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Abstract

Domain adaptation from labeled source do-
mains to the target domain is important in
practical summarization scenarios. However,
the key challenge is domain knowledge dis-
entanglement. In this work, we explore how
to disentangle domain-invariant knowledge
from source domains while learning specific
knowledge of the target domain. Specifically,
we propose a hypernetwork-assisted encoder-
decoder architecture with parameter-efficient
fine-tuning. It leverages a hypernetwork in-
struction learning module to generate domain-
specific parameters from the encoded inputs ac-
companied by task-related instruction. Further,
to better disentangle and transfer knowledge
from source domains to the target domain, we
introduce a meta-knowledge distillation strat-
egy to build a meta-teacher model that captures
domain-invariant knowledge across multiple
domains and use it to transfer knowledge to
students. Experiments on three dialogue sum-
marization datasets show the effectiveness of
the proposed model. Human evaluations also
show the superiority of our model with regard
to the summary generation quality.

1 Introduction

Recently, domain adaptation for text summariza-
tion has attracted much research interest (Zhang
et al., 2020a; Yang et al., 2020; Yu et al., 2021;
Zou et al., 2021). Most prior work performs pre-
training on large-scale out-of-domain datasets and
then adapts to the in-domain summary data. For
dialogue summarization, a couple of studies have
leveraged large-scale summary data that is fairly
distinct from the dialogue domain, e.g., the news
domain, to facilitate dialogue summarization (Yu
et al., 2021; Zou et al., 2021) in few-shot settings.
However, this fails to acknowledge the huge gap
between dialogue and general articles, e.g., that
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dialogue involves a dynamic information exchange
flow with multiple interlocutors (Li et al., 2022).
Recent work explored prompt-based fine-grained
transfer learning between various dialogue domains
in zero-shot settings (Zhao et al., 2022a,b). How-
ever, these studies did not consider how to transfer
knowledge from the source domains to the target
domain, and Zhong et al. (2022) pointed out that
directly fine-tuning the prompt initialized with the
source prompt on target domain might lead to catas-
trophic forgetting of source knowledge.

Considering a typical example in Figure 1, do-
main adaptation aims to improve the generaliz-
ability of the model from the source domains
to the target domain, however, the key chal-
lenge is the disentanglement of domain knowl-
edge, whereby various domains contain domain-
invariant and domain-specific knowledge which
are always entangled. For example, we may
take Academic and Product as source do-
mains, and Committee as the target domain,
where Academic consists of academic meetings,
Committee contains formal discussions on a
wide range of issues (e.g., the energy market), and
Product focuses on product design in an indus-
trial setting. Although the content discussed in the
three domains is different, the key characteristics
of the dialogue are the same (e.g., multiple partici-
pants, and a dynamic information exchange flow).
This phenomenon suggests that the model needs to
learn domain-invariant characteristics (that is, char-
acteristics of the dialogue) in the source domains
while focusing on what is being discussed in the
specific domain.

Inspired by the recent success of perform-
ing new tasks through the use of instructions
alone (Brown et al., 2020), and considering the
inherent problems faced by domain adaptation,
in this work, we propose a novel hypernetwork-
assisted encoder-decoder based architecture with
parameter-efficient fine-tuning, which leverages a
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PhD D: Actually I forgot to say that the 
multilingual net are trained on 

features... 

Professor B: If you added in 
the English, it's still poor.

Industrial Designer: I think the 
user interface design is how 

the user will you know the relation.

Project Manager: It is the 
outside and the inside.

Acting Chair: We 'll continue. The 
next question will go to David

David: The oil and gas industry is under severe strain. We 
have seen tremendous pressure on the federal 

government.

Different Source Domains Product

Target Domain: Committee

Academic

Figure 1: Example of cross-domain text summarization.

hypernetwork instruction learning (HIL) module to
generate domain-specific parameters (e.g., decoder
adapters) for the underlying pre-trained language
model (PLM). Further, to better disentangle and
transfer knowledge from source domains to the
target domain, we introduce a meta-knowledge dis-
tillation strategy to build a meta-teacher model that
captures domain-invariant knowledge across mul-
tiple domains and use it to transfer knowledge to
students. Extensive experiments on different bench-
mark datasets evince the effectiveness of our model
for low/zero-resource dialogue summarization. To
sum up, our contributions are:

• Our Hypernetwork Instruction Learning (HIL)
module can generate domain-specific parame-
ters by incorporating task and domain-related
instructions.

• Our meta-knowledge distillation strategy
learns general meta-knowledge on various
source domains to learn a good initialization
for parameter-efficient fine-tuning and trans-
fers domain-invariant knowledge from the
source to target domains with the standard
cross-domain knowledge distillation.

• We evaluate our model on three dialogue sum-
marization datasets and obtain new state-of-
the-art results in low/zero-resource scenarios.

2 Related Work

Domain Adaptation. Since texts and their sum-
maries across diverse domains might share similari-
ties and benefit from each other, domain adaptation
for text summarization has attracted much recent
research interest (Zhang et al., 2020a; Yang et al.,
2020; Yu et al., 2021; Zou et al., 2021). Most prior
work performs pretraining on large-scale external
corpora and then adapts to the in-domain summary

data. For dialogue summarization, although it is
more ideal to perform adaptation from a source di-
alogue domain to a target dialogue domain (Wang
and Cardie, 2013), unfortunately, the inadequacy
of available dialogue summaries makes this impos-
sible.

Recent work explored prompt-based domain
adaptation for zero-shot dialogue summarization
(Zhao et al., 2022b,a). However, this line of work
ignores how to transfer knowledge learned from the
source domains to the target domain. In this paper,
we leverage the knowledge distillation technique
to transfer knowledge from source domains to the
target domain and effectively alleviate catastrophic
forgetting caused by direct fine-tuning.

Parameter-Efficient Fine-Tuning and Hypernet-
works. A variety of parameter-efficient methods
that only fine-tune a small number of (extra) pa-
rameters to attain strong performance have been
proposed, including adapters (Houlsby et al., 2019),
prefix-tuning (Li and Liang, 2021), and LoRA (Hu
et al., 2022). Recent studies have shown the effec-
tiveness of establishing connections between them
(Pfeiffer et al., 2021; He et al., 2022a).

Hypernetworks (Ha et al., 2017; Schmidhuber,
1992) have slowly gained popularity in multitask
and multilingual setups due to the positive trans-
fer between tasks through the shared hypernet-
work while reducing negative transfer by allow-
ing unique generated parameters per task. Several
approaches (Tay et al., 2021; Karimi Mahabadi
et al., 2021; He et al., 2022b) learn per-task embed-
dings along with a shared hypernetwork to gener-
ate task-specific adapters or soft prompt modules.
Inspired by this, we explore hypernetwork-based
adaptation methods to learn specific knowledge for
cross-domain dialogue summarization.

Meta-Learning and Knowledge Distillation.
Meta-Learning, or learning about learning, aims
to improve the learning algorithm itself. A promi-
nent meta-learning framework is Model-Agnostic
Meta-Learning (MAML), proposed by (Finn et al.,
2017). MAML can be applied directly to any learn-
ing problem and leads to strong results with a small
amount of training data. Recent studies have shown
that meta-learning can improve generalization abil-
ity across domains (Finn et al., 2017; Pan et al.,
2021) and in many few-shot and zero-shot settings
(Campagna et al., 2020; Bao et al., 2020).

Knowledge distillation (KD) plays an impor-
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tant role in transfer learning in many subfields of
NLP (Hahn and Choi, 2019; Ding et al., 2021;
Zhong et al., 2022). Recent work has explored
meta-learning methods for knowledge distillation.
Pan et al. (2021) proposed a framework for model
compression by training a meta-teacher across do-
mains and then transferring the knowledge from
the meta-teacher to the student. MetaDistil (Zhou
et al., 2022) allows the teacher to learn to teach dy-
namically. Unlike the above methods, we incorpo-
rate meta-learning on KD to disentangle and trans-
fer domain-invariant knowledge from source do-
mains and learn a better initialization for parameter-
efficient fine-tuning.

3 Approach

Overview. To address the domain knowledge dis-
entanglement, we propose a novel hypernetwork-
assisted encoder-decoder based architecture with
parameter-efficient fine-tuning. Figure 2 gives
an overview of our approach, which leverages a
hypernetwork instruction learning (HIL) module
to generate domain-specific parameters (decoder
adapters) for the underlying pre-trained language
model (PLM), and applies meta-knowledge distil-
lation to disentangle and transfer domain-invariant
features for parameter-efficient cross-domain learn-
ing.

3.1 Hypernetwork-Assisted Architecture

Underlying Model. The underlying model can
be any pre-trained encoder-decoder model with
additional parameter-efficient submodules (e.g.,
prefix-tuning, and adapters). In particular, this
model is an extension of the prominent MAM
model (He et al., 2022a), which is a unified frame-
work that allows for the transfer of design elements
across various submodules. Recall that each Trans-
former layer consists of an attention block and
a feed-forward block, each followed by a skip-
connection (Vaswani et al., 2017). Specifically,
the underlying model further allows prefix-tuning
with a small length l to prepend trainable tokens for
multi-head attention, and inserts adapter modules
with adapter size r after the feed-forward layer of
the Transformer.

As depicted in Figure 2, we input a text x to
the underlying model, aiming to generate a suc-
cinct summary y. The objective is to minimize the
negative log-likelihood:

LNLL = −
L∑

l=1

log(p(yl | y1:l−1, x)) (1)

where yl denotes the l-th token in the target sum-
mary and y1:l−1 are the first l − 1 tokens.

Hypernetwork Instruction Learning Module.
To provide the underlying model with task-specific
trainable parameters, our architecture exploits a
novel hypernetwork-based network to generate
domain-specific adapter parameters for the decoder,
which are strongly based on the encoded inputs
accompanied by task-related instructions. More
precisely, we first create several task instructions
with domain-specific descriptions, which are fur-
ther converted using a pre-trained hyperencoder.

The schema of constructed instructions includes:

• A task instruction for summarization “To gen-
erate a summary in such a way that the context
should be present in input”

• Domain-related instructions for various do-
mains (e.g., “This input focuses on product
design in an industrial setting” for Product
domain of QMSum (Zhong et al., 2021))

We construct a single domain-related instruction
per domain based on respective dataset descriptions
that request the model to summarize input in a
custom domain-specific way and format the above
two types of instructions by adding placeholders.
More examples are provided in Appendix D.

As shown in Figure 2, the hypernetwork instruc-
tion learning (HIL) module encodes all instructions
using a HyperEncoder, followed by an integration
operation to append the encoded inputs that corre-
spond with the encoder output of the underlying
model. The HIL module thereby leverages a Param-
eter Generator at the top layer to generate decoder
adapter parameters conditioned on the integrated
vector e = [Mean(hI);Mean(hD)], where hI is
the instruction representation with a HyperEncoder,
hD is the hidden representation provided by the en-
coder output of our underlying model, and Mean(·)
refers to the mean pooling operation.

In addition, we further concatenate e with a learn-
able layer embedding el to ensure diverse adapter
parameters at the i-th Transformer layer. Specifi-
cally, we use a two-layer Parameter Generator to
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Figure 2: Overview of our proposed approach. Left: Hypernetwork instruction learning (HIL) assisted module
that generates domain-specific parameters for the underlying pre-trained language model, where the HIL module
exclusively generates decoder adapter parameters. Right: Pipelines of meta-knowledge distillation (MKD). First,
we train our model (shown on the left) with a model-agnostic meta-learning algorithm across different source
domains. Then, we leverage the knowledge distillation strategy to transfer the domain-invariant knowledge from the
source domains to the target domains for parameter-efficient cross-domain learning.

produce the adapter parameters ϕ according to:

h = ReLU (Wi,0([e; el]) + bi,0) (2)

ϕi = Wi,1(h) + bi,1 (3)

where Wi,0, bi,0, Wi,1, bi,1 are trainable param-
eters, and the generated parameters ϕi are sliced
and reshaped to form the adapter parameter [Wiu,
Wid, biu, bid] at the i-th layer (a brief introduction
of the adapter in Appendix A).

3.2 Meta-Knowledge Distillation

To disentangle and transfer domain-invariant
knowledge from source domains, we further pro-
pose to use meta-knowledge distillation (MKD),
a model-agnostic training approach for parameter-
efficient cross-domain learning. Most notably, we
incorporate meta-learning to disentangle domain-
invariant knowledge and learn a better initialization
for parameter-efficient fine-tuning based on the gen-
eral meta-knowledge on various source domains.
Subsequently, we transfer crucial domain-invariant
knowledge from the source to target domains with
standard cross-domain knowledge distillation.

Specifically, we apply meta-learning with a
two-step gradient update to learn general meta-
knowledge among multiple source domains for bet-
ter parameter initialization. First, we randomly
initialize the parameters θ of our model, which cor-
responds to our hypernetwork-assisted architecture.
We sample n training instances for the k-th source
domain Sk to calculate the average loss LSk

(fθ),
where fθ refers to the output of the model. Here,
we use gradient descent to update parameters and
obtain a temporary θ′

k.

θ′
k = θ − α∇θLSk

(fθ) (4)

Then, we use θ′
k to recalculate the new corre-

sponding loss and sum up the loss values over all
source domains, aiming to accomplish the second-
step update. More precisely, we update the parame-
ters of our model by minimizing the meta-learning
objective function as follows:

θ ← θ − β∇θ

∑

Sk

LSk
(fθ′

k
) (5)

We continue optimizing the model until the valida-
tion accuracy of source domains stops increasing.

Similar to the approach of (Pan et al., 2021) for
classification tasks (e.g., natural language infer-
ence, and sentiment analysis), we exploit standard
knowledge distillation to transfer domain-invariant
knowledge across domains for summarization tasks.
Let fθt and fθs denote teacher and student, respec-
tively. As shown in Figure 2 (right), we rely on
a teacher network with transferable knowledge di-
gested across source domains to provide guidance
for the student network. As shown in Algorithm 1,
the student network is trained on the target domain
with guidance from both the meta-teacher and the
supervision of ground-truth summaries. Specifi-
cally, the student network is trained with the su-
pervision of target summaries, and the softened
distributions predicted by the teacher network can
be formulated as:

LKD = E

(
L∑

l=1

(fθt(yl | y1:l−1, x)− fθs(yl | y1:l−1, x))
2

)

(6)
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Algorithm 1 Meta-Knowledge Distillation

Input: The given dialogues from source domains
S and the target domain T ; α; β;

Output: An optimal student fθs ;
1: Initialize our model with random parameters θ
2:

3: /* Meta-Learning Stage. */
4: while not done do
5: for all Sk ∈ S do
6: Evaluate∇θLSk

(fθ) with respect to sam-
ples in Sk;

7: Update parameters with gradient descent:
θ′
k = θ − α∇θLSk

(fθ);
8: end for
9: θ ← θ − β∇θ

∑
Sk
LSk

(fθ′
k
);

10: end while
11:

12: /* Knowledge Distillation Stage. */
13: Initialize the teacher network fθt with the

meta-updated θ parameters;
14: Initialize the student network fθs with random

parameters;
15: Train the student network on the target domain

T using the supervised and distillation loss.
Lall = (1− λ)LNLL + λLKD

16: return fθs .

where fθt(yl | y1:l−1, x) and fθs(yl | y1:l−1, x)
are model outputs from the teacher and student
network, respectively.

The overall loss function Lall of the student net-
work can be formulated as:

Lall = (1− λ)LNLL + λLKD (7)

where λ is a hyperparameter to balance the influ-
ence of each loss, LNLL refers to the negative log-
likelihood loss in Eq. 1. We use mean squared
error between the hidden states of the teacher and
the student in Eq. 6. Note that the comparison re-
sults of different distillation losses are shown in
Appendix E.1.

3.3 Experimental Setup

Datasets. We conduct experiments on three
multi-domain summarization datasets, QM-
Sum (Zhong et al., 2021), TODSum (Zhao
et al., 2021), and DialogSum (Chen et al., 2021).
Specifically, QMSum comprises meeting tran-
scriptions from the Academic, Committee,
and Product domains, while TODSum consists

of task-oriented dialogues that originate from
Restaurant, Hotel, Attraction, Taxi,
and Train domains. DialogSum was collected
from diverse daily-life scenarios spanning a wide
variety of topics. Detailed dataset statistics are
given in Appendix B.1.

Automatic Metrics. To assess the quality of gen-
erated summaries, we use standard evaluation met-
rics ROUGE-1, ROUGE-2, and ROUGE-L, which
consider the overlapping uni-grams, bi-grams,
and longest common subsequence scores (Lin,
2004)1, respectively. Furthermore, we report the
BERTScore as well, which is highly correlated with
human judgement (Zhang et al., 2020b).

Human Evaluation. We conduct a human eval-
uation along three criteria: (1) Fluency evaluates
the readability of the generated summaries. (2) In-
formativeness evaluates how well the generated
summaries capture more salient information. (3)
Relevance evaluates how well the generated sum-
maries reflect the input document. Specifically, we
randomly sample 200 dialogues for the DialogSum
dataset and ask three annotators to rate the qual-
ity of generated summaries on a scale of 1.0 to
5.0 using the three criteria (the higher the better).
We also regard ChatGPT as a human evaluator and
give it evaluation instruction via different prompts.
Evaluation results and details are provided in Ap-
pendix F.

Baselines and Experimental Settings. We com-
pare our method with several representative base-
lines including (1) PGN (See et al., 2017), (2)
BART (Lewis et al., 2020), (3) Adapter (Houlsby
et al., 2019), (4) Prefix-tuning (Li and Liang, 2021),
(5) MAM (He et al., 2022a). More comparison de-
tails are provided in Appendix B.2.

We use the HuggingFace implementation (Wolf
et al., 2020) of the BARTlarge model (Lewis et al.,
2020). During training, we set the batch size to
16, prefix length l to 30, adapter size r to 400,
define the number of training epochs as 30, and
leverage AdamW optimization (Loshchilov and
Hutter, 2017) together with a linear learning rate
scheduler. The hyperparameter α in Eq. 4 is chosen
as 5× 10−5, β in Eq. 5 is set to be 4× 10−5, and
λ in Eq. 7 is 0.2. As for decoding, we set the beam
size as 6, and the length normalization to be 0.8.

1https://pypi.org/project/py-rouge/
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Models Automatic Metrics Human Ratings
R-1 / R-2 / R-L / BERTScore Fluency / Info. / Relevance

PGN 28.74 / 10.56 / 26.17 / 0.25 3.02 / 2.91 / 2.45
ChatGPT 37.86 / 16.36 / 35.51 / 0.34 4.00 / 3.45 / 3.16
BARTlarge 46.72 / 20.84 / 44.70 / 0.52 4.34 / 4.34 / 4.48
Adapter (BARTlarge) 43.50 / 19.28 / 42.02 / 0.46 4.00 / 4.06 / 3.82
Prefix-tuning (BARTlarge) 46.13 / 20.55 / 44.05 / 0.52 4.23 / 4.29 / 4.33
MAM (BARTlarge) 46.93 / 20.64 / 44.57 / 0.52 4.38 / 4.36 / 4.52
Ours 47.00 / 20.94 / 45.01† / 0.53 4.67 / 4.39 / 4.81†

Table 1: Comparison of results on DialogSum (the target domain), where the source domain is a mixture of QMSum
and TODSum datasets. The ChatGPT results are obtained by In-Context Learning with gpt-3.5-turbo API.
We report the average of multi-reference results. † indicates a significant difference with the second best result
(t-test, p-value<0.05).

3.4 Main Results

We first integrate QMSum and TODSum as the
source domain and take DialogSum as the target for
experiments. Table 1 provides a comparison with
previous approaches on DialogSum, which shows
that our model achieves new state-of-the-art re-
sults. For instance, compared to the previously best-
performing model MAM (He et al., 2022a), our
model obtains relative gains of 1.5% on ROUGE-
2, 1.0% on ROUGE-L, and 1.9% on BERTScore.
Simultaneously, it surpasses all baselines in the
human evaluation, demonstrating that our model
can deliver high-quality summaries. Most impor-
tantly, our parameter-efficient model outperforms
the BART (Lewis et al., 2020) fine-tuning based
architecture, on both automatic and human metrics,
confirming the effectiveness of our model-agnostic
cross-domain learning strategy. ChatGPT under-
performs BART fine-tuning across all metrics. This
may be because the responses from ChatGPT are
usually more verbose, resulting in lower ROUGE
scores.

To further conduct fine-grained cross-domain
adaptation, for QMSum and TODSum, we regard
each individual domain in the dataset as the tar-
get, merging the others into an integrated source
domain. These experimental settings are severely
challenging since there exists a limited number
of training instances in these two datasets (e.g.,
158 examples in the Attraction domain of
TODSum). Table 2 provides a comparison with
prior approaches for multi-source cross-domain
summarization on TODSum (Top) and QMSum
(Bottom), respectively. We can observe that our
model achieves state-of-the-art results on these two
datasets with limited training instances, suggesting

the domain adaptation ability of the proposed ap-
proach across diverse domains. For instance, when
taking Restaurant as the target domain, our ap-
proach yields relative improvements of 1.4%, 2.8%,
and 1.5% compared with the previous state-of-the-
art model BART (Lewis et al., 2020) in terms of
ROUGE-1, ROUGE-2, and ROUGE-L scores.

Zero-shot settings. In addition, we explore the
performance of our model in zero-shot settings
for TODSum and QMSum. The zero-shot setting
evaluates the effectiveness of our model with meta-
learning. First, we train our model with the model-
agnostic meta-learning algorithm on various source
domains. Subsequently, we directly transfer the
learned domain-invariant knowledge to the target
domain for evaluation. Table 3 reports the corre-
sponding results of zero-shot cross-domain summa-
rization. Our model achieves strong results com-
pared with previous approaches, further confirming
the adaptation capabilities of our summarization
model on unseen domains of dialogue.

4 Quantitative Analysis

4.1 Ablation Study

To verify the effectiveness of different components
in our model, we conduct ablation studies by re-
moving each module from our architecture. Ta-
ble 4 provides the results of these ablations on
the Committee domain of QMSum, where we
observe that all of the components in our model
make significant contributions. For instance, the
removal of our hypernetwork causes a relative per-
formance drop on all ROUGE scores (e.g., 4.0%
on ROUGE-2), confirming the validity of lever-
aging a hypernetwork to encode domain-related
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Target Domain Train Taxi Restaurant Hotel Attraction
Models R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L
BARTlarge 89.30 / 83.69 / 88.59 80.83 / 63.94 / 76.57 92.05 / 82.48 / 90.02 89.12 / 81.46 / 88.10 85.56 / 72.55 / 84.76
Adapter 87.28 / 79.71 / 88.05 80.73 / 64.25 / 76.95 92.01 / 81.75 / 89.17 81.87 / 69.95 / 80.70 83.91 / 70.64 / 83.28
Prefix-tuning 88.30 / 81.24 / 88.63 81.87 / 66.94 / 79.02 89.38 / 77.05 / 86.77 88.60 / 79.94 / 87.71 82.61 / 66.87 / 82.30
MAM 87.59 / 80.05 / 86.32 79.37 / 60.84 / 74.36 91.13 / 81.75 / 89.29 89.14 / 81.04 / 88.38 79.01 / 64.14 / 79.42
Ours 90.39 / 84.43 / 89.32 82.07 / 67.01 / 79.51 93.36 / 84.82 / 91.35 89.95 / 82.30 / 88.81 85.74 / 72.94 / 85.29
Target Domain Academic Committee Product
Models R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L
BARTlarge 34.22 / 8.79 / 29.01 43.75 / 20.03 / 36.92 42.16 / 15.51 / 33.17
Adapter 30.11 / 7.39 / 27.28 41.70 / 19.15 / 36.69 39.44 / 14.93 / 32.49
Prefix-tuning 31.46 / 8.83 / 27.76 41.16 / 18.21 / 34.76 38.29 / 14.77 / 32.35
MAM 32.98 / 9.25 / 29.09 42.70 / 19.46 / 36.44 40.52 / 15.32 / 33.10
Ours 34.31 / 10.49 / 29.95 43.85 / 21.54 / 38.54 41.75 / 16.49 / 33.62

Table 2: Comparison of results on TODSum (Top) and QMSum (Bottom) datasets, respectively.

Target Domain Train Taxi Restaurant Hotel Attraction
Models R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L
BARTlarge 53.59 / 30.57 / 51.00 42.18 / 19.53 / 41.89 53.18 / 26.39 / 52.22 51.10 / 24.69 / 49.69 68.19 / 45.26 / 66.67
Adapter 49.75 / 25.15 / 45.94 47.50 / 24.21 / 45.48 53.91 / 27.05 / 51.96 46.91 / 20.37 / 45.33 64.66 / 40.87 / 63.21
Prefix-tuning 51.16 / 27.86 / 48.88 43.79 / 21.03 / 43.09 53.91 / 27.19 / 54.43 50.99 / 24.15 / 49.68 65.82 / 43.49 / 66.29
MAM 57.24 / 34.18 / 52.89 45.47 / 21.49 / 44.49 53.00 / 24.91 / 52.86 48.18 / 21.67 / 47.46 67.81 / 46.18 / 66.64
Ours 61.31 / 40.66 / 58.89 50.36 / 28.65 / 47.71 57.64 / 30.61 / 56.39 52.97 / 25.97 / 50.81 72.68 / 51.08 / 72.43
Target Domain Academic Committee Product
Models R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L
ChatGPT 26.84 / 5.11 / 22.70 37.23 / 11.54 / 29.63 35.43 / 9.18 / 27.34
BARTlarge 32.02 / 7.70 / 26.78 40.34 / 16.87 / 34.20 38.63 / 12.70 / 30.94
Adapter 28.99 / 5.94 / 24.69 38.67 / 15.61 / 32.33 35.52 / 11.82 / 29.62
Prefix-tuning 29.28 / 6.73 / 25.08 37.95 / 15.74 / 33.36 35.49 / 12.91 / 30.18
MAM 31.26 / 7.02 / 25.69 40.45 / 16.99 / 34.11 36.24 / 12.19 / 30.49
Ours 32.25 / 7.79 / 26.58 40.67 / 17.29 / 34.20 37.76 / 13.39 / 31.82

Table 3: Comparison of results on TODSum (Top) and QMSum (Bottom) with zero-shot settings, respectively. We
use ChatGPT gpt-3.5-turbo for zero-shot settings.

Model R-1 R-2 R-L
Ours
– w/ BARTlarge 43.85 21.54 38.54
Ablations
– w/o hypernetwork 43.08 20.68↓4.0% 37.71
– w/o knowledge distillation 42.30 19.61↓9.0% 36.95
– w/o meta-learning 42.85 20.28↓5.8% 37.01

Table 4: Ablation study on Committee domain of the
QMSum dataset.

Model R-1 R-2 R-L
variants
without instructions 46.16 20.29 44.15
with simple instructions 46.60 20.73 44.87
with hypernetwork instructions 47.00 20.94 45.01

Table 5: Comparison with instruction variants on Di-
alogsum (the target domain), where the source domain
is a mixture of QMSum and TODSum.

instructions and generate better parameters for the
adapters. The ablation of knowledge distillation
causes relative performance drops of 3.5%, 9.0%,
and 4.1% on ROUGE-1, ROUGE-2, and ROUGE-
L, showing the effectiveness of distillation in boost-
ing the cross-domain adaptation abilities. Further-
more, we also conclude that the usage of meta-
learning enables our model to learn better initializa-
tion parameters during parameter-efficient tuning.

4.2 Multi-source vs. Single-source

We further compare the aforementioned multi-
source adaptation with single-source domain adap-
tation on the QMSum dataset with special proce-
dures. For instance, when taking Committee as
the target domain, we regard either Academic or
Product as the source for single-source domain
adaptation and leverage the mixture of Academic
and Product to serve as the source for the multi-
source setting. Table 6 reports the corresponding re-
sults, from which crucial conclusions can be drawn
from different perspectives. Our model achieves
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S→T BART Prefix-tuning Adapter MAM Ours
Single-source

Similarity R-1 / R-2 / R-L
A→C 0.75 38.30/15.81/32.89 30.23/10.88/28.52 34.83/12.90/29.32 37.10/13.95/32.37 39.70/16.79/34.19
P→C 0.77 40.67/17.62/35.24 38.12/15.87/33.46 37.92/14.78/31.39 40.85/17.47/34.32 41.28/18.07/35.12
Multi-source
−→C 43.75/20.03/36.92 41.70/19.15/36.69 41.16/18.21/34.76 42.70/19.46/36.44 43.85/21.54/ 38.54
Single-source

Similarity R-1 / R-2 / R-L
A→P 0.73 35.67/11.69/29.64 33.42/11.34/28.89 37.20/11.81/29.81 36.59/12.36/30.60 35.53/10.65/29.25
C→P 0.77 33.36/10.31/27.77 32.57/10.42/27.10 32.84/10.39/26.67 33.24/10.87/27.57 36.59/11.56/29.70
Multi-source
−→P 42.16/15.51/33.17 39.44/14.93/32.49 38.29/14.77/32.35 40.52/15.32/33.10 41.75/ 16.49/33.62

Table 6: Comparison of single and multi-source domain adaptation on QMSum. "S" and "T" refer to source and
target domains. "A", "C" and "P" are domain abbreviations for Academic, Committee, and Product.

better results on single-source adaptation with a
greater similarity between the source and target
domains. In general, multi-source adaptation can
yield better results in terms of ROUGE scores com-
pared with single-source domain adaptation.

4.3 Cross-Domain Transferability
We further study the performance of cross-domain
transferability with two commonly used metrics,
including cosine similarity and the overlapping rate
of activated neurons in the network (Su et al., 2022).
Figure 3 depicts the comparison results for different
models. It can be concluded that our model pos-
sesses superior transferability across multiple dia-
logue domains, surpassing all representative base-
lines in terms of these two metrics.

4.4 Comparison with Instruction Variants
We additionally investigate the effect of hypernet-
work instruction learning in comparison with other
variants. As reported in Table 5, the removal of
instruction tuning causes a major drop in perfor-
mance, and our model with hypernetwork-encoded
instructions achieves the best results. The vari-
ant with simple instructions directly appends the
human-written instructions to the input dialogue.

5 Case Study

We conduct a case study with an example from
QMSum to illustrate the advantages of our model.
Furthermore, we explore applying LLM to a spe-
cific domain of dialogue summarization through
in-context learning. In Table 7, the summaries
generated by our model appear more informative,
presumably because it can infer essential dialogue
characteristics and focus on domain-specific con-
tents. In contrast, the BART baseline wrongly

Cosine Similarity Overlapping Rate
0.50
0.56
0.61
0.67
0.73
0.79
0.84
0.90

Sc
or

e

BART
Prefix

Adapter
Ours

Figure 3: Cross-domain Transferability is measured by
two metrics for different models on the QMSum dataset.

predicts the country name "Canada" as "British
Columbia", and MAM generates too many incor-
rect details of dialogue, which makes the summary
irrelevant and of poor quality. Indeed, the responses
from ChatGPT can become more verbose when the
output length is not explicitly limited. However, if
the response is explicitly limited in length, there
is a possibility that salient information may not be
captured adequately. It’s important to strike a bal-
ance between providing sufficient information and
keeping the response concise.

6 Conclusion

In this work, we propose a novel hypernetwork-
assisted encoder–decoder architecture with meta-
knowledge distillation for domain knowledge dis-
entanglement in cross-domain dialogue summariza-
tion. It leverages hypernetwork instruction learn-
ing to generate preferable domain-specific adapter
parameters and disentangles and transfers domain-
invariant features to better improve cross-domain
transferability with a model-agnostic distillation
strategy. Our model achieves strong results on di-
verse datasets with several different settings.
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Source Domain

Academic Domain: PhD D: I forgot to say that multilingual net are trained on features.
Professor B: What I we hadn’t seen yet was that if you added in the english, it’s still poor.
Product Domain: Industrial Designer: I think the user interface design is he will design how
the user will you know the relation between the user and the remote control. User Interface:
I think industrial design’s, it’s the function design.

Target Domain

Committee Domain: David: The oil and gas industry is under severe strain... Victor: The
federal liberal government’s response to the anti-oil lobby was the introduction of the no
more pipelines bill, bill c-69, which will prevent any major oil and gas projects from being
developed in Canada.

BART The oil and gas industry was under severe strain due to the anti-oil lobby lobby and the oil
shipping ban for the northern coast of British Columbia .

MAM
The oil and gas industry is under stress due to pressure from anti-oil lobby groups. The
international oil price war and the covid-19 pandemic caused a huge drop in demand for

oil.

ChatGPT

... He then discussed the pressure put on the federal government from anti-
oil and gas lobby groups, which resulted in the introduction of Bill C-69 and
C-48, both of which had a negative effect on the oil and gas industry and caused over

$200 billion of investment to leave Canada.

Ours The oil and gas industry was under severe strain. The federal liberal government’s response
to this pressure was the introduction of the no more pipelines bill c-69.

Reference
The oil and gas industry was under severe strain. The federal liberal government’s response
to the anti-oil lobby was the introduction of the bill c-69, which would prevent any major oil
and gas projects from being developed in Canada.

Table 7: Case study for QMSum dataset, where the wrong information is highlighted as pink, and redundant
information is highlighted as lime.

Limitations

We leverage a hypernetwork instruction learning
module to generate domain-specific parameters that
encourage the model to focus on domain-specific
content. The limited number of human-written in-
structions may be less effective in more complex
scenarios. When the model is trained in the meta-
learning stage, high-quality resources are required
to guarantee the high quality of the results. Addi-
tionally, the effectiveness of our model is confirmed
by experiments on English-language dialogue sum-
marization benchmark datasets. However, whether
it can also handle summarization tasks in multiple
languages remains unexplored.
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A Parameter-Efficient Methods

Adapter The adapter approach (Houlsby et al.,
2019) inserts small modules (adapters) between
transformer layers. The adapter layer generally
uses a down-projection with Wd ∈ Rd×r to project
the input h into a lower-dimensional space speci-
fied by the bottleneck dimension r, followed by
a nonlinear activation function f(), and an up-
projection with Wu ∈ Rr×d. These adapters are
surrounded by a residual connection, leading to a
final form:

h← h+ f(hWd + bd)Wu + bu (8)

Houlsby et al. (2019) places two adapters sequen-
tially within one layer of the transformer, one after
the multi-head attention and one after the FFN sub-
layer. Pfeiffer et al. (2021) have proposed a more
efficient adapter variant that is inserted only after
the FFN "add & layer norm" sub-layer.

Prefix-tuning Inspired by the success of textual
prompting methods, prefix-tuning (Li and Liang,
2021) prepends l tunable prefix vectors to the keys
and values of multi-head attention at every layer.
Specifically, two sets of prefix vectors Pk, Pv ∈
Rl×d are concatenated with the original key K and
the value V .

K ′ = [Pk;K], V ′ = [Pv;V ] (9)

Then multi-head attention is performed on the new
prefixed keys and values.

B Experimental Details

B.1 Dataset Statistics
Table 8 provides statistical information for Dialog-
Sum, QMSum, and TODSum datasets.

Datasets Domain Train/Dev/Test Dialog.len Summ.len
DialogSum - 12460/500/500 131.6 21.0

QMSum
Academic 259 / 54 / 58

1562.95 77.92Committee 308 / 73 / 72
Product 690 / 145 / 151

TODSum

Train 327 / 30 / 31

188.16 44.91
Taxi 312 / 54 / 51
Restaurant 1268 / 53 / 66
Hotel 660 / 61 / 72
Attraction 158 / 11 / 13

Table 8: Statistics of Dialogsum, QMSum, and TOD-
Sum datasets.

B.2 Baselines
We describe baselines in detail as follows.

PGN This method was proposed by (See et al.,
2017). It contains a pointer mechanism and a
copy mechanism and solves the Out-Of-Vocabulary
(OOV) problem in abstractive summarization.

BART This model was proposed by (Lewis et al.,
2020). It is a state-of-the-art abstractive summa-
rization model pre-trained with a denoising autoen-
coding objective.

MAM This method was proposed by (He et al.,
2022a). It provides a mix and match of the fa-
vorable designs of prefixes and adapters, allow-
ing fewer parameters to be tuned than by previous
methods while being more effective.

C LLM Evaluation

We further regard ChatGPT as a human evalua-
tor and give it evaluation instruction via different
prompts. Each prompt should specify (1) which
NLG task (e.g., summarization) needs to be evalu-
ated and (2) which aspect (e.g., fluency) of the gen-
eration result should be assessed currently. Eval-
uation criteria include: (1) Fluency evaluates the
readability of the generated summaries. (2) Infor-
mativeness evaluates how well the generated sum-
maries capture more salient information. (3) Rele-
vance evaluates how well the generated summaries
reflect the input document. Detailed prompts are
provided in Table 12. Specifically, we randomly
sample 200 dialogues for the DialogSum dataset,
and ask ChatGPT to rate the quality of generated
summaries on a scale of 1.0 to 5.0 using the three
criteria (the higher the better).

Table 9 shows the mean LLM ratings of differ-
ent models on DialogSum. The summaries gen-
erated by our model prove preferable across all
three evaluation dimensions, further confirming the
effectiveness of our approach.

Model Fluency Info. Relevance
PGN 3.00 2.89 2.40
BARTlarge 4.44 4.34 4.50
Adapter (BARTlarge) 3.96 4.01 3.78
Prefix-tuning (BARTlarge) 4.13 4.19 4.23
MAM (BARTlarge) 4.36 4.34 4.50
Ours 4.57 4.39 4.76

Table 9: LLM evaluation on DialogSum (the target do-
main), where the source domain is a mixture of QMSum
and TODSum datasets.
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Model R-1 R-2 R-L
CE 43.35 21.43 38.24
KL 43.72 21.41 38.25
MSE 43.85 21.54 38.54

Table 10: Comparison with different knowledge distilla-
tion losses on Committee domain (the target domain),
where the source domain is a mixture of Academic
and Product.

D Task and Domain-Related Instruction

Table 11 shows the task instructions for dialogue
summarization and the corresponding domain in-
structions for the QMSum, TODSum, and Dialog-
Sum datasets.

E Quantitative Analysis

E.1 Impact of Different Knowledge
Distillation Losses

We examine the impact of various knowledge dis-
tillation losses, such as KL-divergence (KL), cross-
entropy (CE), and Mean Squared Error (MSE),
on our model. We conduct experiments on the
QMSum dataset, which contains three different
domains, i.e., the Academic, Committee, and
Product. Table 10 shows the detailed results.
The differences between multiple loss functions
are relatively small, particularly when comparing
KL-divergence and cross-entropy. Moreover, we
can observe that our model with MSE achieves the
best results.

E.2 Impact of Parameter-efficient Tuning

Prefix Length. We further investigate the effect
of different lengths of prefix. Figure 4 (left) depicts
the corresponding results when the Committee
domain of QMSum serves as the target. As we
can observe, when varying the prefix length from
20 to 100, all ROUGE scores keep improving at
first, achieving the best performance at 30, and
then starting to decrease. This indicates the need
to leverage the prefix of appropriate lengths.

Adapter Size. We further study the effects of
different adapter sizes varying from 200 to 512.
In Figure 4 (right), we observe that performance
is improving initially, reaching the best result at
the adapter size 400, and then starting to degrade.
This suggests that the learning ability of our model
can be improved by increasing the size of adapters,

while an excessive parameter count for adapters
may be counterproductive.
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Figure 4: Output quality with different prefix lengths
and adapter sizes on the Committee domain of QM-
Sum.

F Evaluation Instruction

Following (Wang et al., 2023), when evaluating
dialogue summarization models in terms of Flu-
ency, Informativeness and Relevance, the prompt
is given in Table 12.
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Task Task Instruction

Summ.

In this task, you are given a conversation, and your task is to generate a summary from the
information present in the given conversation. Generate a summary in such a way that the
context should be present in the conversation. It should cover the complete context of the
conversation.

Domain Domain-Related Instruction

QMSum
This dataset is a query-based meeting dataset, and your task is to summarize the contents
that users are interested in and query.

Academic
These conversation focus on academic meeting, the contents of meetings are specific to the
discussions about research among students.

Committee
These conversation focus on the formal discussions on a wide range of issues (e.g., the
reform of the education system, public health, etc.

Product These conversation focus on product design in an industrial setting.

TODSum
This dataset is a task-oriented dataset, and the main questions discussed are attractions,
taking a taxi, or booking a restaurant / train tickets / hotel.

Train
These conversations mainly talked questions related to booking train tickets, while also
asking questions related to travel.

Taxi
These conversations mainly talked questions related to taking a taxi, and users want to know
the color of the car.

Restaurant
These conversations mainly talked questions related to booking a restaurant, and price-related
descriptions are usually mentioned.

Hotel
These conversations mainly talked questions related to booking hotel, and users will mention
the star rating.

Attraction These conversations mainly talked questions related to attractions.

DialogSum
This dataset focuses on diverse real-life scenarios such as schooling, work, medication,
shopping, leisure, travel.

Table 11: Domain-Related Instruction of QMSum, TODSum, and DialogSum.
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Evaluation Instruction

Format

Score the following [task-ins] with respect to [aspect] with one to five stars, where one star
means “[ant-aspect]” and five stars means “perfect [aspect]”. Note that [aspect] measures
[aspect-ins].

Input: [Dialogue]
Output: [Generated Summary]
Stars:

Aspect Evaluation Instruction

Fluency

Score the following dialogue summarization given the corresponding dialogue with respect
to fluency with one to five stars, where one star means “disfluency” and five stars means
“perfect fluency”. Note that fluency measures the quality of individual sentences, are they
well-written and grammatically correct. Consider the quality of individual sentences.

Input: [a dialogue]
Output: [one generated summary]
Stars:

Informative

Score the following dialogue summarization given the corresponding dialogue with respect
to informative with one to five stars, where one star means “uninformative” and five stars
means “perfect informative”. Note that informative measures the extent to which information
is conveyed effectively and meaningfully. Consider the quality of individual sentences.

Input: [a dialogue]
Output: [one generated summary]
Stars:

Relevance

Score the following dialogue summarization given the corresponding dialogue with respect
to relevance with one to five stars, where one star means “irrelevance” and five stars means
“perfect relevance”. Note that relevance measures the degree to which something is applicable,
pertinent, or connected to a particular context, topic, or situation. Consider the quality of
individual sentences.

Input: [a dialogue]
Output: [one generated summary]
Stars:

Table 12: Evaluation Instruction of Fluency, Informative and Relevance for dialogue summarization, where
[task-ins] and [aspect-ins] are the instructions of the task-specific and aspect-specific, respectively. [aspect] and
[ant-aspect] denote the evaluated aspect and its antonym, respectively.
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