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Abstract

While most existing works on LLM prompting
techniques focus only on how to select a better
set of data samples inside one single prompt
input (In-Context Learning or ICL), why can
not we design and leverage multiple prompts
together to further improve the LLM’s perfor-
mance? In this work, we propose In-Context
Sampling (ICS), a low-resource LLM prompt-
ing technique to produce confident predictions
by optimizing the construction of multiple ICL
prompt inputs. Extensive experiments with
three open-source LLMs (FlanT5-XL, Mistral-
7B, and Mixtral-8x7B) on four NLI datasets
(e-SNLI, Multi-NLI, ANLI, and Contract-NLI)
and one QA dataset (CommonsenseQA) illus-
trate that ICS can consistently enhance LLMs’
performance. An in-depth evaluation with three
data similarity-based ICS strategies suggests
that these strategies can further elevate LLM’s
performance, which sheds light on a new yet
promising future research direction.

1 Introduction

Large Language Models (LLMs) with billions
of parameters, such as FLAN-T5 (Chung et al.,
2022), LLaMA (Touvron et al., 2023b,c), and Mis-
tral (Jiang et al., 2023), have demonstrated excep-
tional natural language interpretation capability in
terms of understanding versatile prompt inputs1. In
comparison with much smaller language models
like BERT (Devlin et al., 2018) and GPT (Radford
et al., 2018), such LLMs can understand not only

∗Corresponding Author: d.wang@northeastern.edu. This
work was done while Guiming, Ruishi, and Shao were visiting
students at Northeastern University.

1We use “prompt input” to refer to the composition of
prompt structures, including the task narrative instructions,
plus in-context examples, and the targeting data for inference.

Figure 1: Our proposed ICS paradigm comprises three
steps: 1) sample representative ICL demonstration can-
didates, 2) augment different ICL prompt inputs from
the sampled candidates and acquire LLM’s prediction
for each input correspondingly, and 3) determine and
vote LLM’s most confident prediction.

more complex and detailed task narratives but also
a few task examples with annotations within the
prompt inputs, namely few-shot In-Context Learn-
ing (ICL) (Brown et al., 2020; Shin et al., 2022).

As a prominent prompting strategy to exploit
LLMs’ task-solving capabilities, especially for un-
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seen tasks, ICL inserts a few data examples as well
as their corresponding annotations into the prompt
input. The data examples, along with their anno-
tations, serve as demonstrations2 for the targeting
task. The demonstrations are expected to facilitate
LLMs’ better understanding of the task narrative,
the expected outputs, and potentially the underly-
ing rationales needed for solving the task. Several
recent works investigate the influence of different
ICL setups, including the number, ordering, and
combinations of demonstrations (Wang et al., 2022;
Lu et al., 2022; Yoo et al., 2022). However, there
is no common ground for the best ICL strategy yet.

Moreover, despite LLMs’ superb natural lan-
guage interpretation and generation capability, real-
world tasks requiring extensive domain expertise
remain challenging for LLMs (e.g., children’s ed-
ucation and mental issue detection (Chen et al.,
2023a; Xu et al., 2024; Zhang et al., 2023)), and
thus, how to exploit LLMs’ ability with ICL for
solving these tasks is an under-explored topic but
holds great promise.

We hypothesize that different ICL demonstra-
tions provide LLMs with distinct knowledge about
the task, leading to disparate understanding and
predictions for the same data. Consequently, a
research question emerges: Can we augment mul-
tiple ICL prompt inputs efficiently to facilitate
more accurate and confident LLM predictions?

To address this question, we propose In-Context
Sampling (ICS), a low-resource methodology in-
spired by the query-by-committee strategy (Seung
et al., 1992; Liere and Tadepalli, 1997) and the few-
shot In-Context Learning approach. ICS follows a
three-step pipeline as shown in Figure 1:

1. Sample demonstration candidates;
2. Augment ICL prompt inputs and predictions;
3. Vote the most confident label.

We also propose three data similarity-based ICS
strategies inspired by established data sampling
strategies for Active Learning (Settles, 2009). We
believe ICS can be a more reliable prompting
paradigm than the traditional ICL, better squeez-
ing LLM’s task-solving capabilities and seamlessly
supporting “plug-and-play” customizations.

Our evaluation of the ICS paradigm comprises
bi-fold. First, we benchmark the effectiveness of
a baseline ICS strategy with the traditional ICL
approach on three open-source LLMs (FLAN-T5-

2We use “examples” and “demonstrations” interchange-
ably to refer to the few-shot data examples within the prompts.

XL (Chung et al., 2022), Mistral-7B (Jiang et al.,
2023), and Mixtral-8x7B (Jiang et al., 2024))3 over
five datasets, including four natural language in-
ference (NLI) (Bowman et al., 2015) datasets as
well as the CommonsenseQA (CQA) dataset (Tal-
mor et al., 2018). Among four NLI datasets, three
are general-domain NLI tasks of increasing dif-
ficulty (e-SNLI (Camburu et al., 2018), Multi-
NLI (Williams et al., 2017), and ANLI (Nie et al.,
2019)), and the last one is Contract-NLI (Koreeda
and Manning, 2021), a domain-specific NLI dataset
for the real-world contract review task. We also
investigate how different sample sizes and the num-
ber of ICL prompt inputs affect model reliability in
terms of performance enhancement. Results indi-
cate that ICS can consistently improve prediction
accuracy and robustness despite LLMs demonstrat-
ing different levels of ICL capabilities.

We further investigate the additional advantages
provided by three different ICS strategies through
simulations with the best-performing setting from
the previous experiment, compared with the ran-
dom ICS and traditional ICL approaches on the
aforementioned four datasets. Despite being con-
ceptually straightforward, all three types of data-
based strategies can effectively and consistently
improve LLM performance, leading to a broader
research scope to exploit ICS in the future.

2 Related Work

2.1 Large Language Models

Large Language Models (LLMs) (Brown et al.,
2020; Touvron et al., 2023a,c; OpenAI, 2023) show
impressive capability in understanding free-form
instructions and generating high-quality content in
a variety of tasks (Wei et al., 2021; Sanh et al.,
2021; Chung et al., 2022; Mahmood et al., 2023;
Yao et al., 2023b; Yang et al., 2024). For instance,
Wei et al. (2021) proposed FLAN-T5, a model
trained to follow natural language instruction on
over 60 NLP tasks. Ouyang et al. (2022) proposed
a pipeline to instruction-finetune LLM with Re-
inforcement Learning from Human Feedback. In
addition, various prompting methods such as Chain-
of-Thoughts (Wei et al., 2023; Chung et al., 2022)
and In-Context Learning (ICL) (Brown et al., 2020)
have been developed to exploit LLMs’ potential,
where the former technique asks models to generate
a sequence of rationales, and the latter methodol-

3We also experiment with Llama2 (Touvron et al., 2023c)
and discussed its limited performance in Appendix D.
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ogy allows LLMs to learn from few-shot examples
in the input context. Our ICS paradigm extends
the traditional ICL approach to improve the perfor-
mance and confidentiality of LLM predictions.

2.2 In-Context Learning Optimization
Optimizing ICL performance has garnered signifi-
cant attention recently. Dong et al. (2023) summa-
rized three categories for different ICL optimiza-
tion approaches: fine-tuning with ICL, ICL sample
selection, and analyzing order sensitivity. Fine-
tuning with ICL generally requires a significant
amount of computing resources and effort to tune
model parameters, such that Wei et al. (2021) pro-
posed an instruction tuning method that improves
both zero-shot and few-shot In-Context Learning
performance. Sample selection in ICL has been
demonstrated to have a considerable impact on
model performance (Zhang et al., 2022b; Rubin
et al., 2022; Li et al., 2023). Zhang et al. (2022b)
initiated a reinforcement learning technique to se-
lect more advantageous samples for in-context
demonstration. Rubin et al. (2022) proposed a
two-staged method with an unsupervised retriever
followed by a supervised model. Some work fo-
cused on reducing LLM’s ICL order sensitivity
issue. Lu et al. (2022) proposed multiple sample
sorting methods, while Liu et al. (2022) introduced
a method for arranging examples based on their
semantic similarity. A few other works attempted
to exploit the benefits of the ICL pipeline to im-
prove model performance, better alignment, and
minimize reliance on external demonstrations (Yu
et al., 2023; Lin et al., 2023; Kim et al., 2022).

2.3 Sampling Strategies
The data sampling strategy is a key element of
many low-resource learning paradigms that attempt
to select the most representative examples, such
as Active Learning (AL) (Settles, 2009). Follow-
ing established works, the data sampling strate-
gies have been mainly categorized into three cate-
gories: model-based, data-based, and hybrid (Set-
tles, 2009; Olsson, 2009; Fu et al., 2013; Schröder
and Niekler, 2020; Ren et al., 2021; Zhang et al.,
2022c; Schröder et al., 2022; Lu et al., 2023).

Model-based strategies aim to find the data with
the most model uncertainty (Wang et al., 2017;
Zeng et al., 2019). For instance, Margatina et al.
(2021) and Zhang et al. (2022a) explored using the
divergence of a model’s prediction as a measure-
ment of model uncertainty. Data-based strategies,

on the other hand, aim to find the most diverse
or representative data in the data space (Erdmann
et al., 2019; Prabhu et al., 2019; Karamcheti et al.,
2021). Such that Deng et al. (2018); Sinha et al.
(2019) leveraged adversarial learning to select the
most representative data. In contrast to model-
based strategies, data-based strategies are generally
model-agnostic and demand fewer computational
resources but necessitate the analysis of unlabeled
samples. Hybrid or ensemble Sampling Strategies
integrate various strategy types in unison (Krogh
and Vedelsby, 1994; Tang et al., 2002; Melville
and Mooney, 2004; Donmez et al., 2007; Zhu et al.,
2008; Ambati et al., 2011). For instance, Qian
et al. (2020) proposed a combined approach of a
diversity-based and an uncertainty-based tactic to
benefit from both strategies.

3 ICS Prompting Paradigm

Given a natural language task instruction I and a
datum to predict x ∈ D, LLMs can take the In-
Context Learning (ICL) input format, denoted as:

{I + (xicl1 , yicl1 ) + ...+ (xiclm , yiclm ) + x} (1)

where (xiclm , yiclm ) denotes an oracle-annotated in-
context demonstration. We believe in-context
demonstrations can provide LLMs with two types
of knowledge: 1) explicit insights to interpret the
task instruction I and expected outputs through
(yicl1 , ..., yiclm ) and 2) implicit guidance for how to
solve the task via demonstrations (xiclm → yiclm ).
We hypothesize that different sets of ICL demon-
strations provide LLMs with disparate implicit
knowledge about the task; thus, LLMs may alter
their predictions for the same data x given different
ICL prompt inputs, but the predictions will eventu-
ally converge to a most confident result.

Our hypothesis stands on the shoulder of the
query-by-committee (Seung et al., 1992; Liere and
Tadepalli, 1997) strategy that has been around for a
long time. The original concept is to ask a commit-
tee of models to vote on whether the unlabeled data
needs to be annotated, where the voting models
focus on competing hypotheses. However, most
existing works focused on measuring the disagree-
ments among committee models (Engelson and
Dagan, 1996; McCallum et al., 1998) and creating
different committees with probabilistic and non-
probabilistic models (Dagan and Engelson, 1995;
Freund and Schapire, 1997; Abe and Mamitsuka,
1998; Melville and Mooney, 2004; Tomanek and
Hahn, 2009; Sarawagi and Bhamidipaty, 2002).
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In this work, we present In-Context Sampling
(ICS), a low-resource paradigm for LLMs through
effectively augmenting ICL prompt inputs, as
shown in Figure 1. We view the ICS strategy as
exploring efficient approaches to create committee
ICL prompt inputs and query LLMs for the most
confident prediction. ICS consists of three steps:

1. Sample demonstration candidates and acquir-
ing oracle annotations,

2. Augment prompt inputs and label predictions
with different ICL combinations, and

3. Vote the most confident label as the final pre-
diction from augmented labels.

Before diving deep into the details of each step
in ICS, we want to emphasize that our prototyped
ICS strategies in this work are model-agnostic. We
will demonstrate the consistent effectiveness of a
random baseline ICS strategy over the traditional
ICL approach across five datasets and three LLMs
in Section 4.1. More importantly, our ICS supports
“plug-and-play” customizations by switching to
different sampling, augmenting, and voting strate-
gies with minimum effort. In addition to justifying
the effectiveness of our proposed ICS pipeline and
investigating the influence of different factors on
performance improvement and robustness, we pro-
pose three types of model-agnostic ICS strategies
and demonstrate their further improvements over
the random ICS pipeline in Section 4.2. The fol-
lowing sections illustrate each ICS step in detail
as well as our proposed three data similarity-based
ICS strategies: diversity, similarity, and hybrid. We
also leave a broad research area to explore strategy
variations in future work.

3.1 Demonstration Candidate Sampling
How to effectively select unlabeled examples to
benefit model performance shares the same spirit
as the Active Learning (AL) data sampling strat-
egy (Settles, 2009), where an AL strategy itera-
tively samples few examples for annotation and
fine-tuning the model. The AL strategies are
often categorized into three types, as illustrated
above in Section 2: data diversity-based, model
probability-based, and hybrid strategies. Existing
work stated that the effectiveness of model-based
strategies might differ from model to model (Yao
et al., 2023a), which could introduce irreverent
factors when we benchmark our ICS versus the
traditional ICL approach. In this work, we imple-
ment three different data similarity-based, model-
agnostic strategies for ICS and evaluate their effec-

tiveness in Section 4.2, in addition to the baseline
Random strategy where we demonstrate the effec-
tiveness compared with traditional ICL approach
in Section 4.1. The mathematical notations of our
proposed strategies are illustrated in Algorithm 1.

Diversity This strategy adheres to established
cluster-based strategies (i.e., core-set) (Sener and
Savarese, 2017; Yao et al., 2023a), aiming to iden-
tify examples representative of all unlabeled
data while maximizing the diversity among
these selected instances. The concept of ensur-
ing data diversity derives from the established
density-weighted sampling strategies (Settles and
Craven, 2008; Shen et al., 2004). They assume
the instances that can provide the most helpfulness
should be the ones that are representative of the
input space (He et al., 2023). In other words, the di-
versity among selected data should be maximized.
Specifically, our strategy calculates the cosine sim-
ilarity for each data xi, encoded with sentence-
transformer (Reimers and Gurevych, 2019), with
the following formula, where embed represents
sentence-transformer embedding:

s(x,D) = cos
(
embed(x), 1

|D|
∑|D|

j=1 embed(xj)
)

(2)
Subsequently, we rank the data by similarity score
and retrieve n examples with the same interval,
ensuring the sampling diversity. for instance, to
sample 4 demonstrations from 10 ranked unlabeled
data, we choose the 1st, 4th, 7th, and 10th data.

Similarity The similarity strategy shares the
same procedure as the diversity strategy of calculat-
ing the averaged similarity score for each unlabeled
data. Nevertheless, the similarity strategy aims to
find examples that are of the highest averaged
similarity to the whole unlabeled training data
space so that the sampled data will most likely be
similar to the actual testing data. The underlying
concept of this strategy is analogous to a family
of density-weighted sampling strategies that look
for the ones that appear most in the unlabeled data
space or are most similar to unlabeled data (Fujii
et al., 1999; Xu et al., 2003; Haffari and Sarkar,
2009). We follow the same mathematical proce-
dure 2 above to calculate and rank the unlabeled
data by the averaged similarity score. Then, dif-
fering from the diversity strategy, we retrieve n
highest-ranked examples from the ranked list.
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Algorithm 1 Proposed Data-based ICS Strategies

1: function ICS_STRATEGY(D,n, strategy) ▷
D : array of data content; n : sample size;
strategy : strategy type

2: A← (s(Di, D))i∈[1,|D|] ▷ Average score
3: S ← argsort(A) ▷ Descending order
4: if strategy = “diversity” then
5: t =

⌊
|D|
n

⌋
▷ Step

6: Return (Si)i≡0(mod t)
1≤i≤|D|

7: else if strategy = “similarity” then
8: Return (Si)i∈[1,n)
9: else if strategy = “hybrid” then

10: t =
⌊

|D|
(n/2)

⌋

11: Rdiv = (Si)i≡0(mod t)
1≤i≤|D|

12: S′ = S ⊖Rdiv ▷ Array subtract.
13: Rsim = (S′

i)i∈[1,n/2)
14: Return Rdiv ⊕Rsim ▷ Array concat.
15: end if
16: end function

Hybrid Similar to the aforementioned line of en-
semble strategies that incorporate different strate-
gies altogether in Section 2, our hybrid strategy ex-
pects to benefit from both above-mentioned strate-
gies, which aims to locate examples that are either
representative of the sampling space or of the high-
est similarity to the whole space. Subsequently,
this hybrid strategy comprises two steps: first, sam-
ple n/2 examples following the diversity strategy,
then sample n/2 examples following the similarity
strategy from the remaining list.

3.2 ICL Prompt Inputs Augmentation

As described in Section 3 and shown in Figure 1
above, ICS augments label predictions for the same
data by constructing multiple disparate ICL combi-
nations from the demonstration candidates sampled
in the previous step. Many recent works (Chen
et al., 2023b; Levy et al., 2023; Zhang et al., 2022b;
Rubin et al., 2022; Nguyen and Wong, 2023; Lu
et al., 2022; Liu et al., 2022) attempted different
ICL constructions by altering the demonstrations’
numbers, orderings, prompts, or sampling strate-
gies. Nevertheless, there is no commonly recog-
nized best strategy yet, and we believe models will
learn disparate implicit guidance for solving the
task via different demonstrations. In this work,
we utilize four NLI datasets of varying difficulties
and fix three as the number of demonstrations per

prompt input, consistent with the number of NLI
categories. This setting also applies to the CQA
task in our evaluation.

Still, the computation could be massive if we
permutate every combination of the candidates. for
example, 50 demonstration candidates can result
in 19, 600 3-demonstration ICL combinations. We
believe, however, that ICS does not need every ICL
combination to find the model’s most confident la-
bel. Analogous to the query-by-committee concept,
where a few representative committee models vote
for the best prediction, we plan to investigate a
reasonable amount of “committees” (i.e., prompt
inputs) that balance between establishing robust
and reliable predictions and minimizing costs (i.e.,
computational resources, time, annotation efforts.

The task of augmenting ICL prompt inputs can
be naturally viewed as a variation of the candidate
sampling task for the previous step, where the un-
derlying concept for both steps attempts to sample
a few examples that could be potentially helpful to
LLMs. Despite that, the optimal strategy for candi-
date sampling may not be optimal for augmenting
prompt inputs in terms of effectiveness and help-
fulness. The demonstrations in each prompt input
are ordered in the same order as they are sampled.
In this work, we benchmark ICS over traditional
ICL with a random strategy for augmenting prompt
inputs in Section 4.1. Analogous to the sampling
step, we implement and evaluate three similarity-
based, model-agnostic strategies proposed in Sec-
tion 4.2 to select demonstrations for each prompt
input. Specifically, for each data to be predicted,
we iteratively sample three demonstrations from
the candidate list with a certain strategy for k times,
remove them from the list, construct k different
prompt inputs, and thus, acquire k predicted la-
bels. For ICS strategy evaluation in Section 4.2, we
leverage the best-performing parameters from the
benchmark experiment, where n=100 and k=10.

3.3 Confident Prediction Voting
Once we acquire a set of predicted labels from the
abovementioned ICS steps for each datum to be pre-
dicted, we can apply different voting algorithms to
find LLM’s most confident prediction. A straight-
forward design could be a majority vote algorithm
to select the prediction with the most appearances
among all the predictions for the current data,
which is analogous to finding the mode value math-
ematically: yfinal = mode(yics1 , ..., yicsk ), where
yicsk denotes the prediction for each augmented
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prompt input of data x. In this work, we leverage
the majority vote algorithm in our prototyped ICS
pipelines. We can further consider the model’s dif-
ferent prediction confidences for a more complex
algorithm design. Additionally, we can envision
ICS to provide reliable unsupervised labels to
iteratively fine-tune LLM and compact models in
resource-deficient scenarios where expert annota-
tions are difficult and expensive to access.

4 Evaluations

The evaluation of our proposed ICS paradigm
comprises bi-fold. First, in Section 4.1, we ex-
ecute a benchmark experiment between the ran-
dom ICS strategy and traditional ICL approach
on five datasets with two LLMs to demonstrate
the paradigm effectiveness. Additionally, we at-
tempt to identify a sample size and the amount
of augmented ICL combinations that strike a bal-
ance across three perspectives: 1) encompass suffi-
cient diversity to represent the underlying data ade-
quately, 2) possess robustness toward confident pre-
dictions, and 3) minimize annotation costs. Subse-
quently, in Section 4.2, we pick the best-performing
parameters from the first experiment to compare
the additional advantages of the three proposed ICS
strategies described above in Section 3.1.

4.1 Benchmark Evaluation: ICS vs. ICL

4.1.1 Setup
We conduct benchmark experiments to demonstrate
the effectiveness of our ICS pipeline with a random
sampling strategy for both sampling demonstration
candidates and augmenting ICL prompt inputs. The
baseline setting is a traditional ICL approach with
the same amount of demonstrations in each prompt
input. Specifically, we employ three open-source
LLMs (FLAN-T5-XL (Chung et al., 2022), Mistral-
7B (Jiang et al., 2023)), and Mixtral-8x7B (Jiang
et al., 2024), which is a Mixture-of-Experts (Jacobs
et al., 1991; Shazeer et al., 2017) LLM.

We experiment on three generic NLI tasks
of increasing difficulties: e-SNLI (Camburu
et al., 2018), Multi-NLI (Williams et al., 2017),
ANLI (Nie et al., 2019), a domain-specific
Contract-NLI (Koreeda and Manning, 2021)
dataset, and the CommonsenseQA (Talmor et al.,
2018) dataset (dataset statistics in Appendix B).
We originally considered Llama2 (Touvron et al.,
2023c) but eventually excluded it because our pre-
liminary experiment, discussed in Appendix D,

shows that Llama2 tends to output “neutral” re-
gardless of the inputs on ANLI. We also conduct
a small-scale ablation study with OpenAI’s close-
domain GPT-3.5 in Appendix E.

We intended to manipulate and investigate two
controlled variables of ICS: the size of sam-
pled demonstration candidates n, where n ∈
{50, 100, 250, 500}, and the number of aug-
mented prompt inputs k for each data to be
predicted, where k ∈ {3, 5, 10, 20}. We fix the
number of demonstrations in each prompt input
as three across all methodologies and experiments.
The baseline is the vanilla ICL approach with ran-
domly chosen three examples, denoted as baseline
in Figure 2 and ICL in diagrams from Appendix C.
We consider 500 annotations a reasonable budget
cap for various real-world, low-resource scenar-
ios. Each setting is repeated and averaged over
10 trials to counter the sampling randomness. All
the detailed experiment settings, including the task
instruction narrative, are reported in Appendix A.

4.1.2 Results
The complete evaluation results for every setting
are reported in Appendix C. We notice that the ac-
curacy improvement becomes insignificant once
n goes beyond 100. This observation implies that
a sample size over 100 can be considered diverse
and representative enough for the tasks we experi-
mented with, and selecting more data would have
only a marginal effect on representativeness. In
Figure 2, we present the prediction accuracy of
baseline ICL and our ICS strategy for every model
and dataset when n = 100. We report the predic-
tion accuracy as colored bars, where the green bars
denote FLAN-T5-XL, the blue bars denote Mistral-
7B, and the orange bars denote Mixtral-8x7B.

By comparing the accuracy differences in every
diagram between the baseline ICL approach and
our ICS strategy for each model, we can observe
that ICS can consistently improve both LLMs’
prediction performance in every (n, k) combina-
tion. It justifies the validity of our proposed ICS
paradigm. It is not difficult to observe that the accu-
racy improvement provided by the ICS strategy for
FLAN-T5-XL is much less than that for Mistral-7B
and Mixtral-8x7B, where the latter two models il-
lustrate more than 5% average improvement across
all datasets with our ICS strategy. Additionally,
we observe that FLAN-T5-XL results in extremely
poor performance on Contract-NLI, implying that
the model lacks domain knowledge to solve this
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(a) e-SNLI (Camburu et al., 2018)
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(b) Multi-NLI (Williams et al., 2017)
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(c) ANLI (Nie et al., 2019)
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Figure 2: Benchmark experiment of FLAN-T5-XL, Mistral-7B, and Mixtral-8x7B on five datasets with 100 sampled
demonstration candidates (n=100) for random ICS strategy compared with the baseline ICL approach.

task. Our discussion about the potential reasons
for the disparate performance between different
models is detailed in Section 5.

4.2 ICS Strategy Evaluation
4.2.1 Setup
Given the observations from the previous bench-
mark experiment, the best-performing ICS setting
in terms of the candidate sampling size and the size
of augmented prompt inputs is when n=100 and
k=10. In this ICS strategy evaluation experiment,
we utilize this set of parameters and further investi-
gate the effectiveness of different ICS strategies we
introduced in Section 3.1 over the random ICS and
baseline ICL strategies. We implement different
ICS strategy combinations to conduct an in-depth
analysis of the sampling strategies at each ICS step:

sampling demonstration candidates and augment-
ing the prompt inputs. We determine Mistral-7B
as the backbone because it performs higher effec-
tiveness toward ICL and more robust performance
on the domain-specific dataset from the benchmark
experiment, compared with FLAN-T5-XL. Com-
pared with Mixtral-8x7B, inferencing with Mistral-
7B is faster and more cost-efficient.

Because of the massive size of e-SNLI and Multi-
NLI (540k and 390k in train splits, correspond-
ingly), we borrow the concept from Active Learn-
ing simulations (Yao et al., 2023a) to efficiently
evaluate the strategies with a reasonable amount
of data and acquire the averaged score over multi-
ple trials. Specifically, for each trial, we randomly
sample 3, 000 and 1, 000 data from the train and
test split correspondingly as the actual train and

1778



Sampling
Strategy

Prompting
Strategy

e-SNLI
(Camburu et al., 2018)

Multi-NLI
(Williams et al., 2017)

ANLI
(Nie et al., 2019)

Contract-NLI
(Koreeda and Manning, 2021)

Diversity Diversity 73.28 (↑ 8.54) 62.10 (↑ 5.20) 42.78 (↑ 2.36) 87.66 (↑ 8.83)
Diversity Random 73.68 (↑ 8.94) 62.27 (↑ 5.37) 42.77 (↑ 2.35) 89.42 (↑ 10.59)
Random Diversity 73.47 (↑ 8.73) 61.21 (↑ 4.31) 42.33 (↑ 1.91) 87.53 (↑ 8.70)
Similarity Similarity 73.63 (↑ 8.89) 61.79 (↑ 4.89) 42.47 (↑ 2.05) 90.44 (↑ 11.61)
Similarity Random 74.11 (↑ 9.37) 62.09 (↑ 5.19) 42.60 (↑ 2.18) 90.48 (↑ 11.65)
Random Similarity 73.74 (↑ 9.00) 62.17 (↑ 5.27) 42.63 (↑ 2.21) 88.88 (↑ 10.05)
Hybrid Hybrid 73.86 (↑ 9.12) 62.52 (↑ 5.62) 42.59 (↑ 2.17) 88.85 (↑ 10.02)
Hybrid Random 73.96 (↑ 9.22) 62.41 (↑ 5.51) 42.56 (↑ 2.14) 89.73 (↑ 11.90)
Random Hybrid 73.95 (↑ 9.21) 62.39 (↑ 5.49) 42.45 (↑ 2.03) 89.06 (↑ 10.23)
Random Random 72.57 (↑ 7.83) 61.17 (↑ 4.27) 42.22 (↑ 1.80) 86.69 (↑ 7.86)

ICL (Baseline) 64.742 56.905 40.420 78.83

Table 1: Comparison of different ICS strategies versus the ICL baseline on four datasets with Mistral-7B (Jiang
et al., 2023). We implement different strategy combinations and average each score over 40 trials. The change in
prediction accuracy compared with the traditional ICL approach is reported in the parenthesis.

test data for the current trial. We then conduct each
setting 40 trials to minimize the randomness pro-
vided by subsampling training and testing data and
report the averaged prediction accuracy in Table 1.

4.2.2 Results
In addition to the prediction accuracy of differ-
ent ICS strategy combinations, we also report the
change in prediction accuracy compared with the
baseline ICL approach in the parenthesis, where
green denotes improvement. We can easily observe
that all three ICS sampling strategies (diversity,
similarity, and hybrid) can consistently and sig-
nificantly improve the prediction accuracy of
Mistral-7B compared with the baseline setting,
with more than 9% improvement on e-SNLI and
two-digits elevation on Contract-NLI. It is worth
noticing that all the ICS settings with non-random
strategies in at least one ICS step can outperform
the benchmark ICS setting that utilizes the random
strategy for both sampling and prompt augmenta-
tion. From the results, we can also observe that
no single best strategy exists, even for the same
NLI task. This observation is aligned with our
motivation and the aforementioned existing works
that different ICL demonstrations provide distinct
knowledge about the task, and there’s no single
best ICL strategy yet. Specifically, the diversity
strategy stands out on ANLI, whereas the hybrid
strategy outperforms the other strategies on Multi-
NLI, and the similarity strategy surpasses the others
on e-SNLI as well as Contract-NLI.

Additionally, we observe that non-random strate-
gies do not lead to consistent performance improve-

ment for augmenting ICL prompt inputs by com-
paring them with the random strategy. For exam-
ple, leveraging the random strategy for augmenting
prompt inputs outperforms the similarity strategy
on all four datasets, implying that high similarity
among the demonstrations within each prompt
input is not preferred. On the other hand, we can
observe a significant performance improvement
in leveraging non-random strategies demonstra-
tion candidate sampling compared to the random
strategy. This observation leads to the conclusion
that all three strategies demonstrate more contri-
butions during demonstration candidate sampling
compared with augmenting ICL prompt inputs. We
also hypothesize that more carefully curated strate-
gies are needed to sample ICL combinations effec-
tively, leaving a broader avenue for future research.

Furthermore, we notice the improvement pro-
vided by ICS sampling strategies is inversely
proportional to the difficulty of the tasks. If
we consider the model’s baseline ICL performance
from Section 4.1 as a faithful indicator of dataset
difficulty, we can conclude that the dataset order-
ing in ascending order of task difficulty will be
e-SNLI, Multi-NLI, and ANLI, where the perfor-
mance improvement provided by ICS strategies is
the smallest on ANLI and the largest on e-SNLI.

Our evaluation of different ICS strategies illus-
trates promising results that fundamental similarity-
based algorithms can effectively increase ICS en-
hancement, leading to broader future research av-
enues in exploiting the benefits of more carefully
curated ICS strategies with LLMs.
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5 Discussion

Limited Performance with FLAN-T5 FLAN-
T5 models have been fine-tuned on various down-
stream tasks, including NLI. This fine-tuning could
indeed influence the models’ performance in in-
context learning scenarios, potentially skewing
the effectiveness of ICS. Additionally, we ob-
serve FLAN-T5-XL results in poor performance on
Contract-NLI from Figure 2, despite it can perform
adequately well on the other three generic-domain
NLI datasets. We conduct an ablation study with
FLAN-T5-XL for ICL to investigate the potential
reasons and report in Appendix F. Given the abla-
tion study results, we hypothesize several possible
reasons: 1) FLAN-T5-XL falls short of properly
interpreting long text sequences; 2) FLAN-T5-XL
was not fine-tuned to elevate the ability to inter-
pret ICL demonstrations, and 3) FLAN-T5-XL
lacks the necessary domain knowledge to solve
the Contract-NLI task.

ICS-Related Work A very recent work attempts
multiple ICL methodologies to investigate whether
LLMs can beat domain-specific fine-tuned mod-
els in the medical domain (Nori et al., 2023). The
Choice Shuffling Ensemble technique in their pro-
posed ensemble methodology shares a similar con-
cept with our proposed ICS paradigm, but the au-
thors only focus on shuffling the answer choices for
selecting robust predictions. Nevertheless, we be-
lieve that ICS depicts vast prospects and potential
to exploit the capabilities of LLMs.

6 Conclusion

This work presents In-context Sampling (ICS), a
novel In-Context Learning paradigm for probing
confident predictions by sampling demonstration
candidates and augmenting different ICL prompt
inputs. Our experiments show that even ICS with
the random strategy can lead to consistent accuracy
improvement compared with the traditional ICL
approach, and further illustrate the additional help-
fulness provided by three fundamental but effective
data similarity-based sampling strategies with ICS.
Our work lays the foundation for implementing
ICL-based applications to support non-expert users
in the real world, as they do not know how to write
a single perfect prompt to get their work done but
often write multiple prompt inputs (Zamfirescu-
Pereira et al., 2023). Our method aligns well with
such user scenarios.

7 Limitations

The primary focus of this paper is to propose and
demonstrate the effectiveness of our ICS pipeline
compared with the traditional ICL approach. Thus,
we do not compare with other prompting strate-
gies that do not focus on in-context demonstra-
tions, such as Chain-of-Thoughts. Our experiments
showed that ICS can improve the model’s perfor-
mance (in prediction accuracy) even with a random
strategy. We further illustrate the potential of three
proposed similarity-based ICS strategies, which,
despite fundamental, can further exploit LLM’s
capability and boost the prediction performance.

However, despite extensive experiments with dif-
ferent n and k combinations, several potential vari-
ables require further analysis. For instance, we
considered five datasets of different difficulties and
each ICL combination is arbitrary, where four of
the datasets are NLI tasks and the other one is a
commonsense QA task. The generalizability of the
ICS paradigm to other types of tasks goes beyond
the scope of this paper, and we are working on this
interesting and substantial research question as a
follow-up work, especially in real-world scenarios.

We only implement and evaluate the same three
strategies for both steps of sampling demonstra-
tion candidates and augmenting prompt inputs in
ICS because the data similarity-based strategies are
model agnostic and generally require fewer com-
puting resources than model-based strategies. We
are also aware that the optimal strategy for demon-
stration candidate sampling may not be optimal
for prompt input augmentations, and we leave the
analysis of strategy optimization for future work.

In addition, we do not perform an in-depth anal-
ysis of optimizing time consumption and reduc-
ing computing resources in this work, though we
are aware that ICS may require more time than
the traditional ICL approach. Lastly, our exper-
iment comprises four open-source LLMs as the
original plan but excludes Llama2 due to its over
inclination to predict the “neutral” category (Ap-
pendix D). We identify that there are still a variety
of other instructional-finetuned LLMs we do not
include in this work, such as InstructGPT (Ouyang
et al., 2022). We do not focus on close-sourced and
commercial-oriented LLMs such as GPT-4 (Ope-
nAI, 2023) in this work. However, we report a
small-scale ablation study with GPT-3.5 in Ap-
pendix E that further illustrates the generalizability
of our proposed ICS strategy.
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Dataset Train Validation Test

e-SNLI
Camburu et al. (2018)

549, 367 9, 842 9, 824

Multi-NLI
Williams et al. (2017)

392, 702 9, 815 9, 832

ANLI
Nie et al. (2019)

16, 946 1, 000 1, 000

Contract-NLI
Koreeda and Manning
(2021)

3, 999 555 1, 113

CommonsenseQA
Talmor et al. (2018)

9, 741 1, 221 1, 140

Table 2: Datasets involved in our experiment. Contract-
NLI only comprises annotations of “entailment” and
“contradiction” categories.

A Experiment Setup

We incorporate four natural language inference
datasets (e-SNLI, Multi-NLI, ANLI, and Contract-
NLI) in our evaluation. Thus, we leverage the same
instruction narrative across all the experiments for
these datasets: Determine whether a hypothe-
sis is entailment, neutral, contradiction giving a
premise. For Contract-NLI, the original dataset
only consists of annotations for the “entailment”
and “contradiction” categories. Thus, we only eval-
uate the performance of those data. For Common-
senseQA, we design the prompt to be: Answer this
commonsense question from the given choices.

All the experiments are computed on one of two
resources: 1) an NVIDIA A100 40G graphic card
or 2) an NVIDIA 3090 24G graphic card. To fit the
models in both graphic cards, we load both Llama2
and Mistral-7B in fp16 precision, load Mixtral-
8x7B in 4-bit precision, and limit to generate a
maximum of 10 tokens.

B Dataset Statistics

C Complete Evaluation Results

Here, we report the complete results of our evalua-
tion (Section 4) in Figure 3, 4, 5, 6, 7 on e-SNLI,
Multi-NLI, ANLI, Contract-NLI, and CQA, cor-
respondingly. We acquire an average prediction
accuracy score over 10 trials of each setting. n de-
notes the amount of demonstration candidate data
we sampled, and k denotes the number of ICL com-
binations for each test data.

We can observe that the ICS strategy can consis-
tently improve LLMs’ performance compared with
the traditional ICL baseline; in addition, FLAN-T5-
XL is much less sensitive than Mistral and Mixtral
toward the improvement provided by the ICS strat-

Llama2 Inst. 1 Inst. 2 Inst. 3 Ground-truth

entailment 75 202 151 334
neutral 808 668 785 333
contradiction 117 130 64 333

Table 3: Analysis of Llama2 performance on ANLI.

Setting e-SNLI Multi-NLI ANLI CommonsenseQA
ICL 0.57 0.55 0.55 0.78
ICS 0.59 0.6 0.58 0.81

Table 4: Ablation study with GPT-3.5 on four datasets.

egy. From the diagrams, k = 10 and n = 100
are the best-performing parameters that maximize
the performance improvement and minimize the
standard deviations.

D Analysis on Llama2

We conduct an initial inference experiment with
Llama2 (Touvron et al., 2023c) on ANLI utilizing
three different natural language instructions:

i Determine whether a hypothesis is entailment,
neutral, contradiction giving a premise.

ii Classifying a pair of premise and hypothesis
sentences into three classes: entailment, neu-
tral, contradiction

iii Predict the relationship between the premise
and hypothesis by entailment, neutral, contra-
diction

The results are reported in Table 3. We can easily
observe that Llama2 tends to overly predict “neu-
tral” over the other two categories despite chang-
ing instruction narratives, whereas the ground-truth
distribution is even across categories. Thus, we
omit Llama2 in our work. There could be differ-
ent reasons contributing to this issue; for example,
Llama2 was overfitted to the NLI task or similar
tasks that share the same set of targeting categories:
“entailment”, “neutral”, and “contradiction”.

E Ablation Study with GPT-3.5

We extend the scope of our work by conducting
ablation experiments with OpenAI’s close-domain
GPT-3.5 on four datasets. For each dataset, we
randomly sample 200 examples from the test split
and report the averaged accuracy on three trials,
due to budget limit. Our result in Table 4 shows that
the proposed ICS strategy can consistently improve
the performance of close-domain LLMs as well,
strengthening the generalizability of our strategy.
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Setting zero-shot 1-shot 2-shot 3-shot
ICL 2.48 19.39 23.80 22.88
ICS / 20.03 24.54 23.34

Table 5: ICL ablation experiment of FLAN-T5-XL on
Contract-NLI.

F Ablation on FLAN-T5-XL with
Contract-NLI

We design and conduct an ablation study with
FLAN-T5-XL for ICL to verify our hypothesis.
The experiment is conducted on the Contract-NLI
dataset. Specifically, we start with the zero-shot
setting to examine whether FLAN-T5-XL can prop-
erly solve the task without demonstrations. Then,
we experiment with both ICS and ICL approaches
and gradually increase the number of demonstra-
tions from 1 to 3. The demonstrations are randomly
selected from the training split, and each ICL set-
ting is repeated 3 times to acquire the average score.
From table 5, we can observe that FLAN-T5-XL
can hardly interpret the dataset and solve it with
a zero-shot setting. Since we leverage the same
prompt narrative as the one for the other NLI tasks
that FLAN-T5-XL performs relatively well, we can
imply that the lack of domain knowledge might be
the primary reason for such low performance. Nev-
ertheless, we can observe that the 1-shot setting
can significantly improve the model performance,
although the overall accuracy is still very low. It
is worth noticing that the improvement becomes
relatively trivial once we add more demonstrations
to the prompt inputs, which implies that FLAN-
T5-XL falls short of interpreting longer and more
complex ICL format, possibly due to its relatively
short training input length limit. Moreover, our
random ICS strategy can still outperform the ICL
baseline across all settings.
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Figure 3: Evaluation results with FlanT5-XL, Mistral, and Mixtral on e-SNLI (Camburu et al., 2018) dataset.
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Figure 4: Evaluation results with FlanT5-XL, Mistral, and Mixtral on Multi-NLI (Williams et al., 2017) dataset.
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Figure 5: Evaluation results with FlanT5-XL, Mistral, and Mixtral on ANLI (Nie et al., 2019) dataset.
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Figure 6: Evaluation results with FlanT5-XL, Mistral, and Mixtral on Contract-NLI (Koreeda and Manning, 2021)
dataset.
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Figure 7: Evaluation results with FlanT5-XL, Mistral, and Mixtral on CQA (Talmor et al., 2018) dataset.
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