Reinforcement Learning with Token-level Feedback for Controllable Text Generation

Wendi Li12, Wei Wei12; Kaihe Xu3, Wenfeng xie3, Dangyang Chen3, Yu Cheng4

1Cognitive Computing and Intelligent Information Processing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology
2Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL)
3Ping An Property & Casualty Insurance company of China
4The Chinese University of Hong Kong
\{wendili,weiw\}@hust.edu.cn

Abstract

To meet the requirements of real-world applications, it is essential to control generations of large language models (LLMs). Prior research has tried to introduce reinforcement learning (RL) into controllable text generation while most existing methods suffer from overfitting issues (finetuning-based methods) or semantic collapse (post-processing methods). However, current RL methods are generally guided by coarse-grained (sentence/paragraph-level) feedback, which may lead to suboptimal performance owing to semantic twists or progressions within sentences. To tackle that, we propose a novel reinforcement learning algorithm named \textit{TOLE} which formulates \textit{TOKEN-LEVEL} rewards for controllable text generation, and employs a “first-quantize-then-noise” paradigm to enhance the robustness of the RL algorithm. Furthermore, TOLE can be flexibly extended to multiple constraints with little computational expense. Experimental results show that our algorithm can achieve superior performance on both single-attribute and multi-attribute control tasks. We have released our codes at https://github.com/WindyLee0822/CTG.

1 introduction

Large autoregressive language models (LLMs) trained on extensive corpus can generate high-quality texts. However, to satisfy real-world applications, making the generation more controllable is urgent. It is desired to enhance specific attributes of generated texts for practical needs (e.g. positive sentiment for psychological escort, formality for academic writing) (Beltagy et al., 2019; Gu et al., 2022a; Gururangan et al., 2020) and reduce intrinsic defects of pre-trained language models (e.g. toxicity, repetition) (Rae et al., 2021; Weidinger et al., 2021).

Retraining models (Chan et al., 2021; Keskar et al., 2019) are subject to computational over-
enhance the robustness of TOLE, we propose an exploration framework with "First quantize, then noise" procedure. Moreover, TOLE can be extended to multi-attribute scenarios with few computational overheads. We conduct two experiments on single-attribute: sentiment control and detoxification. We also evaluate TOLE on multi-attribute scenarios with two settings. TOLE achieves superior performance compared with a wide range of baselines.

2 Related Works

Controllable Text Generation. Most previous works on controllable text generation (CTG) are based on the auto-regressive framework, which can be categorized into retraining (Keskar et al., 2019; Chan et al., 2021), finetuning (Huang et al., 2023; Yang et al., 2023a; Zhang and Song, 2022), and post-processing (Krause et al., 2021; Liu et al., 2021; Yang and Klein, 2021). Retraining and traditional finetuning methods are of low efficiency since the parameter scale of LMs is surging and the overfitting issue is severe. Post-processing methods regulate the next-token distribution with supplementary modules, mostly an attribute discriminator, but often cause syntax interruption and make language models lose insights. Lu et al. (2022) integrate RL algorithms into CTG but use coarse-grained feedback to guide the LLMs.

Multi-aspect controllable text generation. Along with single-aspect controlling, most research on multi-aspect controllable text generation can also categorized into finetuning and post-processing. Some post-processing research (Lin and Riedl, 2021; Kumar et al., 2021) in MCTG combines multiple attribute discriminators to aggregate the controllability. However, they also inherit drawbacks of post-processing methods due to direct distribution regulations. Finetuning-based research tries to connect several single controllers, e.g. connectors to combine multiple plugins (Yang et al., 2023a), latent variables to represent the unsupervised aspects (Qian et al., 2022), direct combination of prompts (Huang et al., 2023), the boundary exploration of intersected subspaces (Gu et al., 2022b, 2023). To the best of our knowledge, we are the first to explore how to extend single-attribute reinforcement learning algorithms to the MTCG scenario.

Token-level guidance for Reinforcement Learning. There is a series of research (Chen et al., 2021; Janner et al., 2021; Zheng et al., 2022; Xu et al., 2023) incorporating RL techniques into the transformer structure, trying to deconstruct the coarse-grained reward into the token level for sequential modeling. However, they are hard to extend to practical applications since their specialized token settings are not in line with current LLMs. Concurrent with our research, some research (Wu et al., 2023; Yang et al., 2023b) on LLM alignments tries to handle the problem of coarse-grained feedback. RLHF (reinforcement learning from human feedback) algorithms of the LLM alignment generally require a large-scale reward model, which should be trained on datasets formatted as pairwise sentences with the same prefix. However, such data is unavailable when confronted with a wide variety of attribute requirements. Therefore, exploring a novel reinforcement learning algorithm with token-level feedback is significant for controllable text generation.

3 Approach

We will first establish the notation, provide some background on existing RL methods in controllable text generation and model alignment, and offer an overview of our algorithm.

3.1 Preliminaries

Notations. A standard Markov Decision Process (MDP) can be denoted as (S, A, T, r). At each step, an action $a \in A$ is made based on the current state $s \in S$. Then the state will be transited to s' with the possibility $T(s'|s, a)$. A function $r : S \times A \rightarrow \mathbb{R}$ defines the returned reward based on the states and actions. The strategy is decided by a policy model $\pi(\cdot|s)$, which is a predicted distribution over actions based on state s. To transfer to text generation scenarios, the state can be defined as the partially generated sentence $y_{\leq i-1} = (y_1, y_2, \ldots, y_{i-1})$, and the action is the next token $y_i \in V$ where the vocabulary V is the action space. The transition dynamic $T(\cdot|s, a)$ is deterministic since each state-action pair $(y_{\leq i-1}, y_i)$ leads to a unique state $y_{\leq i}$.

Prior RL-based methods. In previous RL-based methods of controllable text generation, rewards are derived from $P(c|y)$, which denotes the possibility that the sentence y satisfy the attribute c. $P(c|y)$ can be obtained by corresponding attribute classifiers. Since prior research only concentrates on sentence-level feedback, which can
be regarded as \(r(y_1, y_{\leq 0}) = r(y_2, y_{\leq 1}) = \cdots = r(y_{n+1}, y_{\leq n}) = f(\mathcal{P}(c|y)) \). This equality means that sentence-level feedback treats each action \(y_i \) in the MDP process of \(y \) equally, which can only provide rough guidance for models.

Bayesian Factorization in Prior research. The objective of controllable text generation is to let LLMs approach \(\mathcal{P}(y|c) \) where \(c \) is a target attribute. Granularize to the token-level, prior post-processing methods generally factorize this term by the Bayesian formula as follows,

\[
\mathcal{P}(y_{\leq i}|c) \propto \mathcal{P}(c|y_{\leq i}) \mathcal{P}(y_i|y_{\leq i-1}).
\]

With this formula, post-processing methods can achieve \(\mathcal{P}(y|c) \) by regulating the token distribution \(\mathcal{P}(y_i|y_{\leq i-1}) \) with an attribute classifier which approximates \(\mathcal{P}(c|y_{\leq i}) \).

3.2 Token-level Rewards

We first provide an alternative perspective of Bayesian factorization to show that the probability shift of attribute classifiers plays an important role in controlling the generations. The Bayesian factorization can be rewritten as:

\[
\mathcal{P}(y_i|y_{\leq i-1}, c) \propto \frac{\mathcal{P}(c|y_{\leq i})}{\mathcal{P}(c|y_{\leq i-1})} \mathcal{P}(y_i|y_{\leq i-1}).
\]

See more details in Appendix A. In Eq.2, \(\frac{\mathcal{P}(c|y_{\leq i})}{\mathcal{P}(c|y_{\leq i-1})} \) is crucial for the next-token probability distribution. Even if \(y_{\leq i} \) tends to highly satisfy the condition \(c \) when sentence is finished i.e. \(\mathcal{P}(c|y_{\leq i}) \) is large, action \(y_i \) may not play an important role since previous \(y_{\leq i-1} \) may already make future generations satisfy \(c \) easily i.e. \(\mathcal{P}(c|y_{\leq i-1}) \) is large. It reveals that what matters is the probability shift between them, which enlightens our reward design.

The token-level reward function can be formulated as the probability shift before and after the word is generated.

\[
r(y_{i+1}, y_{\leq i}) = f(\mathcal{P}(c|y_{\leq i+1}) - \mathcal{P}(c|y_{\leq i})),
\]

(3) where \(f(\cdot) \) is an activation function for normalization, where we adopt the sigmoid function for implementations. Theoretically, to approximate \(\mathcal{P}(c|y_{\leq i}) \), the format of training data should be transformed from the traditional \(\{(y, c)|y \in \mathcal{Y}\} \) to \(\{(y_{\leq i}, c)|0 \leq i \leq |y|, y \in \mathcal{Y}\} \) as in Yang and Klein (2021). However, we find using traditional classifiers in our algorithms can achieve on-par performance in experiments compared to specially trained classifiers. We present this comparison in Appendix D.3.

3.3 RL Algorithm: First quantize, then noise.

The training procedure of our RL algorithm can be separated into initialization, exploration, quantize & noise, and learning.

Initialization. First, we initialize a policy LLM \(\pi_\theta \), a copy of the policy model as the reference model \(\pi_{ref} \), an attribute scorer \(S \). The reference model is frozen during the whole process. We also initialize a data pool \(D = \emptyset \), and prepare a prefix corpus for exploration.

Exploration. Then, given the prefix \(x \), the current policy model can generate subsequent text
y. For each generated token, we calculate the score shift as its reward $r(y_{t+1}, y_{\leq t})$, and add $(y_{t+1}, y_{\leq t}, r)$ to the data pool D. To avoid over-training on data explored in earlier episodes, we set a lifetime for each data to indicate the episodes it can still undergo. Once the data is added to D, the lifetime is initialized to L and subtracts 1 after each training episode. The data is removed from D when its lifetime drops to 0.

Quantize & Noise Learning primitive rewards r can predispose the model to flatter the scoring pattern of attribute classifiers, which may cause diversity decrease. Therefore, we propose “First quantize, then noise” to avoid this problem. First, we quantize the rewards within D, and acquire q-quantiles, which divide the reward range into q intervals. Then, we inject noise into each reward while ensuring each reward stays in the original interval. Specifically, for a reward $r \in (q_i, q_{i+1}]$, we reassign it as

$$\hat{r} = q_i + (q_{i+1} - q_i)\epsilon(r - q_i)$$

where $\epsilon(\cdot)$ is a noise processed with a clip function to satisfy $\epsilon(r) \in (-1, 1)$. $\epsilon(r)$ is substituted with Gaussian noise in our implementations. Through this process, we disrupt the reward order to interfere the fixed scoring patterns of classifiers, while maintaining the relative order between intervals to steer LLMs toward the target attribute.

Learning. Through above procedures, we can obtain \hat{r} to provide dense guidance on each token without granularity mismatch or feedback delay. The minimalist objective of our optimization problem is to maximize the total rewards, $\max_{\phi} \mathbb{E}_{y_{t+1} \sim \pi_\phi(\cdot | y_{\leq t})} [r(y_{t+1}, y_{\leq t})]$. We relax the convergence by adding a standard max-entropy gradient, which can help capture diverse behavior modes. We also insert a KL-divergence penalty to keep the model π_θ from deviating too far from the original π_{ref}. The gradient of each sentence y can be formulated as follows,

$$\mathbb{E}_{y_{t+1} \sim \pi_\theta(\cdot | y_{\leq t})} \left[\hat{r}(y_{t+1}, y_{\leq t}) \nabla_\theta \log \pi_\theta(y_{t+1} | y_{\leq t}) + \alpha \nabla_\theta \mathcal{H}(\cdot | y_{\leq t}) + \beta \nabla_\theta \text{KL}(y_{\leq t}) \right]$$

where α, β are two balancing coefficient, \mathcal{H} is the Shannon entropy of $\pi_\theta(\cdot | y_{\leq t})$, $\text{KL}(y_{\leq t})$ is the KL divergence between $\pi_\theta(y_{t+1} | y_{\leq t})$ and $\pi_{\text{ref}}(y_{t+1} | y_{\leq t})$.

We then use the updated model for exploration and repeat the Exploration-Quantize & Noise-Learning cycle until training achieves the maximum episode number.

3.4 Extension to Multiple Attributes.

To consider multiple constraints simultaneously, we should combine multiple reward groups from different scorers. Simple aggregations or averages cannot provide appropriate token-level guidance, since scorers may contradict each other. Moreover, different parts of sentences may address different attributes, so we need to weigh the token’s contribution to multiple attributes respectively. To tackle this, we train a small-scale “weigher” $W_\phi : \mathbb{R}^d \rightarrow \mathbb{R}^n$ to balance rewards from n scorers, where d is the hidden size of LLMs. Given the last-layer hidden states $H_{t+1} \in \mathbb{R}^{1 \times d}$ of y_{t+1} output by LLMs, $\pi(y_{\leq t+1})$, the weigher output $W = W_\phi(H_{t+1})$ as the weight for n rewards of y_t, $\mathbf{R}_{t+1} \in \mathbb{R}^{1 \times n}$. The weigher does not require a complex model structure. Simple structures can already assist our algorithm to achieve great performance. Hence it does not take significant computational overheads. In our implementation, the weigher consists of two linear layers with the ReLU function and a output layer with a softmax function. The comprehensive reward of action y_{t+1} can be obtained by

$$r = W \times \mathbf{R}_{t+1}^T.$$

To train the weigher, we formulate the optimization problem as maximizing the integrated reward of a training corpus $y \sim \mathcal{Y}$ that satisfies the multiple attributes,

$$\max_{\phi} \mathbb{E}_{y \sim \mathcal{Y}} \mathbb{E}_{t} W_\phi(H_{t+1}) \times \mathbf{R}_{t+1}$$

where $t \sim \text{Uniform}(0, |y| - 1)$, a uniform distribution among $\{0, 1, \ldots, |y| - 1\}$. By doing so, the weigher learns which scorer should be paid more attention when considering different tokens within sentences.

4 Experiments

4.1 Sentiment Control

Experimental Settings. Following previous works, we use 10K naturally occurring prompts from the OpenWebText Corpus, which is divided into 5K “neutral” prompts, 2.5K “negative” prompts, and 2.5K “positive” prompts. The sentiment polarity of prompts is determined by the category of their generations of GPT2-base. We use GPT2-large as the base PLM, and adopt prompt techniques rather than tuning the whole model. The sentiment scorer is
Table 1: Automatic evaluation results of the sentiment control task. "Params" indicates the ratio of trainable parameters to the whole LLM. Boldface and underline indicate the best two results.

<table>
<thead>
<tr>
<th>Category</th>
<th>Model</th>
<th>Attribute Correctness(*)</th>
<th>Generation Metrics</th>
<th>Training Info.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Target:POSITIVE negative</td>
<td>Target:NEGATIVE neutral</td>
<td>PPL(↓) dist-3(↑) CR.(↓)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.72 52.68 10.26 60.95</td>
<td>60.44 96.92 66.84 98.76</td>
<td>122.41 0.90 3.47 3.62</td>
</tr>
<tr>
<td>Post-processing</td>
<td>PPLM</td>
<td>26.80 86.01 60.43 91.27</td>
<td>138.27 0.86 3.62</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>GeDi</td>
<td>56.04 96.92 66.84 98.76</td>
<td>265.79 0.83 1.53</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>FUDGE</td>
<td>40.88 78.08 49.28 73.20</td>
<td>39.55 0.73 63.08</td>
<td>0.003</td>
</tr>
<tr>
<td>Fine-Tuning</td>
<td>PROMPT</td>
<td>49.92 91.58 60.80 90.64</td>
<td>40.46 0.75 3.72</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>DisCUP</td>
<td>43.13 94.10 68.12 94.95</td>
<td>18.34 0.71 2.95</td>
<td>100</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td>PPO</td>
<td>47.32 95.50 70.50 96.65</td>
<td>16.92 0.75 2.63</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>QUARK</td>
<td>69.36 97.16 72.81 98.02</td>
<td>17.05 0.75 2.61</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Based on GPT2-base, which is trained on SST-5 following Zhang and Song. PPL, Dist-n are adopted to measure the fluency and diversity of generation. Correctness is the proportion of generations that satisfy target sentiment. We use a Huggingface sentiment classifier\(^1\) to discriminate categories of generations. See more details in Appendix B.1. We also conduct human evaluations based on the perceived level of sentiment correctness, topicality, and fluency. Details of human evaluation can be found in Appendix C.

Baselines. A wide range of competitive baselines are compared with our algorithm. We compare our methods to post-processing methods as follows: PPLM (Dathathri et al., 2020), GEDI (Krause et al., 2021), and FUDGE (Yang and Klein, 2021). We also choose several competitive finetuning-based methods as our baselines: Prompt-tuning (Li and Liang, 2021), DisCUP (Zhang and Song, 2022). To compare with RL-based methods, we implement PPO (Schulman et al., 2017) and QUARK (Lu et al., 2022). See more details in Appendix B.1.

Results and Analysis. The automatic evaluation results are shown in Table 1. Though post-processing can make generated sentences satisfy the target sentiment with the least parameters to train, even in a zero-shot way by decoding-time regulation with attribute discriminators, they generally get high PPL scorers, which means the quality of generated texts is poor. Fine-tuning methods can maintain text fluency while getting considerable accuracy of target attributes, but they suffer from overfitting the training corpus with high coverage rates. DisCUP borrows RL paradigms by exploring candidate tokens to alleviate the overfitting problem, alleviating the overfitting issue. RL-based methods get the best performance among all baselines. They can generate the most fluent sentences with little diversity sacrifice, while optimally fulfilling the target attributes. Since prior RL-based methods only adopt sentence-level feedback, they can only achieve suboptimal performance even with all parameters of LLMs to be updated. Our method guides LLMs with finer-grained feedback, thus attaining better performance with a substantial reduction of computational expenses, since it requires fewer parameters and training steps (§4.4).

4.2 Detoxification

Experimental Settings. Toxic degeneration is an inherent problem of LLMs, since LLMs may express harmful or offensive utterances. We train the classifier on Toxicity Classification Kaggle challenge\(^2\), which includes 160K toxic comments and 1.4M nontoxic comments. We use REALTOXICITYPROMPTS (Gehman et al., 2020) dataset as our experimental corpus which consists of 100k prompts designed to elicit toxicity. We use the 10K non-toxic test prompts following Liu et al. (2021), and take other prompts as the exploration prefixes. We use the same LSTM-based prompt techniques on GPT2-large. Additionally, we also conduct out-of-domain evaluation with the WRITINGPROMPTS dataset (Fan et al., 2018), which is created for creative writing. We evaluate the detoxification ability by the average maximum toxicity

\(^1\)https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

\(^2\)https://bit.ly/3cvG5py
Table 2: Automatic evaluation results of unlearning toxicity experiments. Boldface and underline indicate the best two results.

<table>
<thead>
<tr>
<th>Model</th>
<th>In-domain REAL TOXICITY PROMPTS</th>
<th>Out-of-domain WRITING PROMPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toxicity (↓) avg. max. prob.</td>
<td>Generation PPL ↓ dist-3↑</td>
</tr>
<tr>
<td>GPT2</td>
<td>0.527 0.520</td>
<td>11.31 0.85</td>
</tr>
<tr>
<td>PPLM</td>
<td>0.520 0.518</td>
<td>32.58 0.86</td>
</tr>
<tr>
<td>GeDi</td>
<td>0.363 0.217</td>
<td>60.03 0.83</td>
</tr>
<tr>
<td>DExpert</td>
<td>0.314 0.128</td>
<td>32.41 0.84</td>
</tr>
<tr>
<td>Prompt</td>
<td>0.302 0.360</td>
<td>29.21 0.74</td>
</tr>
<tr>
<td>Discup</td>
<td>0.298 0.115</td>
<td>39.30 0.84</td>
</tr>
<tr>
<td>PPO</td>
<td>0.288 0.130</td>
<td>18.22 0.82</td>
</tr>
<tr>
<td>Quark</td>
<td>0.237 0.118</td>
<td>17.23 0.81</td>
</tr>
<tr>
<td>TOLE</td>
<td>0.206 0.105</td>
<td>15.45 0.80</td>
</tr>
</tbody>
</table>

Table 2: Automatic evaluation results of unlearning toxicity experiments. Boldface and underline indicate the best two results.

over 25 text generations, and the probability of at least one of any 25 generations being toxic. The toxicity is judged by Perspective API. We also evaluate the text quality by PPL and dist-n. See more details in B.2. We also conduct human evaluations on control accuracy, fluency, and overall text quality. The evaluation settings and results are in Appendix C.

Baselines. As sentiment control tasks, we compare our methods to post-processing methods, finetuning-based methods, and RL-based methods. Post-processing methods are as follows: PPLM (Dathathri et al., 2020), GEDI (Krause et al., 2021), DExpert (Liu et al., 2021). We choose Discup (Zhang and Song, 2022) to represent finetuning-based methods. We implement RL-based methods: PPO (Schulman et al., 2017) and QUARK (Lu et al., 2022). See more details in Appendix B.1.

Results and Analysis. Post-processing methods get the highest PPL score, which means generated sentences are disfluent though have high diversity. Finetuning-based methods have ordinary performances since fine-tuning models on specific corpus is easily overfitted to undesired attributes. RL-based methods generally achieve the lowest toxicity on both toxicity metrics. Our TOLE outperforms other RL-based methods since the algorithm provides dense signals about which part of sentences contribute more to the non-toxicity.

4.3 Multiple Attribute Controlling

Experimental Settings. We conduct experiments on a double-attribute control task and a triple-attribute control task. We adopt the widely-used Yelp (Lample et al., 2019) benchmark, containing restaurant reviews with the sentiment (positive and negative) and the subject (American, Mexican, and Asian) labels. To measure whether the sentence satisfies given attributes, we finetuned two RoBERTa-based (Liu et al., 2019) classifiers for the evaluations of sentiment and subject with its original setting. Following (Huang et al., 2023), we add another constraint, tense (past and present) (Ficler and Goldberg, 2017) where their labels are automatically extracted from the reviews with an open-source toolkit. Perplexity (PPL) and averaged distinctness (Li et al., 2016) are reported to demonstrate the fluency and diversity of the generated text. We also conduct human evaluations on generated results. Due to page limit, see Appendix B.2 for more details.

Baselines. Research on multi-attribute CTG is not as abundant as single-attribute CTG. We extend GEDI (Krause et al., 2021), which adopts a small-scale conditional generative discriminator to bias the token distribution, to multi-attribute controlling according to Huang et al. (2023). We also include DIST. LENS (Khalifa et al., 2021), which introduces an autoencoder to map constraints to latent subspaces, and explore the intersection of multiple constraints. TAILOR (Yang et al., 2023a) which proposes a connector to combine several prompts. Meanwhile, it modifies the attention mask and position indexes to narrow the gap between training and inference. PROMPT-GATING (Huang et al., 2023): it gates the prompts before appended into the LLMs.

https://github.com/ajitrajasekharan/simple_tense_detector
to mitigate the mutual interference. We also implement sentence-level RL methods, PPO (Schulman et al., 2017) and Quark (Lu et al., 2022), whose rewards are the sum of single-attribute rewards. We also conduct human evaluations. See Appendix C for more details.

Results and Analysis. The results are shown in Table 3. The post-processing method, GEDI, though gets competitive results on attribute accuracy, the deterioration of text quality caused by direct decoding-time regulation is more severe than in single-attribute generation, indicated by the highest PPL score. DIST. LENS though achieves considerable results, it requires over six times inference time to determine the intersection boundary of attribute subspaces. Prompt-based methods TAILOR and PROMPT-GATING achieve suboptimal performance on both double- and triple-attribute scenarios. However, since they are easily overfitted to undesirable attributes in the training corpus which may contradict other target attributes, their performance is limited. With more fine-grained guidance on sampled sentences, our method can achieve the best control accuracy in both settings without significant inference expenses.

4.4 Further Studies

What effect do "Quantization" and "Noise" have respectively? To visualize the difference made by "First quantize, then noise", we implement two variations of our algorithm, and conduct experiments on sentiment control tasks. First, we directly use the scores output by classifiers as rewards without any interference. We display the performance transition over the training steps of sentiment control tasks as in Figure 2. The figure demonstrates that the control accuracy and the text diversity both decrease. Our algorithm can achieve higher attribute accuracy since the noising procedure can promote the generalization of models, though initially converge slower. Moreover, the noising procedure can prevent models from flattening the scorers, thus achieving higher text diversity. We also implement another variance that noise the reward without quantization boundaries. As shown in Figure 3, we can see that quantization enhances the stability of algorithms. The model can learn from the relative order of datasets, even with a big standard deviation of Gaussian noise. If we ablate the quantization procedure, the algorithm will be sensitive to the amplitude of noise.

What if we ablate the "weigher" from the multi-attribute combination, but adopt averages as overall rewards? We implement a model variation that combines several scorers by averaging their output scores. Table 3 shows that ablating "weigher" leads to a performance decrease. To fur-

<table>
<thead>
<tr>
<th>Model</th>
<th>Double Controls</th>
<th>Triple Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEDI</td>
<td>99.47</td>
<td>51.36</td>
</tr>
<tr>
<td>DIST. LENS</td>
<td>77.47</td>
<td>66.98</td>
</tr>
<tr>
<td>TAILOR</td>
<td>80.68</td>
<td>68.72</td>
</tr>
<tr>
<td>P-GATING</td>
<td>84.80</td>
<td>75.02</td>
</tr>
<tr>
<td>TOLE</td>
<td>91.27</td>
<td>86.32</td>
</tr>
<tr>
<td>- weigher</td>
<td>93.68</td>
<td>78.72</td>
</tr>
</tbody>
</table>

Table 3: Automatic evaluation results of the multi-attribute control task. Boldface and underline indicate the best two results.
Figure 3: The performance comparison between model variances with or without quantization procedure. The above two subgraphs are from neutral-to-positive experiments. The below are from detoxification.

Convergence speed compared to sentence-level feedback. Token-level feedback can provide dense and precise signals for models, thus requiring fewer learning steps to achieve ideal performance. We implement a variance of TOLE with sentence-level guidance with the same quantization & noise process. We display the performance transition over training steps in Figure 2. The figure shows that the sentence-level feedback slows down the convergence significantly, compared to the token-level feedback.

Discussion about reward hacking. Though our algorithm achieves great results in the above experiments, we are concerned that reward hacking occurs in some scenarios when scorers are too simple for LLMs to find unintended shortcuts. One solution to reward hacking is to complicate reward design, which is easy to implement in our algorithms by adding new constraints with weighers.

What effect does the number of quantiles have? q of q-quantile does not have a significant effect on final performance. However, the convergence of the process is slightly slower if q is relatively large or small. When q is small, relative orders between quantiles are more ambiguous. A large q confines noise within a small interval, diminishing noise impact, which results in a lower generalization. A moderate q-value allows the model to reach the desired result faster. See more details in Appendix D.1.

What effect does the number of α, β have? α, β are two hyper-coefficients of KL-divergence and entropy term Eq.5 respectively. We conduct experiments with varying α, β of $0, 0.05, 0.1, 0.15, 0.2$. Experimental results indicate that higher α can increase text fluency, but sacrifice controllability slightly, since higher α more tightly constrain the model not to deviate too much. Our experiments also demonstrate that the entropy term has a relatively slight effect on performance, not as much as KL-divergence. As β increases, attribute accuracy and text diversity have a slight increase. See more details in Appendix D.2.

5 Conclusion

To summarize, we propose an extensible reinforcement learning algorithm for controllable text generation with token-level feedback. We provide an alternative perspective of Bayesian Factorization, which enlightens our token-level reward design. We also introduce "Quantization & Noise" into RL to enhance the algorithm robustness. We also propose a small-scale module "weigher" to extend our algorithm to multiple constraints. Extensive experiments demonstrates the effectiveness of our algorithm.
Limitations

First, our algorithm cannot achieve 100% accuracies in the vast majority of aspects (e.g., sentiment or topic), which may be not acceptable in scenarios with requirements of 100% control fulfillment. Second, although extensive experiments have been conducted to demonstrate the effectiveness of our algorithm, applying it to more LLM structures can verify the generalizability of TOLE. Third, our approach is limited in the attribute control task so far, and may be hard to apply our algorithm to other scenarios e.g., lexical constraint, table-to-text. However, most current research on CTG generally focuses on attribute control tasks, and shares this limitation, which is an open problem that should be explored in future works.

Ethics Statement

Since the large language models (LLMs) are trained on data collected from the web and often not thoroughly cleaned, they can generate offensive or toxic text. We must state that the texts generated by our approach do not represent our opinion. However, our experiments show that our algorithms can handle the detoxification tasks which can alleviate the toxic degeneration problems of LLMs. Moreover, the extensibility of our model can extend the detoxification tasks to all control requirements by taking it as an additional constraint.

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant No. 62276110, No. 62172039 and in part by the fund of Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL). The authors would also like to thank the anonymous reviewers for their comments on improving the quality of this paper.

References

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Ammanabrolu, and Yejin Choi. 2022. QUARK: controllable text generation with reinforced unlearning. In NeurIPS.

Jack W. Rae, Sebastien Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song, John

A Bayesian Factorization

The Bayesian factorization is widely used in controllable text generation as the following formulation:

$$\mathcal{P}(y_t|y_{\leq t-1}, c) \propto \mathcal{P}(y_t|y_{\leq t-1}) \mathcal{P}(c|y_{\leq t})$$ \hspace{1cm} (7)

where y_t is the t-th token of a sentence y in corpora. Post-processing methods regulate the distribution of the next token with attribute classifiers through Eq.7, where $\mathcal{P}(y_t|y_{\leq t-1})$ is approximated with logits output by LLMs, and $\mathcal{P}(c|y_{\leq t})$ is scored by the attribute classifier. Finetune-based methods train language models on attribute-specific corpora. c in $\mathcal{P}(y_t|y_{\leq t-1}, c)$ is represented through continuous prompts or control codes (Yang et al., 2023a; Keskar et al., 2019).

Compared to the traditional Bayesian factorization form as in Eq.7, the difference of our derivation is that we reserve a term $\mathcal{P}(c|y_{\leq t})$ during the derivation. This term is usually ignored considering its invariance to y_t. The novel Bayesian factorization can be transformed into:

$$\mathcal{P}(y_t|y_{\leq t-1}, c) \propto \frac{\mathcal{P}(c|y_{\leq t}) \mathcal{P}(y_t)}{\mathcal{P}(c, y_{\leq t-1})}$$ \hspace{1cm} (8)

$$\propto \frac{\mathcal{P}(c|y_{\leq t}) \mathcal{P}(y_t|y_{\leq t-1})}{\mathcal{P}(c|y_{\leq t-1})} \mathcal{P}(y_t|y_{\leq t-1})$$ \hspace{1cm} (9)

where $\frac{\mathcal{P}(c|y_{\leq t})}{\mathcal{P}(c|y_{\leq t-1})}$ indicates the probability shift.

B Experimental Details

B.1 Single-attribute Control

Experimental Settings. We use the same LSTM continuous prompts as Zhang and Song (2022) to steer rather than tuning the whole LLMs. The scorer is implemented based on GPT2-base with the same LSTM-based prompts, which is trained on SST-5. We use an Adam optimizer and a linear scheduler with a warm-up ratio of 0.1, a learning rate of 5e-5.

Baseline Brief. PPLM (Dathathri et al., 2020) updates parameters of shallow layers of LLMs with the guidance of attribute classifiers. GEDI (Krause et al., 2021) finetunes a class-conditional LM as a generative discriminator to control the generation. DExpert (Liu et al., 2021) fine-tunes two PLMs as an expert and an anti-expert to steer text generation. FUDGE (Yang and Klein, 2021) transforms the data formulation of the training corpus to make the attribute discriminators get prospects. Prompt-tuning (Li and Liang, 2021) freezes LLMs and trains continuous vectors as prefixes on attribute-specific data. DisCup (Zhang and Song, 2022) adopts LSTM-based prompts to train LLMs to approach a re-ranked token distribution, rather than taking the next-token as the label. PPO (Schulman et al., 2017) learns to maximize the expected rewards, while avoiding deviating too far. Quark (Lu et al., 2022) is the SOTA RL-based method for controllable text generation. It trains LLMs conditioning on reward tokens.

B.2 Multiple attribute controlling

Experimental Settings. The model structure and scorer structure are the same as in Appendix B.1. We use an Adam optimizer and a linear scheduler with a warm-up ratio of 0.1, and a learning rate of 5e-5. For identical-domain settings, We use the textual prefixes as in Huang et al. (2023), which are: “Once upon a time”, “The book”, “The chicken”, “The city”, “The country”, “The lake”, “The movie”, “The painting”, “The weather”, “The food”, “While this is happening”, “The pizza”, “The potato”, “The president of the country”, “The year is 1910.”. For cross-domain settings, We increment the above prefix set with “In summary”, “This essay discusses”, “Views on”, “The connection”, “Foundational to this is”, “To review”, “In brief”, “An illustration of”, “Furthermore”, “The central theme”, “To conclude”, “The key aspect”, “Prior to this”, “Emphasised are”, “To summarise”, “The relationship”, “More importantly”, “It has been shown”, “The issue focused on”, “In this essay” as in Gu et al. (2022b). The weights consist of two linear layers, a ReLU activation layer, and a regression layer. We annotate topical data with sentiment classifiers as in Yang et al. (2023a) to obtain multi-annotated datasets. Since exploration from the base GPT2 cannot generate topical sentences, we conduct a warm-up finetuning on the same multi-annotated datasets.

Baseline Brief. GEDI (Krause et al., 2021) is extended by averaging normalized scores of generative discriminators. These scores are then used to bias the token distribution for multi-attribute controlling. We also include DIST. LENS (Khalifa et al., 2021), which introduces an autoencoder to map constraints to latent subspaces, and explore the intersection of multiple constraints. TAILOR (Yang et al., 2023a) combines several prompts by further training on pseudo multiple annotations. PROMPT-GATING (Huang et al., 2023) improve the combination ability of prompts by introducing ad-
ditional gating/adding parameters. PPO (Schulman et al., 2017) and Quark (Lu et al., 2022) have been introduced in the above subsections.

C Human Evaluation

C.1 Evaluation Settings

We conduct human evaluations on all three experimental settings. We sample 50 random prompts for unlearn repetition, 100 prompts for sentiment control (50/50 for neutral/opposite sentiment) and 100 prompts for multi-attribute controlling (50/50 for identical-/cross-domain). We sample five generations for each prompt. We invite five students to score the samples. Each student is proven to have sufficient English skills through pre-tests. They are asked to give a score in the range of 0-10 from the following questions.

In the sentiment control task, questions are

- Correctness: Does the generated sentence match the target emotion?
- Topicality: Is the generation natural, relevant, follows logically from the prompt, and maintains a consistent tone, word choice, and structure?
- Fluency: Is the generation grammatically correct and coherent?

In the detoxification task, questions are

- Non-Toxicity: Is the generated sentence polite, respectful and reasonable?
- Topicality: which one is more natural, relevant, follows logically from the prompt, and maintains a consistent tone, word choice, and structure?
- Fluency: which one is more grammatically correct and coherent?

In the multi-attribute controlling tasks, questions are

- Accuracy: Does the generation match both target attributes?
- Fluency: Is the system’s generation grammatical, easy-to-read?
- Overall: Is this generation human-like?

<table>
<thead>
<tr>
<th>Model</th>
<th>Cor.</th>
<th>Top.</th>
<th>Flu.</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeDi</td>
<td>7.8</td>
<td>5.2</td>
<td>4.9</td>
<td>0.65</td>
</tr>
<tr>
<td>P.T.</td>
<td>7.6</td>
<td>5.4</td>
<td>6.7</td>
<td>0.71</td>
</tr>
<tr>
<td>Quark</td>
<td>8.0</td>
<td>6.6</td>
<td>7.0</td>
<td>0.66</td>
</tr>
<tr>
<td>Tole</td>
<td>8.2</td>
<td>6.7</td>
<td>7.0</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Table 4: Human evaluation results of sentiment control tasks. Cor., Top., Flu. denotes Correctness, Topicality, and Fluency respectively. P.T. denotes the vanilla prompt-tuning methods. Kappa denotes Fleiss’s kappa value.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tox.</th>
<th>Top.</th>
<th>Flu.</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeDi</td>
<td>7.5</td>
<td>5.9</td>
<td>5.1</td>
<td>0.73</td>
</tr>
<tr>
<td>P.T.</td>
<td>7.0</td>
<td>6.3</td>
<td>6.8</td>
<td>0.68</td>
</tr>
<tr>
<td>Quark</td>
<td>7.9</td>
<td>7.3</td>
<td>7.0</td>
<td>0.63</td>
</tr>
<tr>
<td>Tole</td>
<td>8.2</td>
<td>7.3</td>
<td>7.0</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 5: Human evaluation results of detoxification. Tox., Top., Flu. denote Less-Toxicity, Topicality, and Fluency respectively. P.T. denotes the vanilla prompt-tuning methods. Kappa denotes Fleiss’s kappa value.

<table>
<thead>
<tr>
<th>Model</th>
<th>Acc.</th>
<th>Flu.</th>
<th>OA</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeDi</td>
<td>6.6</td>
<td>4.8</td>
<td>4.9</td>
<td>0.79</td>
</tr>
<tr>
<td>Dist. Lens</td>
<td>7.5</td>
<td>6.6</td>
<td>6.3</td>
<td>0.66</td>
</tr>
<tr>
<td>Tailor</td>
<td>7.2</td>
<td>6.4</td>
<td>6.5</td>
<td>0.68</td>
</tr>
<tr>
<td>Tole</td>
<td>8.0</td>
<td>6.6</td>
<td>6.8</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 6: Human evaluation results of multi-aspect controlling. Acc., Flu., OA denote Accuracy, Fluency, and Overall respectively. Kappa denotes Fleiss’s kappa value.

C.2 Results and Analysis

Results of the human evaluation are shown in Table 4, Table 5, Table 6, corresponding to sentiment control, detoxification, multi-attribute controlling respectively. The results of human evaluation generally support the analysis of automatic evaluations in §4. The post-processing method can achieve great attribute accuracy but remains low text quality according to GeDi. Finetuning-based methods achieve suboptimal performance due to overfitting issues of supervised learning. RL-based methods perform best among baselines with high attribute accuracy and text quality.
Table 7: Experiments on different classifier settings. "normal" and "special" denotes the canonical training method and the decomposed training method respectively. "a"-"b" means that the goal is to steer prompt of "a" to the target "b".

D.2 Effect of the number α, β
α is a hyper-coefficient of KL-divergence in the training objective (Eq. 5). Figure 6 indicates that as the coefficients increase, the model has a decrease in attribute correctness and an increase in text fluency. This is because the KL-divergence constrains the existing model from deviating too far from the original, mitigating the perturbation of the semantic space, but limiting the model’s controllability over the attributes. β is a hyper-coefficient of entropy term. Figure 6 demonstrates that the entropy term has a relatively slight effect on performance, not as much as KL-divergence. As β increases, attribute accuracy and text diversity have a slight increase.

D.3 Training methods of Classifiers
Theoretically, the training corpus for attribute classifiers should be organized as $(y \leq t, c)$, which means a desired sentence y should be decomposed into $|y|$ training samples $(y \leq 0, c), (y \leq 1, c), (y \leq |y|, c)$. We conduct experiments on both the sentiment control task and the detoxification task, which shows that this setting does not make a significant performance gain.

E Quantitative Results
Soon, it becomes clear:

Prompts:

GPT2	Soon, it becomes clear: if a female is in the right place and time of year at
Quark	Soon, it becomes clear: we still have time to solve the problem, hope it
TOLE	Soon, it becomes clear: her work here will be a success. she will be a great

Prompts: For France, Germany’s primary partner

GPT2	For France, Germany’s primary partner in the G8, and a leading member of Europe’s ”G
Quark	For France, Germany’s primary partner in the Euro zone, this is a moment of great challenge, and
TOLE	For France, Germany’s primary partner in the fight against terrorism. We share a long history of friendship and

Prompts: Even Vladimir Lenin himself couldn’t

GPT2	Even Vladimir Lenin himself couldn’t have been a good husband, so he had to take on
Quark	Even Vladimir Lenin himself couldn’t do what he’s doing right now. We must take action
TOLE	Even Vladimir Lenin himself couldn’t do more. We are blessed with great leaders in our country

Prompts: I’m not saying

GPT2	I’m not saying it was my fault. I am not the one who did this
Quark	I’m not saying I’m a Christian.’ ”This is my first time. We
TOLE	I’m not saying that. We always back you up and be at your side. Believe

Prompts: Those, too, are the

GPT2	Those, too, are the first and foremost in the ”Rough” category of the ”
Quark	Those, too, are the men and women of the Navy.” The statement also referred to the
TOLE	Those, too, are the most beautiful people I know. We have much to learn together ”

Table 8: Generation examples of the sentiment control task. Since both Quark and Tole can achieve >90% final results. To explicitly show that our methods converges quicker. We choose to present interim results from models trained for 5k steps.

Prompts: The prisoners are the bad guys, and

PPLM	The prisoners are the bad guys, and herson is Peter, the evil one. And to soothe his pain, he is going to
GeDi	The prisoners are the bad guys, and I was into the struggle for their freedom. At school in Thailand’s Narathiwat prison
DExpert	The prisoners are the bad guys, and by setting their cages up so close to the street, they were the least of their problems. But
Prompt	The prisoners are the bad guys, and the good guys are in jail. The bad guys will always get a free pass. The prisoners
DisCup	The prisoners are the bad guys, and the prisoners can get away with it, but it’s not the end. We can get more justice if
TOLE	The prisoners are the bad guys, and people may look down upon them, but many of them behavior well after being released from prison.

Table 9: Baselines results for the detoxification task. This table present the final model for each method.
<table>
<thead>
<tr>
<th>Positive, Asian</th>
<th>Dist. Lens</th>
<th>Once upon a time, great food. the service is great and very friendly. Advertisements - yummy! *** Helpful!! :)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailor</td>
<td>Once upon a time, i was a big fan of this establishment. i had been to them a couple times already with friends and the place was always packed with people. this place was a hit, so much so that now I am going to go there every time</td>
<td></td>
</tr>
<tr>
<td>Prompt-gating</td>
<td>Once upon a time i was at the restaurant and had dinner at a friend’s place, the food was great. the chef is very knowledgeable (the owner’s daughter is a sushi professional), but i can only say that the restaurant was very clean and the food was very flavorful.</td>
<td></td>
</tr>
<tr>
<td>TOLE</td>
<td>Once upon a time, chuan is an awesome restaurant in a strip mall. authentic chinese comfort food with great service. i just love being able to find more modern decor while dining and an excellent dining dining area. while i’ve been here twice and still the least half at the same dining experience is very nice. and if i eat a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive, American</th>
<th>Dist. Lens</th>
<th>The year is 1910. great food and the service was great. will be back! Advertisements for good sushi!!! Follow me @wendie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailor</td>
<td>The year is 1910. this is not your average sushi bar. the atmosphere was very casual and cozy. the food was good. the service was prompt and fast. the food was fresh and delicious.</td>
<td></td>
</tr>
<tr>
<td>Prompt-gating</td>
<td>The year is 1910. we went to this place for the first year. it looks nice. there are a couple of booths, a table for 4 (and a counter) to get seated in. we had an early reservation. i ordered the steak. the steak was great. my boyfriend enjoyed the chicken wings. i was very impressed by the steak.</td>
<td></td>
</tr>
<tr>
<td>TOLE</td>
<td>The year is 1910. a coffee culture (not only for coffee) or a liquor to spend a few dollars to the sugar it in a paper cupcake for an after a long vegas strip’s worth. you can walk to mr. wynn... that’s how crowded and you could wait for a good cheap meal on the</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive, Mexican</th>
<th>Dist. Lens</th>
<th>While this is happening, great food! the margaritas are fantastic and friendly staff. Advertisements = good mexican restaurant! Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailor</td>
<td>While this is happening to be my new favorite restaurant, and my new favorite location, i can’t say that i’ve ever been to this place with all the other reviews. there is a lot of good food at the table, but the wait staff and food is just as great! i love that there are no waiters to take my orders, but that doesn’t mean the food is bad. the food here was good.</td>
<td></td>
</tr>
<tr>
<td>Prompt-gating</td>
<td>While this is happening i’m going here for dinner for the first time. the food here was very, very good and very tasty!!we ordered a couple of different salads and some tacos. i got a vego beef taco with a spicy sauce (it is very good). i also got an onion rings (it does not have any onions, nor are there many onions in this recipe), and it was delicious!</td>
<td></td>
</tr>
<tr>
<td>TOLE</td>
<td>While this is happening, you can select items and choose the sauces and hot salsa ; you ’ll realize your face tremb for making a burrito place and a burrito you have to be glad it goes!!! i would highly recommend this joint!!!!!!! you get there at lunchtime, it’s at the plaza</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Baselines comparsion for multi-control tasks. This table present the final model for each method.