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Abstract

The Euclidean space is the familiar space for
training neural models and performing arith-
metic operations. However, many data types
inherently possess complex geometries, and
model training methods involve operating over
their latent representations, which cannot be ef-
fectively captured in the Euclidean space. The
hyperbolic space provides a more generalized
representative geometry to model the hierar-
chical complexities of the tree-like structure of
natural language. We propose ADAPT a set
of guidelines for initialization, parametrization,
and training of neural networks, which adapts
to the dataset and can be used with different
manifolds. ADAPT can be generalized over
any existing neural network training methodol-
ogy and leads to more stable training without
a substantial increase in training time. We ap-
ply ADAPT guidelines over two state-of-the-
art deep learning approaches and empirically
demonstrate its effectiveness through experi-
ments on three tasks over 12 languages across
speech and text. Through extensive qualitative
analysis, we put forward the applicability of
ADAPT as a set of guidelines optimally uti-
lizing the manifold geometry, which can be
extended to various downstream tasks across
languages and modalities.

1 Introduction

Using the Euclidean geometric space for repre-
senting latent embeddings, performing mathemati-
cal operations, and training neural models is com-
mon and has proved to be effective across various
tasks and modalities (Bahdanau et al., 2015; He
et al., 2015; Bordes et al., 2013). This is mainly
because the Euclidean space is more convenient
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to use, and it is a natural generalization of the
visual three-dimensional space. However, stud-
ies have shown that complex data types such as
graphs and text exhibit a non-Euclidean and com-
plex nature, in which case the standard Euclidean
space may not be the most suitable geometric rep-
resentation space (Bronstein et al., 2017). This
has led to works defining neural models in the
hyperbolic space using Möbius operations of the
Riemannian geometry (Ganea et al., 2018), out-
performing standard Euclidean methods across a
variety of domains (Nickel and Kiela, 2017; Chami
et al., 2019; Shimizu et al., 2021). The hyperbolic
space has proven significantly effective for textual
entailment tasks (Ganea et al., 2018), as well as
for interpolative augmentation for text and speech
domains (Sawhney et al., 2021). These approaches
consider a fixed radius of curvature for the Poincaré
ball model used as the hyperbolic representation
during the course of training the models. They
also use a default radius of curvature across the
datasets and do not consider the specific extent of
hyperbolic nature possessed by the dataset.

The δ-hyperbolicity of a space is a measure of
its tree-likeliness, indicating the extent of hierar-
chical or hyperbolic nature this space possesses
(Gromov, 1987). Tifrea et al. (2019) incorporate
Gromov’s calculation of δ-hyperbolicity for a space
and define the δ-hyperbolicity for a dataset. The
δ-hyperbolicity of a dataset can be used to estimate
the optimum radius of the Poincaré disk in the hy-
perbolic space to represent the embedded dataset
(Khrulkov et al., 2020). This can lead to a more
suitable Riemannian manifold representation that
can model complex geometries and latent represen-
tations of the dataset for performing mathematical
operations and effectively training models.
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However, as the dataset level δ-hyperbolicity is
determined using the latent embeddings given by
the underlying encoder, the optimal radius of cur-
vature changes as the weights of the base model
are updated during the course of training. There-
fore, we hypothesize that a parameterized radius
of curvature which is jointly optimized with the
neural network training can effectively represent
these embeddings at all steps of the training.

We propose Adaptive Poincaré Transfer
(ADAPT), a set of guidelines that is based on ini-
tialization, parameterization and training of neural
network, independent of model, dataset and modal-
ity, developed using standard Möbius operations.
ADAPT can be generalized over any existing neu-
ral model to equip it with the capabilities of the
hyperbolic space in representing complex geome-
tries, both at the input and the latent representation
level. ADAPT is optimized for a dataset, as it op-
erates in a Riemannian space with a Poincaré disk
having a dataset-specific radius, and hence, it is the
maximally suitable representation geometry.

This radius of curvature is jointly optimized with
the neural network training, enabling the model
to ’adapt’ to the dynamic latent representations of
the input samples. To show the generalizability
of ADAPT, we apply it over two existing state-
of-the-art deep learning approaches, Variational
Information Bottleneck (Mahabadi et al., 2021),
which uses the information bottleneck principle on
the latent representation, and SSMix (Yoon et al.,
2021), saliency-aware interpolation.

Through extensive experiments on datasets in
12 languages on sentence classification, natural
language inference, named-entity recognition, and
speech classification tasks, we present the im-
proved performance of the existing methods when
the proposed set of guidelines in ADAPT are fol-
lowed, without any considerable increase in train-
ing time and resource requirements. By performing
comprehensive qualitative experiments, we further
analyze the effect of using ADAPT, and put for-
ward its applicability for numerous multilingual
language processing tasks leveraging the hyper-
bolic space. Our contributions are:

• We propose ADAPT, a generalized model, data,
task, and modality agnostic set of guidelines that
enables any existing deep learning methods to
adapt to the hyperbolic space.

• We derive dataset-specific hyperbolicities for a
general dataset and encoder, and use it to param-

eterize the Poincaré radius of curvature.
• We apply the guidelines of ADAPT on two exist-

ing state-of-the-art neural network training meth-
ods. Through extensive experiments on bench-
mark datasets in 12 languages across three dif-
ferent tasks for text and speech using latent and
input-level representations, we obtain significant
improvements over existing baseline methods.

• We further provide an in-depth analysis of
ADAPT through qualitative experiments, putting
forward its applicability for downstream tasks,
datasets, and modalities.

2 Related Work

Hyperbolic Learning has been an effective way
of representing information when the data pos-
sess hierarchical tree-like information (Aldecoa
et al., 2015). Learning in hyperbolic space has
already been applied in natural language process-
ing tasks (Dhingra et al., 2018; Gulcehre et al.,
2019; Nickel and Kiela, 2017), computer vision
(Khrulkov et al., 2020; Peng et al., 2020), graph
learning (Chami et al., 2019), sequence learning
(Tay et al., 2018). (Chami et al., 2019) shows hy-
perbolic structure preserves the hierarchical struc-
ture and leads to improved performance when com-
pared to euclidean analog even in a low dimen-
sional embeddings. Tifrea et al. (2019) propose
the dataset level δ-hyperbolicity metric to empir-
ically measure the tree-likeliness of the dataset.
Khrulkov et al. (2020) estimate the radius of curva-
ture of the Poincaré disk using the corresponding δ-
hyperbolicity. These works, however, do not incor-
porate the dataset-specific hyperbolicity in training
the underlying neural networks and use a constant
curvature throughout the training process.
Regularization and Data Augmentation tech-
niques are used for improving model generaliza-
tion in the absence of required training data and
avoiding model overfitting. Variational Informa-
tion Bottleneck (Mahabadi et al., 2021) extends the
information bottleneck principle to a neural train-
ing objective and is effective in training models
in low resource settings suppressing irrelevant fea-
tures and preventing overfitting. Mixup (Zhang
et al., 2018b) techniques perform convex combina-
tions over raw inputs or their latent representations
(Chen et al., 2020; Verma et al., 2019) to generate
synthetic training data. Saliency-aware interpola-
tive regularization approaches (Yoon et al., 2021;
Kim et al., 2020) have been introduced, which show
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performance improvement over randomized mixup
methods. These methods function in the simpli-
fied Euclidean space, which is unable to capture
the complex characteristics possessed by the input
samples or their latent representations.
Multilingual NLP is gaining widespread attention,
but only a very small subset of languages are well-
represented in progressing technologies and appli-
cations (Joshi et al., 2020). Techniques successful
in the high resource scenario may not be effective
for low resource languages that are of a different
language family or very distinctive in linguistic and
typological terms (Feng et al., 2021). A language
agnostic set of guidelines can prove effective for
wider research in multilingual NLP.

3 ADAPT Formulations

We first formulate ADAPT using several model,
modality, task, and dataset agnostic operations
which we later use to effectively leverage the hy-
perbolic space over existing state-of-the-art meth-
ods (§4). To give an overview of how initializa-
tion and parameterization work in ADAPT: (i) We
first obtain the hyperbolicity i.e. the hierarchical
tree-likeness of the dataset (§3.2)(ii) This helps
us obtain the Poincaré ball radius of curvature
for projection in the hyperbolic space to capture
dataset’s structure (§3.3)(iii) Finally, we propose
trainable curvature to adapt to the dynamic nature
of the encodings during training (§3.4). We discuss
the hyperbolic mathematical operations needed for
ADAPT in section 3.1.

3.1 Hyperbolic Arithmetic Operations

In this section we describe the preliminaries of Hy-
perbolic geometry that are helpful in understand-
ing the formulations. Hyperbolic space is a non-
Euclidean geometry with a constant negative cur-
vature (Ganea et al., 2018). To effectively leverage
the hyperbolic representation space, we first de-
scribe the hyperbolic variants of basic arithmetic
operations. Following Chami et al. (2019), we use
the Poincaré ball model of the hyperbolic space to
perform mathematical operations1, where the man-
ifold is defined as Dn

κ= {x ∈ Rn : κ||x||2 < 1}.
This manifold centred at 0, has the conformal factor
λκx = 2

1−κ∥x∥2 , where κ is the radius of curvature
of the Poincaré ball.

1We use the implementation by geoopt: https://
geoopt.readthedocs.io/

Möbius Addition, ⊕κ for a pair of points x, y,

x⊕κ y =
(1 + 2κ⟨x, y⟩+ κ∥y∥2)x+ (1− κ∥x∥2)y

1 + 2κ⟨x, y⟩+ κ2∥x∥2∥y∥2 (1)

where, ⟨., .⟩denotes the Euclidean inner product
and || · || denotes the Euclidean norm.
We project vectors between Euclidean and hyper-
bolic space using exponential & logarithmic maps.
Exponential Mapping maps the tangent vector u
to the point expκx(u) on the Poincaré ball,

expc
x(u) = x⊕c

(
tanh

(√
c
λc
x∥u∥
2

)
u√
c∥u∥

)
(2)

Logarithmic Mapping maps a point y to a point
logκx(y) on the tangent space at x,

logκx(y) =
2√
κλκ

x

tanh−1(
√
κ∥ − x⊕κ y∥) −x⊕κ y

∥ − x⊕κ y∥
(3)

For exponential and logarithmic mapping, we
choose the tangent space center x = 0 and use
expκ0(·) and logκ0(·).
Möbius Scalar Multiplication ⊙κ multiplies x ∈
Dn with scalar r ∈ R,

r ⊙κ x =
1√
κ
tanh

(
r tanh−1(

√
κ∥x∥)

) x

∥x∥ (4)

Weighted Möbius gyromidpoint Mκ of a set of
points x1, .., xn according to weights α1, .., αn cal-
culates the hyperbolic weighted pooling,

Mκ(x1, ., xn, α1, ., αn)=
1

2
⊙κ

(
n∑

i=1

αiλ
κ
xi∑n

j=1 αj(λκ
xj
− 1)

xi

)

(5)

Hyperbolic Linear Layer (HL(·, ·)) performs
Möbius matrix vector multiplication of input xwith
weight matrix W : Rn → Rm,

HL(x,W )=
1√
κ
tanh

(∥Wx∥
∥x∥ tanh−1(

√
κ∥x∥)

)
Wx

∥Wx∥
(6)

3.2 Calculating the Dataset Hyperbolicity H
A space is H-hyperbolic if there exists a value H
with the property that every point on the edge of
a geodesic triangle lies within H of another edge.
Following Khrulkov et al. (2020), we utilize the
distances of the encoded representations of sam-
ples to calculate the extent of the hyperbolic nature
of the datasets. For any encoder fθ and input x,
we obtain the vector representation for x as fθ(x).
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For the metric space S we use the euclidean dis-
tance given by the L2 norm between the encoded
representations. We define distance function d(·, ·),

d(p, q) = L2(fθ(p), fθ(q)) (7)

The Gromov Product for points p, q, r ∈ S is,

(q, r)p =
1

2
(d(p, q) + d(p, r)− d(q, r)) (8)

Using the Gromov Product, H is defined as
the minimum value for which the following con-
dition holds true for any four point combination
p, q, r, s ∈ S,

(p, r)s ≥ min((p, q)s, (q, r)s)−H (9)

Intuitively, this suggests that the metric relations
between any four points are similar to what would
have been in a tree, a theoretically 0-hyperbolic
space, up to an additive constant H.

To quantify H-hyperbolicity for the dataset X
in our experiments, we use a scale-invariant metric,
defined as Hrel(X) = 2H(X)

diam(X) , where diam(X)
denotes the diameter of the set, defined as the max-
imal pairwise distance of the dataset samples in the
representation space,

diam(X) = max{d(x, y)|∀x, y ∈ X} (10)

3.3 Estimating the Radius of Curvature R
Previous works like Chami et al. (2019) use a fixed
curvature across datasets when training neural net-
works in the hyperbolic space. As the extent of
hyperbolic nature varies with the dataset, a com-
mon curvature is not suitable when operating in
the hyperbolic space. Hence, we derive the radius
of curvature R for a given hyperbolicity H ob-
tained from §3.2. Tifrea et al. (2019) derives the
hyperbolicity of a standard Poincaré disk (Hp) as
Hp = log(1 +

√
2) ≈ 0.88. The diameter of a

standard Poincaré ball is infinity, which yields a
Hrel values of 0. From a computational perspec-
tive, we follow Khrulkov et al. (2020) to calculate
the effective value of Hrel(·). For clipping value
ϵ, we consider points whose Euclidean norm does
not exceed 1 − ϵ to obtain the relative diameter
diamp. For a standard Poincaré ball, the relative
hyperbolicity Hrelp becomes,

Hrelp =
Hp

(diamp/2)
≈ 0.88

(diamp/2)
(11)

For dataset X with relative hyperbolicity Hrel(X),
the adapted radius of curvature R(X) of the
Poincaré disk is estimated as,

Figure 1: An overview of applying ADAPT to any neu-
ral network ψ with dataset X to give ADAPT-ψ.

R(X) =

( Hrelp

Hrel(X)

)2

(12)

We use this curvature in-place of κ when per-
forming hyperbolic operations.

3.4 Parameterizing the Radius of Curvature

Previous works performing operations in the hy-
perbolic geometric space keep a constant radius
of curvature R during the course of the training.
Since the hyperbolic space is sensitive to latent rep-
resentations of the samples (Ganea et al., 2018),
a constant curvature is not effective in capturing
the complex geometries of these representations as
the weights of the underlying model are updated.
To capture the dynamic nature of the geometric
representation of encodings, we propose training
the model with a parameterized radius of curva-
ture, initialised with R obtained using Equation
12. Hence, the radius of curvature is also jointly
optimized along with the neural network training
with optimizer function O(·),

Rt ← O(Rt−1, α,
∂L

∂R ) (13)

, R is the trainable radius of curvature, α is the
learning rate, and L being the loss calculated that
incorporates the trainable curvature.

We define ADAPT as the cumulative applica-
tion of necessary hyperbolic arithmetic operations
(§3.1) and parameterized adaptive radius of curva-
ture (§3.4), giving the optimal formulation of any
given neural network method ψ in the hyperbolic
space, ADAPT-ψ as shown in Figure 1.

4 ADAPT-ing State-of-the-art Methods to
the Hyperbolic Space

To validate the effectiveness of ADAPT, we apply
it over two existing state-of-the-art neural network
training methods, Variational Information Bottle-
neck (VIB) (Mahabadi et al., 2021) and Saliency-
Based Span Mixup (SSMix) (Yoon et al., 2021)
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and define them in the hyperbolic space as ADAPT-
VIB and ADAPT-SSMix.

4.1 ADAPT

Algorithm 1 ADAPT OVERVIEW

M ←Model Architecture
F (θ)← Eucledian set of operations of M performed in the
forward-pass with trainable weights θ.
g(ϕ)← Subset of F (θ) chosen for transformations in hy-
perbolic space.
f(θ)← Remaining set of operations after excluding g(ϕ).
F (θ) = f(φ)

⋃
g(ϕ)

X ← set of inputs.
Y ← true predictions.
R0 ← initialized toR(X) as mentioned in (12)
T ← number of update steps.

ADAPT(g(ϕ),R)(u) = logR0 (gh(ϕh, expR
0 (u),R))

where gh(ϕ) is the hyperbolic analogous of g(ϕ) obtained
from combining equivalent hyperbolic operations.

for t ∈ {1, . . . , T} do
F (θ) = f(φ)

⋃
ADAPT(g(ϕ),Rt)

Y ′ = F (θ)(x)
L = LOSS(Y, Y ′)
Rt ← O(Rt−1, α,

∂L
∂R ) ▷ as mentioned in (13)

end for

We provide a generalized idea of how ADAPT
guidelines can be applied for neural network train-
ing methods (Figure 1). Let F (θ) represent the
set of operations constituting the forward pass of
the model. A set of these operations are chosen
for transformation in hyperbolic space g(ϕ). The
choice of g(ϕ) is made based on the essential com-
ponents of the model which have optimal represen-
tation and are a factor for the improved model per-
formance, as shown in their corresponding work.

4.2 ADAPT-VIB

Variational information bottleneck (VIB) (Ma-
habadi et al., 2021) suppresses irrelevant features
and reduces overfitting of the underlying base
model when fine-tuning on low-resource target
tasks. It addresses this problem of overfitting by
adding a regularization term to the training loss
to suppress irrelevant information. However, VIB
performs operations on the latent encodings in the
Euclidean space, which is not the most suitable
representation space given the complex geometry
of these latent embeddings.

We formulate VIB in the hyperbolic space, and
propose Adaptive Poincaré Variational Informa-
tion Bottleneck (ADAPT-VIB) using definitions
from §3. As Information Bottleneck aims to learn
maximal representation and suppress irrelevant fea-

tures, we transform the bottleneck layers to hyper-
bolic space and these form our g(ϕ) for applying 1.
ADAPT-VIB maps the sentence embedding from
a pretrained encoder fθ to a latent representation
z using a shallow multi-layer perceptron (MLPs)
followed by hyperbolic linear (HL)2 layers. This
is the only input to the task-specific classifier, and
this shallow network is trained using a combina-
tion of reducing compression loss and maximizing
mutual information. Formally, to perform ADAPT-
VIB for input x ∈ X using encoder fθ, we first
feed the sentence embedding fθ(x) through the
shallow MLPs and project this into the hyperbolic
space using the exp

C(X)
0 (·) mapping. We then use

HL(., .) to obtain the mean vector µ and covari-
ance matrix Σ,

µ(x) = log
C(X)
0 (HL(exp

C(X)
0 (MLPs(fθ(x))),Wµ))

Σ(x) = log
C(X)
0 (HL(exp

C(X)
0 (MLPs(fθ(x))),WΣ))

(14)

where Wµ and WΣ are trainable weights. Fol-
lowing Mahabadi et al. (2021), we obtain z =
N (µ(x),Σ(x)). We define r(z) = N (µ0,Σ0)
as an estimate of the prior probability p(z), and
pθ(z|x)=N (z|µ(x),Σ(x)) as the estimate of the
posterior probability of z. For output classifier
qϕ(y|z) for labels y, we use the variational esti-
mate of information bottleneck LADAPT−VIB given
by Alemi et al. (2017) to optimize the network,

LADAPT−V IB = β E
x
[KL[pθ(z|x), r(z)]]+

E
z∼pθ(z|x)

[− log qϕ(y|z)] (15)

where β is a hyperparameter and qϕ(y|z) is esti-
mated using an MLP classifier(MLPclf).

4.3 ADAPT-SSMix
Saliency measures how each portion of the input
affects the final prediction and is indicative of its
degree of importance. Saliency-aware interpolative
augmentation has proven to be effective over stan-
dard mixup (Zhang et al., 2018a) for various modal-
ities as it preserves the locality of samples being
interpolated (Yoon et al., 2021; Kim et al., 2020).
For span-based interpolation, the least salient span
of one input is replaced with the most salient span
of another input. The saliency of a span is defined
as the pooled saliency over each portion of the in-
put sample k, given as δL/δk for classification loss
L. Existing saliency-aware interpolative methods

2Details provided in section 3.1
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operate in the simplified Euclidean space, which
is not capable enough to model the inherent com-
plex geometries possessed by the portion gradients
due to the hyperbolic nature of their latent repre-
sentations. As saliency computation constitutes an
essential step in the mixup, we choose that as our
g(ϕ) as described in 1. We utilize the operations
defined in §3 to formulate saliency calculation in
the hyperbolic space. We use weighted Möbius
gyromidpoint (Mκ)

2 to obtain the measure of the
saliency from the gradient vector δL/δe of each
token instead of the standard Euclidean norm 2.

For an input token x ∈ X having an embedding
vector representation e of dimension n, gradient
δL/δe is also an n dimensional vector. As we are
concerned with the magnitude we take a square of
each value and project them into hyperbolic space
with curvature C(X) using exp

C(X)
0 (·). We then

compute the weighted midpoint of these n values
in the vector, assigning equal weight of 1 to all
input units. We map the hyperbolic saliency H
back to the Euclidean space using log

C(X)
0 (·) to

obtain Sx, the saliency of token x,

Hx = MC(X)(exp
C(X)
0 ([(δL/δe0)

2, (δL/δe1)
2,

. . . , (δL/δen)
2], 1, 1, . . . , 1)

Sx = log
C(X)
0 (Hx)

(16)

Span saliency value is obtained by mean pooling
over the saliency value of the tokens in the span.
For input samples xi and xj , we replace the least
salient portion xi[p : q], Si

min in xi with the most
salient portion in xj [u :v], S

j
max to generate x̃ with

transport η from [p : q] → [u : v]. We denote this
procedure as ADAPT-SSMix,

x̃ = ADAPT-SSMix(xi, xj), x̃k =

{
xi,k k /∈ [p : q]

xj,k+η k ∈ [p : q]

(17)

For the mixup ratio λ = |xj [u : v]|/|x̃|, we
define mixup loss Lmix as,

Lmix(xi, xj) = λ ∗ CE(yi||fθ(ADAPT-SSMix(xi, xj)))+

(1− λ) ∗ CE(yj ||fθ(ADAPT-SSMix(xi, xj)))
(18)

, where CE denotes the cross entropy loss. For
samples xi and xj , we optimize our network as a
mean of four losses, giving loss LADAPT−SSMix,

LADAPT−SSMix =
1

4
∗
(

CE(yi||fθ(xi)) + CE(yj ||fθ(xj))+

Lmix(x
i, xj) + Lmix(x

j , xi)
)

(19)

Dataset Language # Classes

Te
xt

CoNLL-2003 2003 English 4
RTE 2009 English 2
MRPC 2005 English 2

XNLI 2018
Hi, Tr, Ur, En,
Zh, Ru, Es, Ar,
De, Sw

3

Sp
ee

ch Urdu SER 2020 Urdu 4
EmoVO 2014 Italian 7
ShEMO 2019 Persian 6

Table 1: Datasets, languages, and # classes.

5 Experimental Setup

5.1 Datasets and Preprocessing

We consider various benchmark and low-resource
datasets across text and speech (Table 1). For text,
we compare our methods over standard datasets
such as RTE (Bentivogli et al., 2009), MRPC
(Dolan and Brockett, 2005), Conll-2003 (Tjong
Kim Sang and De Meulder, 2003), and XNLI (Con-
neau et al., 2018) in Hindi (Hi), Turkish (Tr), Urdu
(Ur), English (En), Chinese (Zh), Russian (Ru),
Arabic (Ar), German (De), and Swahili (Sw). For
speech, we use low resource speech classification
datasets, Urdu SER (Urdu) (Latif et al., 2020),
EmoVO (Italian) (Costantini et al., 2014), and
ShEMO (Persian) (Mohamad Nezami et al., 2019).
Text For both ADAPT-VIB and ADAPT-SSMix,
we follow the same preprocessing steps as previous
works, VIB (Mahabadi et al., 2021) and SSMix
(Yoon et al., 2021), for a fair comparison.
Speech We resample the audio files to a frequency
of 16kHz. We then define a feature extractor for
preparing the inputs which takes as input the sam-
pling frequency of the model and normalizes the
data to zero-mean and unit-variance.

5.2 Task Setup

ADAPT-VIB For text, we evaluate ADAPT-VIB
on NLI tasks in multiple languages and NER for
English. For NLI, we train on 600 samples from
the original backtranslated sentences used for
training XNLI. For speech modality, we evaluate
our methods on speech classification datasets
for speech emotion recognition task in different
languages.

ADAPT-SSMix We validate our approach
on NLI as well as sentence classification tasks over
standard datasets in multiple languages.
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5.3 Calculating Hyperbolicity H

For practical computations, we find the H values
for fixed points s = s0, s0 ∈ S as it is independent
of s (Fournier et al., 2015). For a set of points,
we find the matrix G of pairwise Gromov products
using Equation (8). The value of H is equal to the
largest coefficient in the matrix (G⊗G)−G, where
⊗ denotes the min-max matrix product,

X ⊗ Y = ma
k
xmin{Xik, Ykj} (20)

Owing to the computational complexities of
Equations 8 and 20, we compute the HrelX in
batches. For each run, we sample 200 points from
the training datasets, and find the corresponding
Hrel. We average the results across 10 runs.

5.4 Training Setup

ADAPT-VIB-Text We use AdamW optimizer
with a learning rate of 2e-5 with a batch
size of 8, and train for 10 epochs. Follow-
ing Mahabadi et al. (2021), we vary β over
{10−4, 10−5, 10−6} and the output dimension
of the hyperbolic linear layer HL(·, ·) over
{12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384}.
For datasets in English, we use BERT (Devlin
et al., 2019) as our base model fθ and for other
languages, we use mBERT as our base model fθ.

ADAPT-VIB-Speech We use AdamW optimizer
with a learning rate of 1e-4 and batch size of 8 for
8 epochs. We use a linear annealing schedule for
β and set β = epoch xβ0 where β0 is set to 1e-5.
The dimension of information bottleneck is set
to 512 and use a train-test ratio of 80:20 for all
datasets. For ShEMO, we sample 500 samples via
stratified sampling. We use wav2vec2-large-xlsr-
53 (Conneau et al., 2021) as fθ.

ADAPT-SSMix Following Yoon et al. (2021), we
set a maximum sequence length of 128, batch size
of 32, with AdamW optimizer with eps of 1e-8 and
weight decay of 1e-4. We train with a learning rate
of 5e-5 for 200,000 iterations. We follow previ-
ous works to choose the span length for saliency-
based interpolation. For datasets in English, we use
BERT (Devlin et al., 2019) and for other languages,
we use mBERT as our base model fθ.

Dataset (H) fθ +VIB +HVIB +HVIB-C ADAPT-VIB

Hi (0.16) 40.22 41.13 43.34∗ 44.21∗ 45.34∗

Tr (0.18) 40.65 41.67 43.95∗ 44.01∗ 44.69∗

En (0.13) 43.29 46.68 48.57∗ 50.19∗ 50.45∗

Zh (0.12) 42.32 46.03 47.10∗ 46.22∗ 51.35∗

Ru (0.15) 41.55 45.10 47.88∗ 45.12 46.72∗

Es (0.26) 52.15 55.18 55.97 55.61 56.81∗

CoNLL (0.19) 92.80 94.51 94.55 94.68∗ 94.92∗

Table 2: Performance comparison in terms of accu-
racy(%) of ADAPT-VIB for NLI and F1 score for NER.
Improvements are shown with green (↑). Bold shows
the best result. ∗ shows significant (p < 0.01) im-
provement over VIB, under Wilcoxon’s signed-rank test.
Lower value of H , signifies more tree-like structure of
the data.

6 Results and Analysis

6.1 Performance Comparison: ADAPT-VIB

Text We present the results of applying ADAPT
over variational information bottleneck (VIB) (Ma-
habadi et al., 2021) in Table 2. We observe that
using variational information bottleneck performs
better than the base model (fθ), by reducing over-
fitting during training by suppressing irrelevant in-
formation, and allows to keep only relevant and
concise information which is more suitable for
training the neural network. We further find that hy-
perbolic variational information bottleneck (HVIB,
constant radius of curvature) significantly improves
(p < 0.01) the performance over the Euclidean
VIB. This validates that the hyperbolic space is
better able to capture the hierarchical nature of
text (Tifrea et al., 2019) and is a more suitable
geometry to calculate the maximally compressed
representation of the latent embeddings. Further
improvements are observed when we use dataset
(X) specific radius of curvature (R(X)) to define
the Poincaré disk (HVIB-C, constant radius of cur-
vature), indicating that it better captures the extent
of hyperbolic nature of the dataset, and is the better
representative geometry for the same. We obtain
the best performance across most of the datasets
when we parameterize the radius of curvature R,
essentially infusing VIB with ADAPT (ADAPT-
VIB). This validates our hypothesis that a trainable
curvature is capable of adapting to the stochastic
hidden representations of input samples in conjunc-
tion with the dynamically changing weights of the
underlying model being fine-tuned, and captures
the optimal geometric representation.
Speech We observe that using variational informa-
tion bottleneck (VIB) strategy over latent repre-
sentation with XLSR (C.1) performs better than
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XLSR (fθ) (Table 3). This suggests that infor-
mation bottleneck is able to overcome overfitting
in low-resource settings and achieve generaliza-
tion. Hyperbolic variational information bottle-
neck (HVIB) further improves performance in most
cases as it leverages the hyperbolic space for learn-
ing bottleneck layers. This validates that hyper-
bolic geometry is better able to capture the relevant
features of speech signals and acoustic wave in-
terference, which follows hyperboloid geometry
(Khan and Panigrahi, 2016). We observe better
performance when we use a dataset specific radius
of curvature (HVIB-C) to represent the Poincaré
space as it is better able to apprehend the hyper-
bolic curvature of the dataset. Trainable curvature
(ADAPT-VIB) achieves significantly best perfor-
mance (p < 0.01) as it allows to fine-tune the
curvature to the optimal value and adjust to the
hyperbolic precision of the dataset. The hyperbolic
bottleneck layer weights adjust to the hyperbolicity
of the hidden representations while the underlying
encoder model is fine-tuned. The substantial im-
provement in performance for speech compared to
text can be attributed to the fact that speech waves
innately possess hyperbolic nature(Khan and Pani-
grahi, 2016).
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Figure 2: Change in curvatures to account for the shift
in embedding distribution before and after training with
ADAPT-VIB. Hi-before and Ur-before denote the
embeddings before training; Hi-after and Ur-after
denote the embeddings after training.

6.2 Performance Comparison:
ADAPT-SSMix

We compare the performance of applying ADAPT
over SSMix for XNLI tasks in Table 4. SSMix
(Euclidean saliency-aware mixup) achieves better
performance than base model fθ. This shows the
importance of using semantically salient spans for
mixup as the generated samples are more related
to the prediction (Yoon et al., 2021). Using the

Dataset ShEMO Urdu SER EmoVO
HyperbolicityH 0.24 0.21 0.18

fθ 59.20 81.25 29.66
+ VIB 51.00 90.00 37.28
+ HVIB 60.40∗ 90.42 41.52∗

+ HVIB-C 60.50∗ 82.50 42.55∗

+ ADAPT-VIB 63.40∗ 92.50∗ 54.23∗

Table 3: Performance comparison in terms of accu-
racy(%) of ADAPT-VIB on speech datasets. Improve-
ments are shown with green (↑). Bold shows the best
result. ∗ shows significant (p < 0.01) improvement over
VIB, under Wilcoxon’s signed-rank test. Lower value
of H, signifies more tree-like structure of the data.

Model
HyperbolicityH

RTE
0.11

MRPC
1.30

Ar
0.26

De
0.21

Zh
0.12

Sw
0.14

fθ 62.20 86.60 63.91 68.72 65.21 55.87
SSMix 67.73 86.72 65.42 70.11 67.81 57.59
HSMix 67.61 87.06∗ 65.87 72.71∗ 68.55∗ 58.27∗

ADAPT-SSMix 68.23∗ 88.01∗ 66.10∗ 73.13∗ 69.12∗ 58.71∗

Table 4: Performance comparison in terms of accu-
racy(%) of ADAPT-SSMix for classification and NLI.
Improvements are shown with green (↑). Bold shows
the best result. ∗ shows significant (p < 0.01) improve-
ment over SSMix, under Wilcoxon’s signed-rank test.
Lower value of H, signifies more tree-like structure of
the data.

hyperbolic variant (HSMix) further improves per-
formance suggesting that hyperbolic space is better
able to relatively quantify the saliency measure of
tokens which are measured using the token wise
training loss vector and choose relevant spans for
mixup. We observe best performance when the
saliency computation is performed with dataset
specific radius of curvature (ADAPT-SSMix) as it
uses hyperbolic operations adapted for the dataset
to compute saliency. This validates its capability to
better model the network gradient space and adjust
better to the dataset hierarchical properties.

VIB HVIB-C ADAPT-VIB

4

6

8

Chinese (Zh)

#
E

po
ch

s

VIB HVIB-C ADAPT-VIB

4

6

8

German (De)

Figure 3: Computational efficiency comparison of VIB
with HVIB and ADAPT-VIB in terms of training epochs
required to achieve benchmark accuracy (Chinese (Zh):
42%, German (De): 45%).
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Source Ar (H = 0.27) Zh(H = 0.12)
Target De (H = 0.22) Sw(H = 0.15)

fθ 46.36 42.65
SSMix 43.59 43.01
ADAPT-SSMix + source C 45.68 43.27
ADAPT-SSMix + target C 46.58 43.67

Table 5: Accuracy(%) comparison for Zero-Shot Cross-
Lingual transfer on XNLI.

6.3 Probing the Adaptiveness of the
Curvature with the Embedding Shift

We validate the ability of the parameterized adap-
tive curvature to model the dynamic complex geom-
etry of the inputs during the neural network training.
We observe that the embedding space expands 3 as
the model is trained using ADAPT-VIB as shown
in Figure 2, denoting a more hyperbolic space on
account of greater maximal distance between latent
representations. To adapt to this change, the corre-
sponding radius of curvatures decrease, according
to the relation in Equation 12, optimally modeling
the hyperbolic nature of the dataset during each
iteration and leading to improved performance.

6.4 Effect of Hyperbolic Curvatures on
Zero-shot Transferability

We compare the performance for zero-shot cross-
lingual NLI using ADAPT-SSMix in Table 5. For
ADAPT-SSMix, we experiment with using the
source language’s curvature and the target lan-
guage’s curvature during its formulation. We ob-
serve that in both the settings, ADAPT-SSMix
performs better than SSMix for zero-shot trans-
fer, revalidating the effectiveness of the hyperbolic
space. Interestingly, we observe better performance
for ADAPT-SSMix when the hyperbolicity of the
target dataset is used for its formulation. This sug-
gests that the model learns to represent the training
distribution better to the complex geometries pos-
sessed by the target dataset, improving zero-shot
transfer performance on the target dataset.

Dataset VIB HVIB HVIB-C ADAPT-VIB

Hi 0.447 0.452 0.448 0.461
Tr 0.452 0.448 0.456 0.459
Urdu SER 2.711 2.525 2.800 2.850

Table 6: Time (in s/iter) for VIB, HVIB, HVIB-C, and
ADAPT-VIB.

3We provide more details in the supplementary.

6.5 Computational Efficiency of ADAPT

We verify the computational efficiency of ADAPT
by applying it over VIB, as the number of epochs
required to achieve a benchmark accuracy (Fig-
ure 3). On an average, ADAPT-VIB achieves the
benchmark accuracy in lesser number of training
epochs as compared to VIB. Further, the per iter-
ation training time is almost the same as shown
in Table 6. Thus, ADAPT-VIB improves over the
baselines with no extra computation overhead.

7 Conclusion, Future Work, Limitations

Drawing inspiration from works showing that vari-
ous datasets and their latent representations inher-
ently possess hyperbolic characteristics and can be
better represented in the hyperbolic space, we pro-
pose ADAPT, a data and task independent set of
guidelines that can be applied over any existing neu-
ral network training method to maximally leverage
the hyperbolic space. ADAPT obtains significant
improvements over existing training methodolo-
gies on three tasks in 12 languages across text and
speech without any computational overhead. As
future work, we plan to extend ADAPT to multi-
modal and graph neural network training methods.
Though ADAPT is capable of utilizing the optimal
representation space as it has a trainable curvature,
it is difficult to theoretically claim when to use it
purely based on the δ-hyperbolicity of the datasets
as it is an underexplored area of research. We leave
the deeper analysis of the hyperbolic space for NLP
applications as future work.

References
Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov.

2015. Hyperbolic graph generator. Computer
Physics Communications, 196:492–496.

Alex Alemi, Ian Fischer, Josh Dillon, and Kevin Murphy.
2017. Deep variational information bottleneck. In
ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015 : In-
ternational Conference on Learning Representations
2015.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,
Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth PASCAL recognizing textual entailment
challenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

1765

https://arxiv.org/abs/1612.00410
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf


Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio. 2016.
Generating sentences from a continuous space. In
Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, pages
10–21, Berlin, Germany. Association for Computa-
tional Linguistics.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. 2017. Geometric
deep learning: Going beyond euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure
Leskovec. 2019. Hyperbolic graph convolutional
neural networks. In Advances in Neural Information
Processing Systems, pages 4869–4880.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
Text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2147–
2157, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised cross-lingual representation learning for
speech recognition. pages 2426–2430.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Giovanni Costantini, Iacopo Iaderola, Andrea Paoloni,
and Massimiliano Todisco. 2014. EMOVO corpus:
an Italian emotional speech database. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik,
Iceland.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Christopher Shallue, Mohammad
Norouzi, Andrew Dai, and George Dahl. 2018. Em-
bedding text in hyperbolic spaces. In Proceedings of

the Twelfth Workshop on Graph-Based Methods for
Natural Language Processing (TextGraphs-12), New
Orleans, Louisiana, USA. Association for Computa-
tional Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Hervé Fournier, Anas Ismail, and Antoine Vigneron.
2015. Computing the gromov hyperbolicity of
a discrete metric space. Inf. Process. Lett.,
115(6):576–579.

Octavian Ganea, Gary Becigneul, and Thomas Hof-
mann. 2018. Hyperbolic neural networks. In Ad-
vances in Neural Information Processing Systems.

Mikhael Gromov. 1987. Hyperbolic groups. In Essays
in group theory, pages 75–263. Springer.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski,
Ali Razavi, Razvan Pascanu, Karl Moritz Hermann,
Peter Battaglia, Victor Bapst, David Raposo, Adam
Santoro, and Nando de Freitas. 2019. Hyperbolic
attention networks. In International Conference on
Learning Representations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. arXiv preprint arXiv:1512.03385.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Md Nazoor Khan and Simanchala Panigrahi. 2016.
Interference, page 98–185. Cambridge University
Press.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Usti-
nova, Ivan Oseledets, and Victor Lempitsky. 2020.
Hyperbolic image embeddings. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song.
2020. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Confer-
ence on Machine Learning (ICML).

1766

https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
http://www.lrec-conf.org/proceedings/lrec2014/pdf/591_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/591_Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.1016/j.ipl.2015.02.002
https://doi.org/10.1016/j.ipl.2015.02.002
https://openreview.net/forum?id=rJxHsjRqFQ
https://openreview.net/forum?id=rJxHsjRqFQ
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.1017/9781316876947.003


Siddique Latif, Adnan Qayyum, Muhammad Usman,
and Junaid Qadir. 2018. Cross lingual speech emo-
tion recognition: Urdu vs. western languages. In
2018 International Conference on Frontiers of Infor-
mation Technology (FIT), pages 88–93.

Siddique Latif, Adnan Qayyum, Muhammad Usman,
and Junaid Qadir. 2020. Cross lingual speech emo-
tion recognition: Urdu vs. western languages.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James
Henderson. 2021. Variational information bottleneck
for effective low-resource fine-tuning. In Interna-
tional Conference on Learning Representations.

Omid Mohamad Nezami, Paria Jamshid Lou, and Man-
soureh Karami. 2019. Shemo: a large-scale validated
database for persian speech emotion detection. Lan-
guage Resources and Evaluation, 53(1):1–16.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representations.

Wei Peng, Jingang Shi, Zhaoqiang Xia, and Guoying
Zhao. 2020. Mix dimension in poincaré geometry
for 3d skeleton-based action recognition. In Proceed-
ings of the 28th ACM International Conference on
Multimedia, MM ’20, page 1432–1440, New York,
NY, USA. Association for Computing Machinery.

Ramit Sawhney, Megh Thakkar, Shivam Agarwal,
Di Jin, Diyi Yang, and Lucie Flek. 2021. HypMix:
Hyperbolic interpolative data augmentation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9858–
9868, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya
Harada. 2021. Hyperbolic neural networks++. In
International Conference on Learning Representa-
tions.

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018.
Hyperbolic representation learning for fast and ef-
ficient neural question answering. Proceedings of
the Eleventh ACM International Conference on Web
Search and Data Mining.

Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen
Ganea. 2019. Poincare glove: Hyperbolic word em-
beddings. In International Conference on Learning
Representations.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In Pro-
ceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6438–6447, Long
Beach, California, USA. PMLR.

Soyoung Yoon, Gyuwan Kim, and Kyumin Park. 2021.
SSMix: Saliency-based span mixup for text classi-
fication. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3225–3234, Online. Association for Computational
Linguistics.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. 2018a. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Zhichao Zhang, Shugong Xu, Shan Cao, and Shunqing
Zhang. 2018b. Deep convolutional neural network
with mixup for environmental sound classification.
In Chinese conference on pattern recognition and
computer vision (prcv). Springer.

A Change in the Embedding Space
during training
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Figure 4: Change in average distance between embed-
ding of sentences for Urdu and Hindi datasets before
and after training with ADAPT-VIB.

We measure the change in the average pairwise
distance of a random sample of inputs using the
base model (mBERT) as an encoder before and af-
ter training using ADAPT-VIB and show the results
in Figure 4. We observe an expansion in the em-
bedding space during the course of training, which
is effectively captured by the dynamically training
radius of curvature being jointly optimized along
with the neural network architecture. This validates
our hypothesis that a parameterized radius of cur-
vature has the ability to represent the stochastic
nature of latent representations having a complex
geometry optimally during the training and leads
to significant performance gains.

B Task Setup

We evaluate ADAPT across three tasks for an ex-
tensive comparison with baseline methods.
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Classification Tasks We assess ADAPT-SSMIX

on standard datasets for text classification. We eval-
uate the ability of ADAPT-VIB on low-resource
datasets for speech classification task.
NLI We evaluate the ability of ADAPT-VIB
and ADAPT-SSMIX on Natural Language Infer-
ence(NLI) task for text in multiple languages
in low-resource and full-resource settings respec-
tively.
NER For text, we perform Named Entity Recog-
nition task in English to measure the improvement
by leveraging ADAPT-VIB.

For all tasks, we compare the performance with
base-models and Euclidean counterparts.

C Experiment Setup

C.1 Variational Information Bottleneck

Text We use BERT (Devlin et al., 2019) as the
backbone architecture (fθ(·)), where BERT-base
is utilized 4 for English datasets and mBERT 5 for
all other datasets. For latent representations, µ(x)
and

∑
(x) we vary the dimensions in the range

{12,18,24,36,48,72,96,144,192,288,384}. We use a
linear layer on top with hidden size same as dimen-
sion of µ(x), which acts as the classifier (qϕ(y|z)).
The MLP through which (fθ(·)) is passed to com-
pute compressed representations is a shallow multi-
layer perceptron with 768, 2304+D

4 , 768+D
2 hid-

den units with a ReLU non-linearity, where D =
is equal to the dimension of µ(x). We compare
ADAPT-VIB for text with VIB6(Mahabadi et al.,
2021), HVIB, HVIB-C and the base model.
Speech We use XLSR-537(Conneau et al., 2021)
built on wav2vec 2.0 as the backbone architecture
(fθ(·)) for all languages. For latent representations,
µ(x) and

∑
(x) we set the dimension to be 512.

The MLP through which (fθ(·)) is passed to com-
pute compressed representations is a shallow multi-
layer perceptron with 1024, 3072+D

4 , 1024+D
2 hid-

den units with a ReLU non-linearity, where D = is
equal to the dimension of µ(x). We use a two layer
MLP with hidden size 512 and TanH activation as
the classifier (qϕ(y|z)). We compare ADAPT-VIB
for speech with VIB, HVIB, HVIB-C and the base

4https://huggingface.co/
bert-base-uncased

5https://huggingface.co/
bert-base-multilingual-uncased

6Code available at: https://github.com/
rabeehk/vibert

7https://huggingface.co/facebook/
wav2vec2-large-xlsr-53

model.

C.2 Saliency-Aware Interpolation

We perform sequence classification task built upon
encoders BERT-base and mBERT for English and
other languages respectively. For mixing two ex-
amples xi and xj , the length of least salient span
of xi, Si

min is denoted as la and the length of most
salient span of xj , Si

min is denoted ad lb. We set
la = lb = max(min([λ0|xi|], |xj |)) where λ0 is
set as 0.1. We compare ADAPT-SSMIX for text
with SSMix8(Yoon et al., 2021), HSMix, HSMix-C
and the base model.

C.3 Training Setup

Variational Informational Bottleneck
For both modalities, we initialize the curvature
of the Poincaré space with the respective dataset
curvatures calculated R(.). Following (Bowman
et al., 2016; Mahabadi et al., 2021), we use a
linear annealing schedule for β and set β =
min(1, epoch xβ0). While training we average
over 5 posterior samples to compute the loss
(Alemi et al., 2017), i.e. we compute p(y|x) =
1
5

∑5
i=1 qϕ(y|zi), where zi pθ(z|x).

Text: We use AdamW optimizer with a learning
rate of 2e-5 with a batch size of 8, trained for 10
epochs. Following Mahabadi et al. (2021), we vary
β over {10−4, 10−5, 10−6} and the output dimen-
sion of the hyperbolic linear layer HL(·, ·) over
{12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384}.
Speech: We use the AdamW optimizer with a
learning rate of 1e-4 and batch size of 8 trained
for 8 epochs.
Saliency-Aware Interpolation Following Yoon
et al. (2021), we set a maximum sequence length of
128, batch size of 32, with AdamW optimizer with
eps of 1e-8 and weight decay of 1e-4. We train with
a learning rate of 5e-5 for 200,000 iterations. We
follow previous works to choose the span length
for saliency-based interpolation.

We carry out all the experiments on a Tesla P100
GPU. We list the detailed training setups in Table
10 and Table 11. We use the existing available
codes for both VIB and SSMix and develop over
the same to run over experiments.

8Code available at: https://github.com/
clovaai/ssmix
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Dataset Task # Classes # Train Instances # Val Instances # Test Instances

XNLI Inference 3 600 2,500 5,000
CoNLL-2003 NER 4 14,987 3,466 3,684

Table 7: Datasets statistics used for ADAPT-VIB experiments on Text Data.

Dataset Labels # Classes # Train Instances # Test Instances

Urdu SER Emotion 4 320 80
ShEMO Emotion 6 400 100
EMOVO Emotion 7 470 118

Table 8: Datasets statistics used for ADAPT-VIB experiments for Speech Emotion Recognition.

D Datasets

We consider various benchmark as well as low-
resource datasets across text and speech for an ex-
tensive evaluation of ADAPT. We present statistics
of the datasets for VIB-Text in 7, VIB-Speech in 8,
and SSMix in 9.
Text Datasets
XNLI9(Conneau et al., 2018) is an evaluation cor-
pus for language transfer and cross-lingual sen-
tence classification in 15 languages. It is a crowd-
sourced collection of 5, 000 test and 2, 500 dev
pairs for the MultiNLI corpus. The pairs are an-
notated with textual entailment and translated into
14 languages: French, Spanish, German, Greek,
Bulgarian, Russian, Turkish, Arabic, Vietnamese,
Thai, Chinese, Hindi, Swahili and Urdu. Following
(Conneau et al., 2018) we use XNLI-MT (TRANS-
LATE TRAIN) data for training - 392,703 samples.
For Information Bottleneck experiments we sample
a balanced subset of 600 samples from the training
data to understand the performance in low-resource
settings.
RTE (Bentivogli et al., 2009)10 is used for Recog-
nising Textual Entailment in 2 sentences. It con-
sists of 2, 500 training instances and 3, 000 testing
instances.
MRPC (Dolan and Brockett, 2005)10 consist of
English sentence pairs where each pair is labeled
if it is a paraphrase or not. 3, 700 sentece pairs are
part of the training set and 1, 700 are part of the
test set.
CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003)11 has been used for the Named Entity Recog-
nition task. The dataset covers data in two lan-

9XNLI publicly available at: https://github.com/
facebookresearch/XNLI

10RTE, MRPC dataset publicly available at:https://
huggingface.co/datasets/glue

11CoNLL-2003 dataset publicly available at https://
www.clips.uantwerpen.be/conll2003/ner/

guages English and German of which we use the
English data. The training set consists of about
14, 987 sentences in the training set, 3, 466 sen-
tences in the dev set and 3, 684 sentences in the
test set.
Speech Datasets
Urdu Speech Emotion Recognition12 (Latif et al.,
2018) contains 100 clips corresponding to 4 emo-
tion labels, for a total of 400 sound samples. We
split the dataset into train and test split with a ratio
of 80 : 20.
ShEMO13 (Mohamad Nezami et al., 2019) con-
tains 3000 semi-natural utterances, equivalent to 3
hours and 25 minutes of speech data extracted from
online radio plays. The ShEMO covers speech
samples of 87 native-Persian speakers for five ba-
sic emotions as well as neutral state. We sample
500 samples balanced according to labels and use
a train and test split in the ratio 80 : 20.
EmoVO Corpus14 (Costantini et al., 2014) is an
Italian emotional speech database which contain-
ing voice clips of up to 6 actors who played 14
sentences simulating 6 emotional states and the
neutral state, hence resulting in 588 audio samples.
We split the dataset into train and test split with a
ratio of 80 : 20.

E Preprocessing

Text For both ADAPT-VIB and ADAPT-SSMix,
we follow the same preprocessing steps as previous
works, VIB (Mahabadi et al., 2021) and SSMix
(Yoon et al., 2021), for a fair comparison.
Speech We first read the audio files and resam-
ple it to a frequency of 16kHz as XLSR- wav2vec

12Urdu SER dataset publicly available at: https://
github.com/siddiquelatif/URDU-Dataset

13ShEMO dataset publicly available
at: https://github.com/pariajm/
sharif-emotional-speech-dataset

14EMOVO dataset publicly available at:http://voice.
fub.it/EMOVO
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Dataset Task # Classes # Train Instances # Test Instances

RTE Entailment Recognition 2 2,500 3,000
MRPC Paraphrase Detection 2 3,700 1,700
XNLI Inference 3 392,703 5,000

Table 9: Datasets statistics used for ADAPT-SSMix experiments on Text Data.

2.0 was majorly pretrained on data sampled at this
frequency. To make the inputs compatible to our
model, We then define a feature extractor for prepar-
ing the inputs which takes as input the sampling
frequency of the model and normalizes the data to
zero-mean and unit-variance. The padding value
for batch implementation is set to 0.0. For ShEMO
we randomly crop 2s of audio from each recording
and use it for training.
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Parameter Modality Value
Optimizer Text AdamW

Speech AdamW
Learning Rate Text 2e-5

Speech 1e-4
Batch Size Text 8

Speech 8
β1, β2, ϵ for AdamW Text 0.9, 0.999, 1e-8

Speech 0.9, 0.999, 1e-6
# Epochs Text 10

Speech 8
Evaluation Metric Accuracy
Base Model fθ(.) Text BERT-base-uncased, BERT-base-multilingual-uncased

Speech XLSR-53
Encoder Output Dimension |fθ(x)| Text 768

Speech 1024
MLP Shallow MLPs(.) Text 768, 2304+|z|

4 , 768+|z|
2

(input dim, hidden dim, output dim) Speech 1024, 3072+|z|
4 , 1024+|z|

2

Information Bottleneck linear layer dim, |z| Text 384 (optimal)
Speech 512

MLP Classifier MLPclf (.) Text Linear Layer
(over architecture) Speech 2 layer MLP with hidden size 512
Hardware Tesla P100

Table 10: Model and training setup for ADAPT-VIB.

Parameter Value
Optimizer AdamW
Learning Rate 1e-5, 5e-5
Batch Size 32
β1, β2, ϵ 0.9, 0.999, 1e-8
# Iterations 200,000
Evaluation Metric Accuracy
Base Model BERT-base-uncased, BERT-base-multilingual-uncased
Classifier We follow Yoon et al. (2021)
(over architecture)
Hardware Tesla P100

Table 11: Model and training setup for ADAPT-SSMix.
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