigsaw dataset
and the Amazon review dataset, where RD =
P (ŷ = 1|s = u) − P (ŷ = 1|s = v), and for
the hate speech dataset, we use True Positive Rate
(TPR) gap to evaluate equality of opportunity in
model’s prediction, where TPRgap = P (ŷ =
1|s = u, y = 1) − P (ŷ = 1|s = v, y = 1). A
low RD and TPR Gap indicate fairness in terms
of demographic parity and equality of opportunity
respectively in the model predictions.

We use aggregated attention for model explana-
tions and evaluate the indirect bias in model expla-
nations using our proposed metric - Area Under
Similarity Curve (AUSC), which is based on the
Jaccard similarity defined in Section 5. A higher
value of AUSC indicates high indirect bias in the
model’s local explanations, where the model over-
exploits sensitive context tokens in its decision-
making process. In addition, we further examine
the model explanations with the similarity curve
(defined in Section 5). A curve below the diagonal
line indicates no bias in model explanations.

To evaluate the faithfulness of our aggregator
we use comprehensiveness = m(x) − m(x/r)
and sufficiency = m(x)−m(r) (DeYoung et al.,
2020) as shown in Algorithm 1, where m(x) is the
original prediction on x of a model for a class and
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r is the rationale based on the aggregation. In Ap-
pendix A.1 we show a detailed process of extract-
ing the most faithful combination of aggregated
attention for both model f and g. In our experi-
ment, the combination of (sum, sum, sum) for
(head_op, layer_op, token_op) yields the best
faithfulness scores.

7.3 Models

There is no previous work on indirect bias miti-
gation on model explanations. We compare our
indirect bias mitigation method with some mitiga-
tion methods that focus on achieving demographic
parity and equality of opportunity in predictions.

The Vanilla Model is a transformer-based
model, we use is DistilBert (Sanh et al., 2019) and
Bert (Devlin et al., 2018) with no fairness mecha-
nism built in.

Resampling (Kamiran and Calders, 2011) is pre-
processing mitigation, which resamples the biased
dataset to get an unbiased dataset with a close to
0 risk difference. The sampled unbiased dataset is
then used for the model training.

Dropout (Webster et al., 2021) serves as a tech-
nique to disrupt the model’s ability to directly cor-
relate protected attributes with its predictions. By
intentionally increasing the Dropout rate during
training, the method aims to prevent the model
from overly relying on these protected attributes,
a practice that can lead to overfitting. We set the
Dropout rate high as 30%.

Adversarial Debiasing (AD) (Zhang et al.,
2018) is an in-processing mitigation, which uses
adversarial learning to remove the correlation be-
tween the predicted outcome and the protected at-
tribute, i.e., achieving demographic parity (or equal-
ity of opportunity if conditioned on y = 1).

Controlling Bias Exposure (CBE) (He et al.,
2022) is another in-processing mitigation tech-
nique. This method leverages an auxiliary model
designed to predict a protected attribute. It uti-
lizes the negative log-likelihood derived from this
prediction as a debiasing mechanism defined as
energy-based constraint. This constraint effectively
regulates the significance of biased tokens, thereby
controlling their influence on the model’s output.
We compare with it for indirect bias mitigation.

For both AD and CBE, we evaluate whether mit-
igation for demographic parity (or equality oppor-
tunity) and bias exposure can also lead to fairness
in model explanations.

Our proposed method is to add similarity regu-
larization for indirect bias mitigation, IBM on top
of models that can achieve prediction outcome fair-
ness. The helper model g is trained on the same
training data.

7.4 Performance Comparison

Due to limited space, our main results show models
with the DistilBert base. The result of Bert-based
models is shown in Appendix A.3. The models
are evaluated on the Jigsaw and Amazon review
datasets for gender bias with a high risk difference
in Vanilla, and on the hate speech dataset for racial
bias with a high TPR Gap in Vanilla.

7.4.1 Prediction Outcome Fairness
Demographic Parity. In Table 1, for indirect gen-
der bias datasets, as expected, the Vanilla model,
Resampling, and Dropout cannot achieve a low risk
difference in the prediction on testing data. AD,
AD+CBE, and AD+IBM (Ours) achieve low risk
differences through adversarial learning.

Equality of Opportunity. In Table 2, for the
indirect racial bias dataset, Dropout achieves a
slightly lower TPR Gap than Vanilla. Resampling
can achieve a very low TPR Gap in the prediction.
CBE and IBM can achieve low TPR Gap when
paired with either Resampling or AD.

7.4.2 Indirect Bias Discovery and Mitigation
Area Under Similarity Curve (AUSC). In both
Table 1 and 2 the results for AUSC demonstrate the
effectiveness of our Indirect Bias Discovery (IBD)
algorithm in measuring indirect bias in model ex-
planations across three datasets. The Vanilla model,
along with Resampling, Dropout, and AD, show
high AUSC scores, indicating their explanations
contain indirect bias regarding the protected at-
tribute. There is a slight correlation between predic-
tion outcome fairness and AUSC for these models
with unconstrained model attention. The only ex-
ception is that Resampling has low TPR Gap on the
Hate Speech dataset but still has a high AUSC score.
This is because the decision-making process is still
biased for each individual record. In Table 1 for
gender bias in both datasets we first see some hints
of low AUSC in AD+CBE as CBE aims to control
the exposure of sensitive attribute-related informa-
tion, validating our AUSC metric’s utility. Yet,
AD+CBE cannot fully eliminate indirect bias. Our
Indirect Bias Mitigation (IBM) algorithm, through
similarity regularization, ensures learning from dif-
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Model Jigsaw Dataset Amazon Review Dataset
Accuracy RD AUSC Accuracy RD AUSC

Vanilla 0.8471 0.2042 0.7067 0.9208 0.1868 0.7241
Resampling 0.8266 0.1452 0.7179 0.9169 0.1813 0.7389

Dropout 0.8433 0.2084 0.6949 0.9179 0.1869 0.7191
AD 0.7933 0.0698 0.6431 0.7477 0.0796 0.7129

AD + CBE 0.8009 0.0588 0.6496 0.7193 0.0794 0.6770
AD + IBM 0.8004 0.0552 0.5796 0.7254 0.0810 0.5121

Table 1: Model Performance on Jigsaw and Amazon Review Datasets

(a) Jigsaw Dataset (b) Amazon Review Dataset (c) Hate Speech Dataset

Figure 3: Similarity Curve Comparison

Model Accuracy TPR Gap AUSC
Vanilla 0.9448 0.1811 0.7171

Resampling 0.9400 0.0163 0.7090
Dropout 0.9388 0.1061 0.7117

AD 0.9160 0.0357 0.7024
Resampling + CBE 0.9248 0.0531 0.6045

AD + CBE 0.8136 0.0495 0.6600
Resampling + IBM 0.9164 0.0381 0.5252

AD + IBM 0.8749 0.0502 0.6365

Table 2: Model Performance on Hate Speech Dataset

ferent patterns than those from the gender inference
(helper) models. Our model explanation shows low
AUSC - 0.5796 for the Jigsaw dataset and 0.5121
AUSC for the Amazon review dataset, indicating
low indirect bias, i.e., the model only focuses on
ground-truth-centric tokens. In Table 2 for racial
bias in hate speech dataset AD+CBE, AD+IBM can
achieve low AUSC of 0.6600 and 0.6365 respec-
tively. Since Resampling has a low TPR Gap, we
add CBE or IBM to mitigate indirect bias as well,
which results in low AUSC - Resampling+CBE has
0.6045 AUSC and Resampling+IBM has 0.5252
AUSC. In both Resampling and AD, IBM beats
CBE in terms of AUSC.

Similarity Curve. We can further compare the
model explanation using the similarity curve. Fig-
ure 3 shows the similarity curve for each model on
the three datasets, respectively. For every dataset,
the Vanilla Model curve (red), the Resampling
curve (yellow), the Dropout model curve (orange),
and the AD curve (blue) are close to each other.

The AD+CBE curve (purple) is slightly under the
others. However, all five of them have a clear
arch, which indicates high similarity and high indi-
rect bias. The Resampling+CBE curve (pink), Re-
sampling+IBM curve (black), and AD+IBM curve
(green) are close to the diagonal line, which meets
the goal of no indirect bias in model explanations.

7.4.3 Trade-off Analysis
Trade-off Comparison. We know there is a utility
trade-off for prediction outcome fairness in ma-
chine learning (Liu and Vicente, 2022). For all
three datasets, the accuracy difference between the
Vanilla-biased model and AD unbiased one indi-
cates the trade-off to achieve prediction outcome
fairness (demographic parity or equal opportunity).
The trade-off is 0.05, 0.17, and 0.03 for the Jig-
saw, Amazon Review, and hate speech datasets,
respectively. The Amazon review dataset incurs
the largest accuracy drop due to the absence of the
sensitive token in most texts. It is more challenging
when the sensitive context is subtle. This confirms
our motivation to mitigate NLP bias beyond di-
rect bias. On the hate speech dataset, Resampling
achieves equal opportunity with a utility trade-off
of 0.0048. Both CBE and IBM further mitigate
indirect bias in model explanations, which incurs
an additional utility trade-off for fair explanations
on top of AD (or Resampling). On comparison of
this additional utility trade-off, AD, AD+CBE, and
AD+IBM are similar in the prediction outcome fair-
ness metrics. On the Jigsaw dataset, the additional
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Figure 4: Sensitivity analysis of λ on the hate speech
dataset (trade-off between utility and fair explanations)

trade-off for fair explanation is almost nothing, but
the indirect gender bias by AUSC is the lowest for
AD+IBM. On the Amazon Review dataset, CBE
and IBM have additional trade-offs of 0.0284 and
0.0223, respectively, and AUSC for AD+IBM is
significantly lower. On the hate speech dataset,
Resampling+CBD, AD+CBE, Resampling+IBM,
and AD+IBM have additional trade-offs of 0.0152,
0.1024, 0.0236 and 0.0411, respectively. CBE reg-
ulates the model on exposure to biased tokens. It
can mitigate indirect bias and reduce AUSC. Our
proposed AD+IBM can achieve very low AUSC
with a relatively small additional utility trade-off,
i.e. AD+IBM is more effective and efficient at
mitigating indirect bias in model explanations.

Sensitivity Analysis. In IBM, the hyperparam-
eter λ in Equation 4 controls the additional utility
trade-off for fair explanations. Figure 4 presents
a sensitivity analysis for the hyperparameter λ for
AD+IBM on the hate speech dataset for example.
It illustrates that as the value of λ escalates, there is
a discernible decline in AUSC (green), at the cost
of reduced accuracy (blue) and keeping TPR Gap
(orange) around 0.05. The balance between AUSC,
TPR Gap, and accuracy is optimized at λ = 11,
which is selected as the preferable trade-off.

7.5 Case Analysis

To further showcase the significance of indirect
bias and the advantage in its mitigation, we also
conduct case analysis to directly compare different
model explanations on individual examples. Fig-
ure 5 shows the explanations provided by different
models of an example from the Jigsaw dataset. Due
to limited space, more model explanations on other
datasets are in the Appendix A.4.

Figure 5 is a toxic comment towards males from
the Jigsaw dataset. All models except for AD and

Figure 5: All model explanations on an example case
from the Jigsaw dataset

AD+CBE correctly predicted the toxicity. The ex-
planations from Vanilla, Resampling, and Dropout
are “men”, “dominance”, “priesthood”, “jealous”,
and “fertility”. They heavily overlap with the
helper model’s explanation for gender prediction
(“men”, “preisthood”, and “female”). The expla-
nation from our AD+IBM model relies on “domi-
nance”, “jealous”, and “fertility”, which is a gender-
neutral toxicity logic. AD and AD+CBE try to
put less attention on “men” and “female”, but the
model failed to find the toxicity logic and made
the wrong prediction. We can also discover the
indirect bias from these individual explanations
through AUSC. Vanilla, Resampling, Dropout, AD,
and AD+CBE have AUSC 0.6464, 0.6297, 0.6097,
0.5644, and 0.5226, respectively. Our AD+IBM
only has 0.5030, which has the lowest indirect bias.

Our other case studies in the Appendix also
shows that the other models have more similari-
ties with the helper model while IBM focuses more
on the sentiment-related content. Our AUSC score
for the individual record is consistently low.

8 Conclusion

In this work, we study indirect bias in NLP mod-
els, a phenomenon less explored but as significant
as direct bias. Our contributions include defin-
ing direct versus indirect bias, introducing a new
framework for quantitatively evaluating indirect
bias in transformer models using their in-built self-
attention matrix, and proposing a mitigation algo-
rithm to ensure fairness in transformer models by
leveraging attention explanations. Our evaluation
shows the significance and challenging nature of
indirect bias in model explanations, and the effec-
tiveness of our proposed discovery and mitigation
algorithms. These efforts represent a critical step
towards achieving fairness and equity in NLP ap-
plications, addressing current research gaps, and
guiding future ethical AI development.
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9 Limitations

There is no publicly available dataset designed to
study indirect bias. For the experiment evalua-
tion, it is challenging to identify the ground truth-
sensitive context. The current evaluation of the
data we have is not enough to showcase the full
spectrum of indirect bias. Our methodology heav-
ily relies on a helper model to infer sensitive at-
tributes. The quality of the helper model hinders
the performance of our bias discovery and mitiga-
tion algorithm. The need for a helper model also
slows down the runtime efficiency. In future work,
we will develop a method only utilizing the target
model’s explanations.

10 Ethical Considerations

This study aims to improve NLP technology to
achieve equity for all under-served communities.
We want to broaden the scope of NLP fairness. De-
veloping fair and explainable NLP models can free
technology from inheriting historical bias in real-
world data. Due to the limited options on datasets,
we conducted the experiment with a simplified bi-
nary setting. The proposed technology is designed
to comply with non-binary identities and multi-
ethnicity. We hope this project raises awareness
of the influence of unintentional bias from NLP
models. It is a community effort to develop and ad-
vocate open-source, transparent, fair, accountable,
and explainable NLP models.
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A Appendix

A.1 Implementation Details
For the Jigsaw and hate speech datasets, we utilize
batch sizes of 32 and set the maximum token length
to 128. In contrast, for the Amazon Review dataset,
we opt for a batch size of 40 with a maximum token
length of 256.

The f and g models are based on the uncased
base versions of BERT and DistilBERT sequence
classifiers from Huggingface, featuring 12 layers.
These models undergo training over 5 epochs with
a learning rate of 10−5 employing the AdamW opti-
mizer. We implement a variant of these models for
the Dropout configuration, maintaining the archi-
tecture while increasing the Dropout rate to 30%.
For adversarial training, the last hidden state of
model f is input into the adversary model, which
is a straightforward feed-forward network with two
hidden layers comprising 512 and 128 units, respec-
tively, and employs the ReLU activation function.
The adversary model has a learning rate of 10−4

and utilizes cross-entropy loss for its output. In
the case of the CBE model, we derive attention
from both f and g models to compute the energy
using negative log-likelihood. Lastly, our approach
excludes attention from alphanumeric, punctuation,
and stop-word tokens in both f and g models, and
calculates the cosine similarity between the remain-
ing tokens’ attention.

A.2 Faithfulness Evaluation
Here we provide the process of extracting the most
faithful combination of aggregated attention as
shown in Algorithm 1 for both model f and g
using the Jigsaw dataset for example. The pro-
cess begins by evaluating the g model’s compre-
hensiveness and sufficiency across various aggrega-
tion strategies—namely summation, multiplication,
averaging, and maximization—applied at different
structural levels: head, layer, and matrix. This
evaluation involves examining the top 20%, 30%,
and 40% of tokens, as outlined in Table 3a. Subse-
quently, we select the aggregation combination that
yields the highest scores in comprehensiveness and
lowest in sufficiency for the top k% of tokens - for
the Jigsaw dataset, we take the sum, sum, sum
combination. The chosen combination and token
percentage are then applied to model f . The anal-
ysis of the f model includes the performance of
the Vanilla model and our model (AD+IBM), with
findings presented in Table 3b. This approach al-

lows us to systematically determine the aggregation
technique that most effectively maintains the faith-
fulness of the attention mechanism in mitigating
bias.

A.3 Model Performance with Bert-Based
Models

Table 4 shows the result of our evaluation of Bert-
based models.

Demographic Parity. For both datasets, as
expected, neither Resampling nor Dropout can
achieve low risk difference in the prediction on test-
ing data. AD, AD+CBE and AD+IBM can achieve
low risk differences through adversarial learning.

Indirect Bias Discovery and Mitigation. For
both datasets, the other models all have high AUSC
scores (above 0.7), which means their explanations
have indirect bias w.r.t. the protected attribute.
For our Indirect Bias Mitigation (IBM) algorithm,
the similarity regularization makes sure the model
learns different patterns from the gender inference
(helper) model. Our model explanation has a close
to 0.5 AUSC, indicating low indirect bias, i.e., the
model only focuses on the ground-truth-centric to-
kens.

A.4 Additional Case Analysis
Figure 6 is a negative review by a female author
from the Amazon Review dataset. All models cor-
rectly predicted the negative sentiment. The ex-
planations from Vanilla and other baselines have
more similarities with the helper model to detect
female gender. For our AD+IBM model, the ex-
planation focuses more on the sentiment-related
content and the attention is spread out evenly. The
indirect bias discovered in the AUSC score for ours
is only 0.5594 compared to other models having
around 0.75.

Figure 7 is case study from the hate speech
dataset. All models correctly predicted hate
speech. The explanations from Vanilla, Resam-
pling, Dropout, AD, and AD+CBE put more em-
phasis on the word “ni**as”, which is a keyword
for the helper model. For our AD+IBM model, the
explanation focuses more on the hate related word
(e.g., “bitch”, “hate”, “fuck”, etc.). This means
our mitigator avoids potentially sensitive context
and focuses only on ground-truth-centric tokens.
The indirect bias discovered in the AUSC score for
Vanilla, Resampling, Dropout, AD, and AD+CBE
is 0.7495, 0.7346, 0.7112, 0.7200, and 0.7094, re-
spectively. Resampling+CBE, Resampling+IBM,
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g model
Accuracy = 0.9714

sum,sum,sum mean,max,mul sum,mean,mul
Com Suff Com Suff Com Suff

20% 0.3433 0.0100 0.2400 0.0885 0.3371 0.0133
30% 0.3504 0.0090 0.2895 0.0419 0.3461 0.0104
40% 0.3538 0.0085 0.3180 0.0200 0.3504 0.0095

(a) Faithfulness of the g model
Model Accuracy Com Suff
Vanilla 0.8433 0.2295 0.0490

AD+IBM 0.7614 0.1257 0.0285

(b) Faithfulness of the f models at 30% on sum, sum, sum combination

Table 3: Faithfulness evaluation f and g model on Jigsaw dataset

Model (Bert) Jigsaw Dataset (Gender) Amazon Review Dataset (Gender)
Accuracy RD AUSC Accuracy RD AUSC

Vanilla 0.8433 0.1928 0.7406 0.9362 0.1941 0.7752
Resampling 0.8487 0.1635 0.7478 0.9297 0.1849 0.7685

Dropout 0.8357 0.2250 0.7265 0.9032 0.1776 0.7660
AD 0.7928 0.0694 0.7275 0.7627 0.0741 0.7274

AD + CBE 0.8004 0.0533 0.7119 0.7092 0.0673 0.7634
AD + IBM 0.7615 0.0332 0.5906 0.7242 0.0823 0.5540

Table 4: Model Performance on Jigsaw and Amazon Review Datasets with Bert-based models

and AD+IBM have AUSC of 0.6157, 0.4992, and
0.6107, respectively. They are better at mitigating
indirect bias.
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Figure 6: All model explanations on an example case from the Amazon review dataset
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Figure 7: All model explanations on an example case from the hate speech dataset
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