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Abstract

The convergence of text, visual, and audio data
is crucial towards human-like artificial intelli-
gence, however the current Vision-Language-
Speech landscape is dominated by encoder-
only models that lack generative abilities. We
propose closing this gap with i-Code V2, the
first model capable of generating natural lan-
guage from any combination of Vision, Lan-
guage, and Speech data. i-Code V2 leverages
state-of-the-art single-modality encoders, com-
bining their outputs with a new modality-fusing
encoder to project combinations of modalities
into a shared representational space. Language
tokens are generated from these representations
via an autoregressive decoder. i-Code V2 is pre-
trained end-to-end on a large collection of dual-
and single-modality datasets with a novel text
completion objective that can be generalized
across arbitrary combinations of modalities. i-
Code V2 matches or outperforms state-of-the-
art single- and dual-modality baselines on 7
multimodal tasks, demonstrating the power of
generative multimodal pretraining across a di-
versity of tasks and signals.

1 Introduction

Pretrained Large language models (LLMs) have
experienced massive success as general-purpose
solutions for multiple tasks (Brown et al., 2020).
However, a large gap persists between the capabili-
ties of LLMs and true humanlike intelligence. This
is partially because humans perceive a variety of
sensory inputs while LLMs are typically restricted
to Language (L) data and unable to understand or
generalize to other modalities such as Vision (V)
and Speech audio (S).

Recently, the field of multimodal AI, which
aims to develop AI systems capable of modeling
multiple kinds of signals, has witnessed signifi-
cant progress including new learning techniques
(Radford et al., 2021; Bao et al., 2022; Alayrac
et al., 2022), training data (Schuhmann et al., 2022;

Zellers et al., 2022a; Yang et al., 2023), and model
architectures (Su et al., 2020; Li et al., 2019; Xu
et al., 2022).

Despite this progress in multimodal AI, most
research has focused on understanding pairs of
modalities, such as speech-language and vision-
language, and the fast-growing subfield of triple-
modality AI (Language, Vision, Speech) remains
limited to encoder-only models (Akbari et al., 2021;
Zellers et al., 2022b; Yang et al., 2023). This paper
proposes i-Code V2, one of the the first encoder-
decoder generative models for the triple-modality
setting. i-Code V2 can flexibly generate text from
arbitrary combinations of Language, Vision, and
Speech data. This model addresses three ongoing
challenges within multimodal research.

First, most existing vision-language-speech
models are encoder-only, i.e. they can conduct dis-
criminative tasks such as multimodal classification
but not generative ones like visual question answer-
ing or automatic speech recognition. i-Code V2
enables the model to generate content from multi-
modal signals, unlocking more diverse applications
and improved discriminative performance.

Second, most existing triple-modality research
leverages triple-modality data (i.e. video with sub-
titles and audio track). However, the three modal-
ities in video data can be noisily aligned (Miech
et al., 2019) which degrades downstream pretrain-
ing. Furthermore, the available high quality video
data is several orders of magnitudes smaller in size
than single- or dual-modality ones. E.g., the largest
publicly available image-caption dataset LAION
(Schuhmann et al., 2022) has 5 billion pairs (335
billion text tokens) while the largest video dataset
MERLOT has 180M videos (5 billion text tokens)
(Akbari et al., 2021; Zellers et al., 2022a). i-Code
V2 proposes a novel method for efficiently lever-
aging these larger and higher-quality dual- and
single-modality datasets within a triple-modality
pretraining framework. We accomplish this with
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a new, generalized sequence-to-sequence pretrain-
ing objective which unifies assorted multimodal
objectives into simple text completion.

Third, multimodal tasks are diverse in settings
and data formats, e.g. Automatic Speech Recog-
nition (ASR), vision QA, sentiment analysis, etc.
Existing techniques apply separate inference strate-
gies to each problem type, adding complexity and
overhead for practitioners. i-Code V2 unifies all
tasks under its text completion framework, render-
ing multimodal inference and cross-task transfer
easier for practitioners.

i-Code V2 is built on top of state-of-the-art
single-modality models: the vision and speech
modalities are encoded with single-modality en-
coder respectively. Then encoded features and text
token embeddings are inputted to a joint vision-
language-speech encoder, which merges the differ-
ent modalities into a shared representational space.
Last, a language decoder, conditioned on the joint
encoder via a cross-attention mechanism, is trained
to generate language tokens autoregressively.

We evaluate i-Code V2 on 7 datasets: multi-
modal summarization, multimodal dialogue gener-
ation, multimodal sentiment analysis, vision QA,
vision captioning, and ASR. Notably, i-Code V2
outperforms previous SOTA models on MSMO
(multimodal summarization), Image Chat (multi-
modal dialogue generation), UR-FUNNY (multi-
modal sentiment analysis). i-Code V2 also exhibits
competitive performance compared to specialized
dual-modality models on vision QA, vision caption-
ing, and ASR, suggesting the power of integrative
multimodal pretraining.

In summary, our key contributions are threefold:

1. We propose i-Code V2, one of the first vision-
language-speech generative models that can
generate natural language from one-, two- or
three-modality inputs of image, video, lan-
guage and speech.

2. We propose a novel multimodal generative
pretraining framework using large-scale uni-
and dual-modality datasets with a novel cross-
modality text completion framework. Utiliz-
ing a sequence-to-sequence objective, instead
of modality-specific objectives, enables flex-
ible application to various training goals and
streamlines in training and inference.

3. i-Code V2 shows SOTA or competitive perfor-
mance across several multimodal tasks and do-

mains, including multimodal summarization
and dialogue generation, and video sentiment
analysis.

2 Related Work

Multimodal Learning studies extracting and in-
corporating information from vision, language, and
speech modalities. A recent advance is unifying
models of different modalities to the transformer.
For example, representing vision and language with
one multimodal transformer model has shown great
performance in image caption (Wang et al., 2022a;
Alayrac et al., 2022), vision classification (Yu et al.,
2022), vision question answering (Yu et al., 2022;
Li et al., 2022), etc. Extracted image features (Chen
et al., 2020) or projections of image patches (Wang
et al., 2022e; Yu et al., 2022) are fused together
with text token embeddings, then input to a multi-
modal encoder to obtain unified representations for
vision and language. For vision-language-speech
models, the multimodal encoder is pretrained on
video data (Zellers et al., 2022a; Yang et al., 2023)
or dual-modality data pairs (Yang et al., 2023).
Multimodal representations can be integrated by a
late-stage multimodal fusion network (Yang et al.,
2023), or integrated early at the input stage (Zellers
et al., 2022a).

Generative Multimodal Model can generate one
modality from another modality or a combination
of input modalities. E.g., image captioning (John-
son et al., 2016; Wang et al., 2022a), automatic
speech recognition (Yu and Deng, 2016; Radford
et al., 2022), text-to-image generation (Ramesh
et al., 2021, 2022; Saharia et al., 2022; Rombach
et al., 2022), etc. Several recent works propose to
unify vision-language tasks with one homogeneous
model architectures and schemes. For example,
Wang et al. (2022c); Lu et al. (2022); Tang et al.
(2022) unite vision and vision-language tasks, such
as image classification, object detection, semantic
segmentation, visual QA, document understand-
ing, image generation, etc. Huang et al. (2023)
recently proposed the Kosmos-1 model to generate
text based on vision and text input.

Distinct from previous works, i-Code V2 can
not only encode and merge vision, language, and
speech modalities, but also generate natural lan-
guage. It unifies various tasks across multimodal
summarization, multimodal sentiment analysis,
speech recognition, visual QA, and caption.
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3 An Integrative Multimodal Generative
Model

3.1 Model Architecture

i-Code V2 model consists of multimodal encoders
and a language decoder. Following the spirit of inte-
grative AI (Yang et al., 2023), the language, vision
and speech modalities are encoded by their corre-
sponding encoder or converted to numerical rep-
resentations respectively, before being fused with
each other. Leveraging pretrained models enables
us to utilize the state-of-the-art model architecture
for each modality. It is also computationally effi-
cient since these models have already been exten-
sively trained on single-modality data. This also
gives us the flexibility of choosing preferred en-
coders. For example, we can use a medical-domain
specific language encoder-decoder; or choose a
smaller speech/vision encoder on devices having
limited computation resources, without having to
re-design the framework. We leverage the follow-
ing state-of-the-art single-modality encoders:

Vision Encoder. In different multimodal scenar-
ios, the vision modality can be either a single im-
age or a video (especially when the input contains
speech). To flexibly encode and represent the vi-
sion modality input, we opt to use OmniVL, a foun-
dation model for both image-language and video-
language (Wang et al., 2022b). It uses indepen-
dent 2D/3D convolution-based patch tokenizers to
first process image/video and a unified vision trans-
former to generate vision representations. It has
122 million parameters.

Speech Encoder. We use WavLM large (Chen
et al., 2022), a speech encoder pretrained on 94k-
hour data in a self-supervised manner. Pretraining
objectives include masked speech denoising and
predicting. The model architecture is a transformer
encoder with Gated Relative Position Bias on top of
a temporal CNN-based featurizer. The parameter
size is 315 million.

Joint Vision-Language-Speech Encoder. We
use a 24-layer transformer encoder to jointly en-
code vision, language, and speech modalities. After
the vision and speech modality inputs are encoded
by their respective encoder, a 1-layer projection
(one for each modality) transforms the features
into the same dimension as the text vocabulary em-
bedding. Transformed features are concatenated
with the text tokens embeddings and then input
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Language Vision Speech
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Encoder

Token
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Figure 1: i-Code V2 Model Architecture. Parameters of
vision and speech encoders are frozen during pretraining
and are updated in finetuning.

into the transformer layers for both inter- and intra-
modality attention.

We initialize the transformer layers of the joint
encoder using the encoder part of the recently devel-
oped Z-Code++ summarization model, which has
485 million parameters and was pretrained using
generative training objectives on 160G of English
text data (He et al., 2022).

Language Decoder with Multimodal Cross-
Attention. i-Code V2 then uses a decoder to gen-
erate textual sequences from the multimodal en-
coder output. The 24-layer decoder cross-attends
with the multimodal representation from the joint
Vision-Language-Speech encoder. We use the pre-
trained transformer decoder from the Z-Code++
model (485 million parameters) to initialize these
parameters.

3.2 Large-Scale Multimodal Generative
Pretraining

We leverage a collection of large-scale dual modal-
ity datasets to conduct speech-language generative
pretraining, vision-language generative pretraining,
and language-language generative pretraining. In
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particular, our pretraining objectives adopt a simple
sequence-to-sequence strategy, which poses each
modality-specific and cross-modality objective as
a text completion. The multimodal pretraining pro-
cess, task, and textual instructions are illustrated in
Figure 2.

3.2.1 Vision-Language Generative Pretraining

Image Captioning. Given an image, the model
predicts the corresponding textual caption. We use
the 72.8 million subset of Florence image-text pair
dataset (Yuan et al., 2021). The task prompt is
“Generate the caption for this image: ”.

Video Captioning. The pretraining task is to gen-
erate the caption of a video clip. We use the largest-
scale publicly available video captioning dataset
WebVid-10M (Bain et al., 2021), which contains
10.7M video-caption pairs. The task prompt is
“Generate the caption for this video: ”.

Vision Question & Answering. For this task, we
use the VQA v2 training set, an open-ended vision
question answering dataset (Antol et al., 2015),
which has 443,757 question-answer pairs. The task
prompt is “Answer the following question based on
the image: ”.

Vision-Augmented Text Reconstruction. This
pretraining task aims to improve the model’s ability
on cross-modal understanding. We mask spans of
the textual image caption and replace them with
sentinel tokens, like T5 pretraining (Raffel et al.,
2020). The model needs to predict masked out
text spans, given the masked textual input and the
image. The data resource is the same as in “Image
Captioning”. The task prompt is “Reconstruct the
following text based on the image: ”.

3.2.2 Speech-Language Generative
Pretraining

We leverage the following labeled data for genera-
tive speech-language pretraining:

Speech transcription. This dataset contains 75k-
hour human-transcribed speech utterances (Yang
et al., 2023), collected from scenarios such as call
center and AI voice assistant. The input is the
speech utterance, and the target output is the tran-
scription. The pretraining loss is the cross entropy
between the target and prediction. The task prompt
is “Transcribe the speech utterance to text: ”.

Speech Sentiment Analysis. The goal of this
task is to predict the sentiment of a speech ut-
terance, e.g., from “highly negative” to “highly
positive”. We gather data from CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) (Zadeh et al., 2018) and Spoken Language
Understanding Evaluation (SLUE) (Shon et al.,
2022). The task prompt is “Predict the sentiment
of this segment: ”. The output target is the textual
sequence of the “sentiment”.

Speech Emotion Recognition. The task is to pre-
dict the emotion category of a speech utterance,
including {happiness, sadness, anger, fear, disgust,
surprise}. The dataset is from the emotion intensity
subtask of CMU-MOSEI. The target generation
sequence is the emotion category name. The task
prompt is “Predict the emotion of this segment: ”.

Speech-Augmented Text Reconstruction. Sim-
ilar to “Vision-Augmented Text Reconstruction”,
we mask spans of the speech transcription and ask
the model to predict masked-out text spans, given
the speech input as well. The task prompt is “Re-
construct the following text based on the speech:
”.

3.2.3 Language-only Generative Pretraining.

We include two high-quality text-only corpora,
i.e., English Wikipedia and BookCorpus (Zhu
et al., 2015), in pretraining as a supplement to
the language-modality data of vision-language and
speech-language datasets. This language-only pre-
training task follows T5 where the input is span-
masked text, and the output is the original masked
span. The task prompt is “Reconstruct masked
spans in the following text: ”.

3.2.4 Pretraining Details

To expedite the pretraining process, we freeze
the weights of speech and vision encoders, only
updating the parameters of the Vision-Language-
Speech encoder and the language decoder. For
each optimization step, we select the pretrain-
ing dataset from the candidate pool using “Expo-
nentially Smoothed Weighting (ESW)” sampling.
ESW is widely used in multilingual pretraining (De-
vlin et al., 2019) where multilingual corpus sizes
can be different with several magnitudes. Assume
the size ratio of the dataset A in the overall training
datasets is P (A). We exponentiate the ratio by the
factor S < 1 then we sample datasets according
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i-Code V2
Vision-Language-Speech

Generative Model

(ASR) Transcribe the 
speech utterance to text:

(SA) Predict the sentiment 
of this segment:

(ER) Predict the 
emotion of this segment:

(SR) Reconstruct the following 
text based on the speech:

(VC) Generate the caption 
for this image/video:

(VQA) Answer the following 
question based on the image

(VR) Reconstruct the following 
text based on the image:

(TR) Reconstruct masked 
spans in the following text:

Grace Brewster 
Hopper was an 

American [MASK] 
scientist, 

mathematician, 
and [MASK].

[Speech Transcription]

“Highly Positive”

“Happy”

[Masked Spans in the Original Text]

[Image/Video Caption]

[Masked Spans in the Original Text]

[Masked Spans in the Original Text]

Task Instruction

Speech

Vision

Language

Speech-Language Pretraining Tasks:
ASR: Automatic Speech Recognition

SA: Sentiment Analysis
ER: Emotion Recognition

SR: Speech-Augmented Text Reconstruction

Vision-Language Pretraining Tasks:
VC: Vision Captioning for Image and Video

VQA: Vision Question & Answering
VR: Speech-Augmented Text Reconstruction

Language-only Pretraining Tasks:
TR: Text Reconstruction

[Answer]

Figure 2: i-Code V2 multimodal pretraining. It unifies tasks across vision, language and speech domains to text
completion/generation training objectives. Pretraining tasks include both unimodal, e.g. TR, and dual-modal ones,
e.g., ASR, SA, ER, SR, VC, VQA, and VR (full names of task initials are provided in the figure).

the re-normalized exponential ratio p(A)S∑
A p(A)s . We

use S = 0.5 in our setting.
We pretrain the i-Code V2 model on datasets

introduced above for 1 epoch on 24 A100 GPUs,
with batch size 8 (per-GPU) and three gradient ac-
cumulation steps. Having accumulation steps > 1
also makes the effective optimization batch con-
tain data from different resources. We use AdamW
(Loshchilov and Hutter, 2019) optimizer with start-
ing learning rate 10−5. The number of warm up
steps is 2000, and the learning rate linearly decays
to 5× 10−6.

4 Experiments

We test i-Code v2 on 7 datasets from assorted cat-
egories. In downstream tasks, we update parame-
ters of Vision-Language-Speech encoder, language
decoder, and single-modality encoders. Overall,
i-Code V2 sets a new state-of-the-art in 3 tasks
(MSMO, Image Chat, and UR-FUNNY) and re-
mains highly competitive in the rest, suggesting the
promise of integrative and generative multimodal
pretraining.

4.1 Multimodal Summarization

We first evaluate the multimodal summarization
task. Well studied in the field of natural language
processing, in traditional summarization, input only
contains language. However, in many real-world
scenarios, such as multimedia coverage and on-

line news article, key information is also included
other modalities, e.g., pictures. We test i-Code
V2 on the multimodal news summarization dataset
MSMO (Zhu et al., 2018). We choose MSMO
since the dataset is fully open-sourced, including
the images in the article. Given a news article with
image(s), the task is to generate a few-sentence
summarization. Its training/validation/test split
contains 293,965/10,355/10,261 news articles with
images from Daily Mail website. The ground-truth
“golden” summary is the highlight written by the
news editor. The evaluation metrics are ROUGE
scores (Lin, 2004). Baseline models include: text-
only summarization model, e.g., BertSum (Liu
and Lapata, 2019) model variants BertAbs and
BertExtAbs, BART (Lewis et al., 2020), ZCode++
(He et al., 2022); UniMS (Zhang et al., 2022), an
encoder-decoder multimodal summarization model
that can process multimodal inputs and select im-
ages; MOF (Zhu et al., 2020), a multimodal gen-
eration model with the guidance of multimodal ref-
erence; ATG/ATL/HAN, these are baselines from
the original MSMO dataset paper, that Point Gen-
erator Network (See et al., 2017) attending with
global vision features(ATG), attending with local
vision features (ATL), and hierarchical attention
with local features.

The task prompt used in i-Code V2 is “Summa-
rize this article with the images: ”. Our model has
the flexibility of encoding several images using the
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Model R1 R2 RL

BertAbs 39.02 18.17 33.20
BertExtAbs 39.88 18.77 38.36
BART 41.83 19.83 39.74
ZCode++ 42.19 20.03 37.2
UniMS 42.94 20.50 40.96
MOF (enc) 41.05 18.29 37.74
MOF (dec) 41.20 18.33 37.80
HAN 40.82 18.30 37.70
ATL 40.86 18.27 37.75
ATG 40.63 18.12 37.53
i-Code V2 44.7±0.2 21.0±0.3 37.7±0.2

Table 1: Results on the multimodal news summarization
MSMO test set.

video encoder. As shown in Table 1, compared
with baseline models, i-Code V2 has shown com-
petitive performance on ROUGE-1 and ROUGE-
L. Compared with the language encoder-decoder
ZCode++, that i-Code V2 encoder-decoder is ini-
tialized from, i-Code V2 shows considerable im-
provement, which demonstrates the effectiveness
of the proposed multimodal pretraining.

4.2 Multimodal Dialogue Generation

i-Code V2 also has the ability perceive contextual
multimodal signals to generate textual response.
We test on the multimodal open-domain dialogue
dataset Image-Chat (Shuster et al., 2020), each data
example includes an image; the dialogue history
between two speakers A and B; and speaker style
traits. The goal is to generate the next-round di-
alogue. Baselines include: BlenderBot (Roller
et al., 2020), a ChatBot model of 2.7 Billion param-
eters pretrained on 1.5B Reddit comment conver-
sations; Multi-Modal BlenderBot(Shuster et al.,
2021), the multimodal version of BlenderBot that
fuses vision features from ResNet/Faster-RCNN
in the multimodal text generation; 2AMMC (Ju
et al., 2019), a multimodal generative model that
combines ResNet and text transformer; DialoGPT
(Zhang et al., 2019), a GPT model trained on 147
million social media dialogues.

We can conveniently guide the model to generate
dialogue in the speaker style with prompt “Gener-
ate the response for the dialogue in {style type}
style: ”. For fair comparison, we do not include
baseline model that co-trains on multiple multi-
modal dialogue datasets e.g., Shuster et al. (2020).
The evaluation metric includes F1 and ROUGE-

Model F1 RL

DialoGPT 6.2 5.2
2AMMC 9.3 11.0
BlenderBot 9.2 12.3
Multi-Modal BlenderBot 13.1 18.0
i-Code V2 15.5±0.2 18.6±0.3

Table 2: Results on the multimodal dialogue generation
dataset Image Chat.

Model Accuracy

ZCode++ 75.4
MulT (Tsai et al., 2019) 70.55
MISA (Hazarika et al., 2020) 70.61
MultiBench (Liang et al., 2021) 66.7
BBFN (Han et al., 2021) 71.68
LMF (Liu et al., 2018) 67.53
TFN (Zadeh et al., 2017) 68.57
i-Code V2 79.59±0.18

Table 3: Prediction accuracy on UR-FUNNY dataset.

L. Table 2 shows that i-Code V2 has significantly
outperformed previous baselines on both metrics.

4.3 Video Multimodal Sentiment Analysis

We further evaluate i-Code V2 on multimodal sen-
timent analysis datasets. E.g., in UR-FUNNY
(Hasan et al., 2019), a humor detection dataset,
the input is a video, the audio of the video, and
the text transcript. The task is to predict whether
the immediate laughter will follow the clip. The
dataset contains 5306/1313/1638 humor instances
for train/validation/test split, and 5292/1313/1652
for the not humor instances. Although previous
models approached this problem as binary classi-
fication, we finetune i-Code V2 to directly predict
the target sequence “funny”/“unfunny”, with task
prompt “Predict the sentiment of this clip: ”. We
compare i-Code V2 with baselines that use all three-
modality inputs. i-Code V2 outperforms previous
models by large margins (Table 3). This shows that
the multimodal encoder in i-Code V2 can effec-
tively fuse signals of vision, language and speech
modalities, and the decoder can successfully attend
with the multimodal encoder outputs.

4.4 Automatic Speech Recognition

Automatic Speech Recognition (ASR) transfers
human-spoken language into text. We evaluate
on the classical ASR dataset LibriSpeech (Panay-
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Model WER(%)↓
wav2vec 2.0 2.0
WavLM Large 2.1
Whisper Large 2.7
Whisper Medium 4.12
S2T Transformer Large 3.2
i-Code V2 3.86±0.17

Table 4: Word Error Rate (WER) on LibriSpeech dataset
test-clean split.

otov et al., 2015). We finetune i-Code V2 on
LibriSpeech 960h training data and test on the
test-clean split. We compare i-Code V2 with the
following models: WavLM (Chen et al., 2022),
a transformer-based speech encoder that is pre-
trained on audio data with self-supervised learning;
wav2vec 2.0 (Baevski et al., 2020), a speech rep-
resentation model with CNN-Transformer architec-
ture, pretrained with a contrastive self-supervised
task on quantized speech representations; S2T
Transformer (Wang et al., 2021), a transformer-
based speech-to-text model provided in the Fairseq
(Ott et al., 2019) sequence modeling toolkit; Whis-
per (Radford et al., 2022), a recently developed
speech recognition system that is pretrained on
680K hours of labeled speech-text transcript with
multitask-supervision.

The task prompt is “transcribe the speech ut-
terance to text: ”. Results in Table 4 show that
i-Code V2 is capable of decoding speech signals to
language with performance close to models specifi-
cally designed for the ASR task. Note that WavLM
Large result presented in Table 4 is using Connec-
tionist temporal classification (CTC) decoding on
top of the speech encoder, which is specifically de-
signed for ASR task. While the language decoding
in i-Code V2 is for general purpose. We notice that
i-Code degrades on ASR performance compared
with WavLM Large. It is worth pointing out that
WavLM-large performance is obtained by adding
a CTC component that is specifically designed for
speech transcription. In contrast, i-Code V2 uses
the general transformer decoder layer mechanism
to generate text tokens. This can cause the perfor-
mance discrepancy. Moreover, different modalities
can be competing for the modeling capacity. In-
creasing the language decoder size is a potential
solution.

Model Accuracy

Closed-Vocabulary

VisualBERT (Li et al., 2020) 71.0
LXMERT (Tan and Bansal, 2019) 72.5
FLAVA 72.8
OSCAR 73.16
VL-BERT (Su et al., 2020) 72.2
BLIP (Li et al., 2022) 78.32
CoCa (Yu et al., 2022) 82.3

Open-Vocabulary

Flamingo*(Alayrac et al., 2022) 82.1
i-Code V2 75.10

Table 5: Results on VQA 2.0 test set.

4.5 Vision QA

We test on Visual Question Answering (VQA) 2.0
(Antol et al., 2015). Previous vision-language
works, including those with language-generation
functionality, almost all convert this task into a
classification task: the models are trained to the
answer from 3129 most frequent candidates (e.g.,
(Wang et al., 2022d)). We adopt a different open-
vocabulary setting that i-Code V2 is trained to gen-
erate the answer. The task prompt is “Answer the
following question based on the image:”. Note
that we don’t provide candidate answer choices to
i-Code V2 during testing. Table 5 contains base-
lines for both settings. i-Code V2’s performance is
competitive compared with vision-language mod-
els such as VisualBERT, LXMERT and VL-BERT.
It is worth noting that Flamingo is pretrained on
2.1B vision-language data examples and has 80B
parameters. In comparison i-Code V2 is pretrained
on < 80M vision-language data and only has 1.4%
parameters of Flamingo.

We then test i-Code V2 on VizWiz-VQA (Gurari
et al., 2019), which is designed to answer visual
questions from visually impaired people. Baselines
include VisWiz Challenge Winner (Liu et al., 2021),
BAN (Kim et al., 2018), B-Ultra & B-FRCNN
(Changpinyo et al., 2019). i-Code V2 shows better
performance than the previous VizWiz challenge
winner and provides a strong baseline for models
of intermediate size. As noted in Section 5, i-Code
V2 also shows impressive zero-shot performance.
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Model Accuracy

BAN 51.6
B-FRCNN 51.9
B-Ultra 53.7
LXMERT 55.4
VisWiz Challenge Winner 60.6
Flamingo* 65.4
i-Code V2 61.3

Table 6: Performance on VisWiz-VQA test-std set.

Model BLEU@4 METEOR CIDEr SPICE

VL-T5 34.5 28.7 116.5 21.9
VL-BART - - 116.6 -
BUTD 36.2 27.0 113.5 20.3
AoANet 37.2 28.4 119.8 21.3
UNITAB 35.8 28.4 119.1 21.5
XGPT 37.2 28.6 120.1 21.8
i-Code V2 36.8 28.9 124.3 22.3

Table 7: Experimental results (with cross-entropy op-
timization) on MS-COCO image captioning dataset
(Karpathy test split).

4.6 Image Captioning

We evaluate i-Code V2 on the MS-COCO image
captioning dataset (Chen et al., 2015) with the
Karpathy test split (Karpathy and Fei-Fei, 2015),
with results presented in Table 7. Evaluations
metrics include BLEU@4, METEOR, CIDEr, and
SPICE. The task prompt is “Generate the caption
for this image: ”. Baseline methods include image
captioning models BUTD (Anderson et al., 2018)
and AoANet (Huang et al., 2019); vision-language
generative models, e.g., VL-BART, VL-T5 (Cho
et al., 2021), XGPT(Xia et al., 2021); models using
additional auxiliary input such as UNITAB (Yang
et al., 2022) with object detection information. i-
Code v2 outperforms vision-language baselines on
METEOR, CIDEr, and SPICE.

5 Analysis & Explorations

Ablation study on pretraining effectiveness.
We investigate the pretraining effectiveness by com-
paring performance of i-Code V2 with and without
the multimodal pretraining (Section 3.2). As shown
in Table 8, the multimodal pretraining further im-
proves the performance on downstream tasks. The
improvement is more significant on tasks where
cross-modality understanding is more crucial, such
as video sentiment analysis.

variant UR-FUNNY Image Chat LibriSpeech

i-Code V2 Accuracy F1 R-L WER(%)↓
w/ pretraining 79.59 15.5 18.6 3.86
w/o pretraining 62.85 15.0 18.2 12.1

Table 8: Ablation study of the proposed multimodal
pretraining.

Dataset MSMO ASR

Metric R1 R2 RL WER (↓)

w/o LGP 42.23 20.12 37.1 3.88
Full Pretraining 44.7 21.0 37.7 3.86

Table 9: Ablation study on pretraining objectives. LGP
stands for “Language-only Generative Pretraining”.

Pretraining objectives ablation. We explore
how pretraining objectives affect model’s perfor-
mance. As shown in Table 9, removing “Language-
only Generative Pretraining” (LGP) is adversarial
for the performance on multimodal summarization,
while it has negligible effect on ASR.

Zero-shot Learning. We test pretrained i-Code
V2 on VizWiz-VQA without finetuning. As an
open-vocabulary generative model, the zero-shot
performance of i-Code V2 is respectful, with over-
all accuracy 22.53%, and 73.6% for “Yes/No” an-
swers, 8.47% for “Number” answers, 24.46% for
“Other” answers, 10.49% for “Unanswerable” an-
swers respectively (for reference, Flamingo-9B
zero-shot accuracy is 28.8%). Note that VizWiz-
VQA questions are from visually impaired popu-
lation and images are also distinct from those in
VQA data used in pretraining. This performance
indicates that i-Code V2 can closely follow the task
instruction to answer the question. It also shows
that i-Code V2 learns to answer visually grounded
questions from pretraining, even though there are
assorted pretraining tasks and datasets.

Training Hyperparameters. In Table 10, we list
the learning rate, batch size (per GPU), and epochs
for each finetuning dataset. We choose the finetun-
ing checkpoint with the best performance on the
validation test for the final evaluation. All finetun-
ing jobs are conducted on eight A100 GPUs with
AdamW optimizer.

6 Conclusion

In this paper, we propose i-Code V2, a multimodal
generative model that jointly encodes language,
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Task lr Batch Size Epochs

MSMO 2.5× 10−5 8 12
Image Chat 2× 10−5 8 5
UR-FUNNY 1× 10−5 8 12
LibriSpeech 2× 10−5 2 10
VQA 2× 10−6 2 4
VisWiz-VQA 2× 10−6 2 4
MS-COCO 2× 10−6 2 4

Table 10: Training hyperparameters on downstream
tasks.

vision and speech modalities and decodes the cor-
responding natural language sequence. i-Code V2
is pretrained on assorted high-quality single- and
dual-modality datasets, where different tasks are
unified as a multimodal sequence-to-sequence gen-
eration paradigm. i-Code V2 exhibits impressive
performance in various multimodal generation do-
mains, including multimodal nature language gen-
eration, ASR, vision QA, vision captioning and
video sentiment analysis.

Limitations & Broader Impacts

i-Code V2 can inherit bias from the pretraining
data, such as cultural or social bias. Since i-Code
V2 has only been trained on English data, it is
unclear how it extends to other languages. Fus-
ing representations of different modalities other
than concatenation is also a direction for future
improvement. Including additional types of pre-
training data, such as object detection, can help the
model generalize to extra domains.
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