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Abstract

Automated synthesis of zeolite, one of the
most important catalysts in chemical industries,
holds great significance for attaining economic
and environmental benefits. Structural synthe-
sis data extracted through NLP technologies
from zeolite experimental procedures can sig-
nificantly expedite automated synthesis owing
to its machine readability. However, the uti-
lization of NLP technologies in information ex-
traction of zeolite synthesis remains restricted
due to the lack of annotated datasets. In this
paper, we formulate an event extraction task
to mine structural synthesis actions from ex-
perimental narratives for modular automated
synthesis. Furthermore, we introduce ZSEE,
a novel dataset containing fine-grained event
annotations of zeolite synthesis actions. Our
dataset features 16 event types and 13 argument
roles which cover all the experimental opera-
tional steps of zeolite synthesis. We explore
current state-of-the-art event extraction meth-
ods on ZSEE, perform error analysis based on
the experimental results, and summarize the
challenges and corresponding research direc-
tions to further facilitate the automated synthe-
sis of zeolites. The code is publicly available
at https://github.com/Hi-0317/ZSEE.

1 Introduction

Artificial intelligence is accelerating the au-
tonomous unmannedness of the chemical industry
(Burger et al., 2020). As one of the most widely
used catalysts in chemical industries, the automated
synthesis of zeolite can break the limitations of tra-
ditional synthesis process in terms of constrained
experimental time of researchers, effectively im-
proving the experimental efficiency (Moliner et al.,
2019).

The first step in carrying out automated syn-
thesis of zeolite is to enable the machine to un-
derstand the experimental procedures. Recently,
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there has been a massive increase in the literature
and patents of zeolite synthesis experiments, which
have documented considerable chemical reaction
steps. These synthesis steps can guide the synthesis
of specific zeolites and enable the exploration of
new zeolites. Natural language processing (NLP)
techniques allow automatic mining of these synthe-
sis data from materials science literature on a large
scale (Kim et al., 2020; Raccuglia et al., 2016; Kim
et al., 2017; Kononova et al., 2019). The purpose
of conducting such analyses falls into two cate-
gories: (1) to get deeper scientific understanding
of materials synthesis (Krallinger et al., 2017); (2)
to implement further research on automated syn-
thesis planning, e.g., enabling robots to perform
certain experiments (Kim et al., 2019; Rohrbach
et al., 2022). But for intelligent machines, there is
a huge gap between unstructured records of zeo-
lite synthesis procedures and structured program-
ming languages in terms of semantic understand-
ing. Therefore, it is still a challenge to analyze the
unstructured experimental narratives and automati-
cally extract machine-readable structured synthesis
steps while implementing automated synthesis.

Previous works have leveraged NLP techniques
to extract reaction steps from organic and inorganic
chemical synthesis procedures, most of which
mostly used named entity recognition (NER) or
relationship extraction (RE) to extract chemical en-
tities and inter-entity relationships, ignoring the
complete synthesis steps. Aiming to extract struc-
tured synthesis information from experimental nar-
ratives for automated synthesis platform, Mehr et al.
(2020) summarized the chemical synthesis steps
and designed a rule-based model to extract the de-
tails of these synthesis steps. Vaucher et al. (2019)
constructed a sequence-to-sequence deep learning
model to convert unstructured experimental narra-
tives into predefined action sequences. However,
the machine translation approach failed to yield
fine-grained structured experimental actions. To
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Figure 1: Annotation example. Below is the extracted structured information on zeolite synthesis steps.

promote the research on deep learning-based meth-
ods for chemical information extraction, Mysore
et al. (2019) introduced a dataset of 230 synthe-
sis procedures, where the operations and entities
(e.g., materials and conditions) were annotated. He
et al. (2020) introduced event extraction task and
released a dataset for chemical event extraction that
only defined two event types, which failed to dis-
tinguish between the different experimental steps.
Thus, a dataset with comprehensive fine-grained
synthesis information of experimental steps was ur-
gently needed to perform automated and modular
synthesis.

In this paper, we formulate an event extraction
(EE) task to extract fine-grained structured informa-
tion of synthesis steps directly from zeolite exper-
imental procedures. Based on this task, we intro-
duce a novel dataset, ZSEE, which contains nearly
5000 sentences extracted from the literature on
the synthesis process of different types of zeolites.
Specifically, we summarize all experimental steps
of zeolite synthesis and define 16 refined synthesis
actions (e.g., Add and Stir) and the corresponding
13 synthesis properties (e.g., material, temperature
and duration). The event triggers and arguments
of each sentence in the ZSEE are annotated with
text spans. Both humans and intelligent machines
can easily capture these synthesis details from our
annotations (e.g., stir at 80 ◦C for 45 min). An
annotated example is shown in Figure 1.

To evaluate the performance of the state-of-the-
art (SOTA) EE methods for the zeolite synthesis
event extraction task, we conduct extensive experi-
ments in ZSEE. We implement two main classes of
EE methods to evaluate event detection (ED) and
event argument extraction (EAE) tasks in ZSEE,
namely classification-based and generation-based
methods. The classification-based method per-
forms best for ED with the exact match F1 score

of 92.46%. The results of these methods are all
actually competitive on the ED task. Since triggers
of zeolite synthesis events are with single expres-
sions, deep learning-based models can detect these
words well. The generation-based method achieves
better results for EAE with the exact match F1
score of 68.73%. Observing the disparity between
ED and EAE results, we further explore the SOTA
EAE methods, which achieve 5.44% gains over
the generation-based EE method. Recalling the
event arguments contain key information for accu-
rate synthesis planning, we urge the development
of a better model for event argument extraction of
zeolite synthesis.

Our contributions can be summarized as follows:

• We formulate a novel event extraction task for
zeolite synthesis and provide a fine-grained
event schema covering all synthesis steps in
practical experiments for automated synthesis.

• We present ZSEE, a new zeolite synthesis
event extraction dataset. ZSEE consists of
nearly 9000 zeolite synthesis events. To the
best of our knowledge, ZSEE is the largest
dataset for automated synthesis to date.

• We have conducted extensive experiments on
ZSEE to evaluate the performance of current
SOTA event extraction methods, formed a
benchmark for zeolite synthesis event extrac-
tion, and presented challenges for future re-
search in this area.

2 Related work

2.1 Chemical synthesis corpus

The scientific literature has been the key source
for researchers to obtain information about the syn-
thesis process of specific materials. Except for
constructing structured databases (e.g., Reaxy and
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SciFinder), researchers designed some information
mining tools to automatically extract chemical in-
formation. ChemicalTagger (Hawizy et al., 2011)
and ChemDataExtractor (Swain and Cole, 2016)
were proposed to capture the entities related to
chemical synthesis reactions and the relationships
between these entities.

With the help of deep learning-based methods,
the efficiency and accuracy of information extrac-
tion can be greatly improved, where highly accu-
rate and well-labeled training data is indispensable.
Mysore et al. (2019) introduced a dataset of 230
inorganic material synthesis procedures, which an-
notated synthesis operations, typed arguments and
their relationships. Kononova et al. (2019) pro-
posed a dataset for inorganic solid-state synthesis
recipes and designed 5 categories of effective oper-
ations. CHEMU (He et al., 2020) provided a corpus
of labeled synthesis events, which defined experi-
mental events as reaction step events and workup
events, representing the conversion of starting ma-
terials into products and the separation and purifi-
cation of products respectively. Although these
datasets introduced the concept of events to repre-
sent synthesis steps holistically, their constrained
event schema failed to distinguish between differ-
ent synthesis operations to perform modular ex-
periments. We annotate synthesis procedures with
more specific and fine-grained event definitions of
different synthesis operations based on practical ze-
olite synthesis experiments. The annotated results
are explicitly grouped according to experimental
steps, allowing humans and machines to directly
perform corresponding modular experiments based
on fine-grained events.

2.2 Chemical information extraction
Most current research on chemical information ex-
traction has focused on NER (Wang et al., 2021;
Panapitiya et al., 2021; Friedrich et al., 2020), RE
(Xu et al., 2023) or the combination of both (Yang
et al., 2022), with less research on extracting struc-
tured chemical synthesis information through event
extraction. ChemRxnExtractor (Guo et al., 2022)
formulated the chemical reaction extraction as a
structure prediction task, which identified the prod-
ucts through NER and further extracted the reaction
roles through RE. Such pipeline chemical informa-
tion extraction methods fail to provide information
about the complete synthesis steps. Thus, we for-
mulate the EE task for zeolite synthesis and support
the research with fine-annotated data.

End-to-end extractive and generative approaches
achieved better performance in other domains
(Song et al., 2023). Li et al. (2020); Du and Cardie
(2020) converted EE into a multi-round question-
and-answer task by designing different questions
to obtain triggers and event arguments. Liu et al.
(2022) and Hsu et al. (2022) designed specific tem-
plates for each event type and converted EE into
conditional generation task, which usually lever-
aged the pre-trained models (PLM). Introducing
prior knowledge of templates allowed PLM to gen-
erate the target triggers and arguments more accu-
rately. We mainly explored these extractive and
generative event extraction approaches on ZSEE,
designing specific questions and templates for dif-
ferent zeolite synthesis events.

3 Dataset Construction

3.1 Task definition and schema

Our proposed zeolite synthesis event extraction
task aims to extract information about the synthesis
steps, including the experimental actions and cor-
responding properties. Figure 1 shows an example
of the task. The novel task can also be divided
into event detection and event argument extraction
(Li et al., 2022). ED aims to identify the synthesis
actions (i.e., triggers) and specify the action types
in the experimental text. EAE aims to extract the
properties corresponding to actions (i.e., event ar-
guments) and specify the role relationship between
triggers and arguments in a sentence.

We summarize the synthesis actions that occur in
the process of zeolite synthesis and regard them as
traditional event types, such as Add and Stir. The
action properties are considered as event arguments,
such as temperature and duration corresponding
to Stir. More specifically, in this task, we design
a set of synthesis actions with predefined proper-
ties based on zeolite synthesis narratives, which
cover all operations of conventional zeolite synthe-
sis. The event schema contains 16 event types and
13 argument roles.

We have detailed the three types of synthesis
actions that occur frequently in ZSEE:

Add indicates that some materials are added to
the container at a specific temperature, with argu-
ments specifying material, temperature and con-
tainer.

Stir means that the mixture is stirred with full
contact for a while, whose arguments include dura-
tion, temperature, stirring rate and the sample.
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Annotation Fleiss’ Kappa

Span-level labels 0.89
Trigger labels 0.91
Argument labels 0.83

Table 1: Inter-annotator agreements in ZSEE. Span-
level labels mean the overall agreements.

Wash describes that the product is washed sev-
eral times with some solvent, with arguments spec-
ifying solvent, times, and the sample.

The event arguments are detailed information to
the synthesis steps, e.g., the Stir action is further
supplemented by duration, temperature and stirring
speed to form a complete synthesis step. For the
filtration and centrifugation actions of the zeolite
synthesis, we define them as Particle Recovery for
the sake of professional presentation. Details of all
event types and arguments and their corresponding
descriptions are shown in Appendix A.

3.2 Data annotation

3.2.1 Data Collection
To standardize the event extraction task for zeolite
synthesis, we collect publicly available English lit-
erature containing specific synthesis steps from the
database of the University Library, which is cre-
ated under the agreement with scientific publishers
such as Springer and Elsevier. We extract synthesis
step-related passages from over 1000 scientific doc-
uments and split them into sentences. We manually
annotate these sentences and preserve nearly 5000
sentences after removing duplicates. Note that the
DOI of each sentence was always recorded to en-
sure that each annotated text could be traced back
to the original data.

3.2.2 Annotation Process
We employed 11 graduate students in chemistry
and computer science to carry out the annotation
work, three of whom acted as reviewers, checking
the quality and consistency of the annotations and
determining the final annotation results. Note that
the annotators we hired were professionally trained
and the reviewers all had extensive experience in
zeolite synthesis experiments.

Each sentence in ZSEE was annotated by two
annotators and one reviewer. We used DoTAT (Lin
et al., 2022) to annotate the zeolite synthesis data.
Our annotation process followed strict annotation
guidelines to ensure that all experimental steps in

Train Dev Test Total

Sentences 3931 504 526 4961
Events 6966 935 972 8873
Arguments 11353 1475 1503 14331
Tokens 26.44 26.49 26.19 26.27

Table 2: Key statistics of ZSEE. Tokens mean the aver-
age number of tokens per sentence.

each sentence were annotated. The action type
was first determined by specifying the span of the
trigger. We then analyzed the specific properties
associated with the identified event throughout the
sentence. Once both annotators had completed
their annotations, the review function provided by
DoTAT automatically merged the two annotation
results. The reviewer could check the inconsistent
information and adjust the annotation results to the
best. Besides, The reviewers constantly clarified
terms that raised questions during the review pro-
cess to ensure the quality of our annotations. An-
notation guidelines and further annotation details
are provided in Appendix B.

The annotation results were stored in a JSON file
which structurally recorded synthesis action events,
including the action type, triggers, and spans and
roles of arguments. Based on the annotation results,
researchers and intelligent machines could obtain
all the structured information about the zeolite syn-
thesis in the experimental procedures.

3.2.3 Data Validation
We report the inter-annotator agreements (IAA) be-
tween all three expert reviewers based on a collec-
tion of 200 zeolite synthesis sentences in Table 1,
where the numbers we report are Fleiss’ Kappa
scores. The overall agreement on the span-level
labels is 0.89, which proves the quality of our an-
notations. We also observe that the agreements
on labels correspond to triggers and arguments are
different. The experimental properties (i.e., argu-
ment roles) tend to be more ambiguous and the
annotators show more subjectivity when annotat-
ing these ambiguous arguments such as material,
which causes a lower agreement of the arguments.

3.3 Dataset analysis

ZSEE contains a total of 4961 sentences, including
8873 annotated events and 14331 zeolite synthesis
arguments. To the best of our knowledge, ZSEE is
the first and largest dataset in the domain of zeolite
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Figure 2: Data distribution of event type on the training,
validation and test set.

synthesis. We also compare ZSEE with previous
event extraction datasets, including the common do-
main datasets ACE2005 (Doddington et al., 2004)
and ERE-EN, the historical event dataset BRAD
(Lai et al., 2021), and the pharmacovigilance event
dataset PHEE (Sun et al., 2022). The statistics de-
tails are shown in Appendix C, where ZSEE shows
strong competitiveness.

We divide the training, validation and test set
in a ratio of 8:1:1. Table 2 lists the key statistics,
including the number of sentences, events and ar-
guments in subsets. We keep the number of event
types balanced across subsets to ensure the con-
sistency of data distributions. Figure 2 shows the
proportion of each event type, which indicates that
the data distributions are very similar across the
three subsets. The exact number of each event type
is recorded in Appendix C.

4 Experiments

Inspired by PHEE (Sun et al., 2022), we explore
the performance of two mainstream classes of
event extraction methods (classification-based and
generation-based methods) on ZSEE to reveal the
challenges in zeolite synthesis event extraction.
Specifically, to achieve better performance, we de-
sign questions and templates with experimental
logic of zeolite synthesis for these methods respec-
tively.

4.1 Benchmark Methods

Classification-based Method: We primarily eval-
uate recent classification-based extractive question-
and-answer (QA) methods. Inspired by EEQA (Du
and Cardie, 2020), we construct a two-stage QA
model, where separate questions are designed for
the ED and EAE subtasks. The question for ED
denotes Q1: What happened in the zeolite synthe-
sis event? The question for EAE question denotes

Q2: What is the <argument> in <trigger>? Note
that the classification-based approach is to identify
the trigger first. The arguments are then extracted
based on the identified event type. The <trigger>
is replaced by the identified trigger and the <argu-
ment> therefore refers to all the argument roles for
the predicted event type.

We leverage the pre-trained model BERT (De-
vlin et al., 2019) to answer the corresponding ques-
tions. The model framework is shown in Figure 3,
where two separate BERT models are used for
the ED and EAE, respectively. The inputs for
both models are "[CLS] <Qi> [SEP] <sentence>
[SEP]", where [CLS] and [SEP] are placeholds for
BERT, <Qi> denotes the question defined above,
i.e., Q1 and Q2, and <sentence> is the source sen-
tence. In the ED task, BERT outputs the probabil-
ity of the event type for each token in the sentence,
thus determining all event triggers and the corre-
sponding event type based on an appropriate thresh-
old. In the EAE task, BERT predicts the start and
end offsets of the argument. Previous work proved
that different questions will affect the accuracy of
the results. Thus, we have conducted experiments
with different questions to explore the best setting
in Appendix E.

Generation-based Method: The classification-
based method could lead to error propagation be-
cause the result of EAE depends on the trigger
extracted in the first stage. Moreover, the phased
extraction of triggers and arguments ignores the
potential relationship between them. Thus, We
follow DEGREE (Hsu et al., 2022) to construct a
joint generation-based model that generates both
trigger and event arguments simultaneously. De-
signing effective prompting templates is the key
to the generation-based approach. We design the
unified template Template_trigger for ED, i.e.,
Event trigger is <trigger>, where <trigger> is the
placeholder for the trigger to be predicted. To ex-
tract the event arguments, specific templates are
designed for each event type in the event schema.
The templates Template_args for the top three
most frequently mentioned action types are shown
below:

Add: something was added to container at
temperature.

Stir: something was stirred at temperature at
revolution per minute for some time.

Wash: wash something with something by
several times.

The underlined words indicate the arguments
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Figure 3: Model framework. The example sentence "36.5 g boehmite was mixed with 100 g distilled water." is
highlighted. The illustrations show the question and template settings for classification-based and generation-based
methods respectively and their corresponding extraction process.

to be predicted. The model captures the span of
text in the source sentence and predicts the specific
content to replace these underlined words. The
templates of all event types are documented in Ap-
pendix E.

We use the pre-trained model BART (Lewis
et al., 2020) to generate sentences containing
all event information. Specifically, the input
of the model is "<Sentence> <Description>
<Template_trigger> <Template_args>". Note
that <Sentence> denotes the source sentence.
<Description> is a complementary description
of the given event type, including the event
definition and possible trigger words, e.g., the
<Description> for Add is "The event is related
to zeolite synthesis step and something is added to
the container. Similar triggers are add, mix and dis-
solve". The output is then "<Template_trigger>
<Template_args>" with the underlined words re-
placed, as shown in Figure 3, where the event type
and argument roles are predicted simultaneously.

EAE Method: Considering the multi-argument
characteristic, we further explore the performance
of SOTA EAE methods. Specifically, we follow the
AMPERE (Hsu et al., 2023) and PAIE (Ma et al.,
2022). AMPERE introduces abstract meaning rep-
resentation (AMR) based on the DEGREE, which
generates AMR-aware prefixes for the generative

model. PAIE designs extra selectors for the start
and end position of the argument span upon the
generative model to more accurately identify the
arguments. The backbones of the above two meth-
ods are the same as the generation-based approach
shown in Figure 3.

4.2 Evaluation Metrics
Based on the task definition in Section 3.1, we eval-
uate the two subtasks ED and EAE separately. (1)
For event detection, a trigger is correctly identified
if the predicted offset matches the golden offset
(Tri-I). If the predicted event type also matches the
golden type, the trigger is then correctly classified
(Tri-C). (2) For event argument extraction, an ar-
gument is correctly identified (Arg-I) if its start
and end offset both match the golden offset, and
correctly classified (Arg-C) if its role also matches
the golden role. We use the same metric that is
commonly used in event extraction work (Li et al.,
2013), namely the micro-F1 metric.

4.3 Overall Experimental Results
We have designed different questions and templates
to discover the most suitable settings for zeolite
synthesis event extraction. The results presented
in this section are all from the best question and
template settings, while the results for the other
settings are detailed in Appendix E. Besides, the
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Method Type PLM Tri-I Tri-C Arg-I Arg-C

EEQA (Du and Cardie, 2020) cls
BERT-b 93.75 92.43 67.27 66.76
BERT-l 93.48 92.46 68.13 67.86

DEGREE(Hsu et al., 2022) gen
BART-b 91.08 91.08 68.04 67.70
BART-l 91.91 91.91 69.21 68.73

AMPERE(Hsu et al., 2023) gen
BART-b - - 71.49 70.94
BART-l - - 72.12 71.70

PAIE(Ma et al., 2022) gen
BART-b - - 74.52 74.01
BART-l - - 74.58 74.17

Table 3: Overall performance. Note that b denotes the base model and l denotes the large model in column PLM.
The best results are highlighted in bold. - indicates no results as AMPERE and PAIE are designed for EAE only.

training details and hyperparameter settings are
shown in Appendix D.

Table 3 compares the performance of different
SOTA methods on ZSEE. The classification-based
method achieves the best performance in event de-
tection, with the exact match F1 score of 92.46%.
Although the generation-based method shows a
decrease in accuracy, it also still achieves the ex-
act match F1 score of 91.91%. These methods
all achieve exciting results on the ED task, which
is much higher than their performance on other
datasets such as ACE2005 corpus (Doddington
et al., 2004). We have analyzed the corpus of zeo-
lite synthesis and found that the representation of
trigger for a given synthesis step is relatively single
by different authors. In the case of the synthesis
event Dry, for example, this synthesis action is
mostly described by the word "dry" and its differ-
ent tense and morphological variants. Thus, the
large pre-trained language models possess the abil-
ity to identify a finite number of triggers accurately.
There are definitely also some action types that are
documented in a variety of ways, e.g., the synthe-
sis step Add is documented as "add, put, charge,
dissolve, mix, pour, introduce, etc.".

The generation-based method achieves better
results in event argument extraction, with an
improvement of 0.87% F1 score compared to
the classification-based method with large model.
Since the generation-based method introduces
more information related to zeolite synthesis
through the designed template, the model can focus
on the target arguments. However, the results of the
current EE method with the best F1 score of 68.73%
still cannot support the development of automated
synthesis of zeolite because the event arguments
contain detailed information about the experimen-
tal steps. Thus, we further explore the performance

Event Type Tri-I Tri-C Arg-I Arg-C

Add 94.55 93.73 55.59 55.42
Stir 97.18 96.37 75.07 75.07
Wash 95.11 94.77 65.09 65.09
Dry 95.03 95.03 83.49 83.16
Set PH* 82.93 82.93 58.33 58.33
Rotate* 87.50 87.50 66.67 66.67
Sonicate* 80.00 80.00 60.00 60.00

Table 4: Results for different event types through the
classification-based method with BERT-large. Event
types are sorted according to their number. Event types
with less than 100 in the training set are marked with *.

of the SOTA EAE model on ZSEE. Table 3 shows
that with the introduction of role-specific selectors
and joint prompts, the EAE results achieve promis-
ing improvements, with 5.37% and 5.44% F1 gains
in Arg-I and Arg-C, respectively.

Further, in order to explore the performance of
the current PLMs on ZSEE, we conduct experi-
ments with pre-trained models of different sizes.
The results in Table 3 show that larger PLMs en-
able better performance than the base PLMs for
both ED and EAE tasks.

4.4 Error Analysis and Challenges

We have summarized the common errors of the
methods mentioned above on ZSEE and suggested
directions that could be investigated and improved
in the future.

4.4.1 Challenge of Abstract Expression
We observe that the most frequent error is in the ex-
traction of compounds. Existing methods struggle
to achieve accurate extraction of complex chemi-
cal entities, especially for abstract representations.
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Sentence Type Tri-I Tri-C Arg-I Arg-C

Short sentences 95.85 94.01 70.21 70.21
Medium sentences 93.89 92.66 69.14 68.79
Long sentences 91.43 90.00 55.85 55.10

Table 5: Results for sentences with different lengths, which are all from the EEQA with BERT-large.

Descriptions of zeolite synthesis often contain addi-
tions to the experimental material, such as "deion-
ized water (331.22 g)". The weight of deionized
water is supplemented in brackets. Current meth-
ods often identify "deionized water" as the material
and ignore the information in brackets which is also
important for the experiment. Instead, we find that
these methods can identify "331.22 g deionized
water" very well. When adding dose information
or molar mass, some authors also record the com-
pany from which the compound is derived. These
abstract records cannot be effectively identified. Al-
though there have been calls for uniform writing
styles (Kim et al., 2019), descriptions of the zeolite
synthesis often vary between authors, with abstract
descriptions remaining a challenge for current deep
learning-based methods. Considering the power-
ful semantic understanding performance of PLMs,
adding more prompts, such as the description or
examples of abstract expressions, might be an ef-
fective way to mine the ability of models to address
abstract representations.

4.4.2 Challenge of Limited Resource
There is a large imbalance in the sample size for
the different event types, as shown in Table 7 in Ap-
pendix C. Add and Stir, the most common chemi-
cal synthesis actions, have more than 1000 events in
ZSEE. Compared with relatively rare action types
such as Set PH, the number of Add is even tens
of times higher. Table 4 presents the extraction
results for the top several event types of the highest
and lowest number of events with the classification-
based method. The results become progressively
worse as the amount of data gets smaller. The ED
results for event types (such as Set PH and Rotate)
with less than 100 events are all below 90%. Mean-
while, Sonicate with the lowest number of events
performed 23.16% lower than the best result of Dry
on the EAE task. Note that although Add is the
most numerous action type, its results on EAE still
need to be improved because the main argument
material causes the errors in Section 4.4.1.

Event extraction in low-resource scenarios has

always been a worthwhile research direction, and
zeolite synthesis event extraction is no exception.
The amount of each event type can be increased
in the future through data augmentation strategies.
Besides, introducing contrastive learning or lever-
aging existing large language models is also the
potential direction to improve the few-shot learn-
ing ability.

4.4.3 Challenge of Long Sentences

Table 2 shows that the average number of tokens
per sentence in ZSEE is approximately 26. How-
ever, there are many excessively long sentences
in the zeolite synthesis narratives. We classify all
sentences into short, medium and long sentences
according to the number of tokens, as shown in
Table 9 in Appendix C. Short sentences have less
than 15 tokens, medium sentences have between
15 and 40 tokens, and long sentences have more
than 40 tokens. Table 5 presents the performance
of the classification-based method on these three
types of sentences. As the sentences become longer,
the model performance decreases significantly. In
particular, on the EAE task, the results for long
sentences decreased by 15.11% compared to short
sentences. It is worthwhile to explore how to ac-
curately identify different events from long and
complex sentences and capture the correlation be-
tween event triggers and arguments across long
distances. Reasonably truncating long sentences
into short ones might be feasible, and introducing
some extra attention mechanisms or graph-based
information might improve the ability of the model
to capture the long sentence dependencies.

To address these errors, we have conducted fur-
ther experiments with the Large Language Model
(LLM) (Ma et al., 2023), as shown in Appendix F.
We observe that LLM suffers from extraction hal-
lucinations on ZSEE, mainly in confusing the ar-
gument roles of different events. Therefore, we
still look forward to further research on ZSEE to
effectively address the above challenges, both on
large and small language models.
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5 Conclusion

In this paper, we present the Zeolite Synthesis
Event Extraction dataset, ZSEE, which contains
nearly 5000 sentences collected from the literature.
We design a comprehensive event schema includ-
ing 16 event types and 13 event arguments, which
cover all experimental steps of zeolite synthesis.
Fine-grained event annotations for each sentence
are further provided. We have performed extensive
experiments on ZSEE and analyzed the strengths
and weaknesses of current state-of-the-art meth-
ods. We also explore the limitations of the large
language model on ZSEE, which highlights the ne-
cessity of ZSEE. Furthermore, we summarize the
challenges and research directions in ZSEE, which
can effectively drive the development of zeolite
synthesis event extraction for automated synthesis.
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Limitation

We present the largest dataset of zeolite synthe-
sis event extraction to our knowledge. Neverthe-
less, our dataset has several limitations. First, in
terms of annotation quality, although all texts are
annotated by two annotators and reviewed by an
experienced reviewer, the reviewers mainly check
for inconsistencies between two annotation results.
The reviewers usually do not add new annotations
that both annotators might have missed, resulting
in some event information being missed. Second,
although we have collected nearly 5000 sentences,
ZSEE may still not meet the data requirements of
the current deep learning methods. It is essential
to provide more data with high-quality annotations.
Third, the event schema that we design mainly cov-
ers the operational steps in the zeolite experimental
procedure. But the information on the order of
the experiments for each sentence is not annotated,
which is also important for automated synthesis.
One solution is to determine the order of events

by developing rules (e.g., capturing words such as
"after" and "before").
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Appendix

A Event Schema

The definitions of all 16 action events are as fol-
lows.

Add indicates that some materials are added to
the container at a specific temperature, with argu-
ments specifying material, temperature and con-
tainer.

Stir means that the mixture is stirred with full
contact for a while, whose arguments includes du-
ration, temperature, revolution and the sample.

Age means waiting a period of time for the reac-
tion, with arguments specifying duration, tempera-
ture, revolution and the pressure.

Wash describes that the product is washed sev-
eral times with some solvent, with arguments spec-
ifying solvent, times, and the sample.

Dry indicates that the product is dried in the con-
tainer for a while at a specific temperature. The
corresponding arguments contain duration, temper-
ature, container and the specific condition.

Calcine indicates that the product is calcined at
high temperature. The corresponding arguments
contain duration, temperature, container, sample
and the specific condition.
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Figure 4: Annotation example with DOTAT (Lin et al., 2022).

Particle Recovery indicates that experimental
operations such as filtration are carried out to re-
cover the clean product. The corresponding argu-
ments contain material, duration and revolution.

Set PH means that the product is brought to a
specific pH value by adding material, with argu-
ments specifying material and PH.

Cool means that the temperature of the product
is reduced to a specific value, with arguments speci-
fying duration, temperature, container, sample and
the specific condition.

Heat means that the temperature of the product
is increased to a specific value, with arguments
specifying duration, temperature, container, sam-
ple, pressure, revolution and heating rate.

Crystallize is the key experimental step in ze-
olite synthesis, where the amorphous compound
is converted to a crystalline state, with arguments
specifying duration, temperature, container, pres-
sure and revolution rate (or revolution text).

Transfer means that the product is transferred
from one container to another, with arguments spec-
ifying sample and container.

Seal indicates that the product is kept in a sealed
container, with arguments specifying sample and
container.

Sonicate means that the product is washed by
ultrasound, with arguments specifying sample and
solvent.

React refers to ordinary reactions not specifi-
cally described in zeolite synthesis corpus, such
as the reaction of materials at a specific tempera-
ture. The corresponding arguments contain dura-
tion, temperature, material and the specific condi-
tion.

Rotate refers to the direct rotation of a container,
with arguments specifying duration, temperature,
container, and revolution.

We list the definitions of all 13 event arguments
to clarify the important role they play in the synthe-
sis steps.

duration, temperature and pressure indicate the
duration, temperature and pressure of the experi-

ment respectively.
materials are compounds, both liquid and solid,

which are added during experimental operations.
container indicates the container where the syn-

thesis action is carried out.
sample is the subject of the reaction, which is

different from the material.
solvent indicates the solvent to which the wash-

ing product is added.
times refers to the number of washings.
condition indicates the specific conditions under

which the reaction is operated, e.g., performing the
synthesis step in air.

revolution indicates the reaction is carried out at
a specific revolution per minute, which is a com-
mon property of zeolite synthesis action.

revolution text indicates an abstract textual rep-
resentation of the rotation, which indicates the pres-
ence or absence of the attribute rotation, while rev-
olution refers to a specific value.

rate indicates that the temperature increases at a
certain rate to a specific value.

PH indicates the specific pH value of the prod-
uct.

B Annotation Guide

We provide an example to illustrate our annotation
process in detail. Figure 4 shows an example of
the annotation of the sentence "36.5 g boehmite
was mixed with 100 g distilled water and stirred
for 45 min at 80 °C." through DoTAT (Lin et al.,
2022). The first synthesis event Add with the trig-
ger "mixed" is annotated and then corresponding
arguments are determined including material, as
shown in Figure 4 (a). We then annotate the next
synthesis event Stir with the trigger "stirred" and
arguments temperature and duration, as shown in
Figure 4 (b).

During the annotation, to bridge the potential
expertise gap between chemistry and computer sci-
ence annotators, we design a multi-round error cor-
rection. In the beginning, all the annotators are
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Dataset Split Sents Events Event Types Args Arg Roles

ACE2005
Train 17172 4202 33 4859 22
Dev 923 450 21 605 22
Test 832 403 31 576 20

ERE-EN
Train 14736 6208 38 8924 21
Dev 1209 525 34 730 21
Test 1163 551 33 822 21

BRAD
Train 3847 2720 12 6057 6
Dev 925 606 12 1219 6
Test 866 933 12 2570 6

PHEE
Train 2898 3006 2 7230 3
Dev 961 1003 2 2428 3
Test 968 1010 2 2377 3

ZSEE (Ours)

Train 3931 6966 16 11353 13
Dev 504 935 16 1475 13
Test 526 972 16 1503 13
Total 4961 8873 16 14331 13

Table 6: Key statistics of ZSEE and other EE datasets. Sents, Events, Event Types, Args and Arg Roles denotes the
number of sentences, events, event types, arguments and argument role types, respectively. Note that the PHEE
designs a hierarchical event schema and we report the number of main arguments here.

trained to ensure that they hold a common under-
standing of the event schema and annotation guild.
The annotators would record the problem sentences.
After a fixed number of annotations, all annotators
would meet to discuss and analyze these problems.
Annotators from computer science would propose
solutions from an NLP perspective, while chem-
istry annotators might provide solutions based on
their synthesis experimental experience. Based on
the above discussion, the unified knowledge of all
annotators are gradually refined and the accuracy
of the annotation is also guaranteed.

C Event statistics

Table 6 shows the details and differences be-
tween ZSEE and other common or domain-specific
datasets. Although ACE2005 provides a larger
number of sentences than ZSEE, with 17,172 sen-
tences in the training set, there are only 3,136 sen-
tences containing events. We provide the largest
number of annotated events and event arguments
compared to these datasets. Besides, each sentence
in ZSEE contains an average of three event argu-
ments. Thus, performing event argument extraction
on ZSEE, where more argument dependencies need
to be considered, is more challenging than on other
datasets.

In our proposed dataset ZSEE, different event
types occur with different frequencies. We count
the number of each event type in the training, val-
idation and test sets, as shown in Table 7. Note
that the division of training, test and validation sets
in section 3.3 is mainly based on the consistency
of event types. Besides, Table 8 shows the statis-
tics of event argument roles. Table 9 presents the
distribution of short, medium and long sentences.

D Experiment Details

The training details and hyperparameter settings for
the experiments that we implement are as follows.

Classification-based method: We fine-tune the
EEQA (Du and Cardie, 2020) to conduct experi-
ments on ZSEE. We explore the performance of
BERT-base and BERT-large (Devlin et al., 2019)
through the Huggingface package (Wolf et al.,
2020). The batch size and learning rate of both
models for event detection are 32 and 4 × 10−5,
respectively. When training the event argument
extraction models, we set the batch size to 16. The
maximum training epoch is 30 for each experiment.
Note that experiments are conducted on NVIDIA
GeForce RTX 3090 GPUs.

Generation-based method: We follow DE-
GREE (Hsu et al., 2022) to achieve end-to-end
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Event Type Train Dev Test Total

Add 1959 230 242 2431
Stir 1005 112 123 1240
Wash 591 95 105 791
Dry 570 96 95 761
Particle Recovery 558 96 88 742
Heat 517 65 77 659
Transfer 399 52 57 508
Calcine 368 53 51 472
Crystallize 324 48 42 414
Cool 193 33 28 254
Age 183 21 27 231
React 113 11 17 141
Seal 76 12 8 96
Set PH 59 6 7 72
Rotate 39 3 3 45
Sonicate 12 2 2 16

Table 7: Statistics of event types on ZSEE.

Argument Role Train Dev Test Total

material 3802 455 480 4737
temperature 2258 301 306 2865
duration 2110 279 283 2672
container 1019 121 121 1261
sample 949 132 128 1209
solvent 568 90 98 756
condition 248 40 40 328
revolution 147 17 14 178
times 77 15 10 102
PH 63 6 7 76
rate 45 8 11 64
pressure 51 8 3 62
revolution_text 16 3 2 21

Table 8: Statistics of event arguments on ZSEE.

generative event extraction of zeolite synthesis. We
fine-tune BART (Lewis et al., 2020) with different
sizes, i.e., BART-base and BART-large. We set the
batch size to 32. The model is trained for 40 epochs
with a learning rate of 1×10−5. We set the number
of negative examples for each sample to 15.

EAE method: To evaluate the performance of
the SOTA EAE methods on ZSEE, we fine-tune
the code of PAIE (Ma et al., 2022), where we also
train two models based on BART-base and BART-
large. We set the batch size to 16. The maximum
training epoch and learning rate are 40 and 2 ×
10−5, respectively. Besides, AMPERE (Hsu et al.,

Sentence Type Train Dev Test Total

Short sentences 613 85 85 783
Medium sentences 2862 359 381 3602
Long sentences 456 60 60 576

Table 9: Statistics of sentences with different lengths
on ZSEE.

2023) keep the same settings as DEGREE. We use
the SOTA AMR-to-text model AMRBART (Bai
et al., 2022) to introduce the AMR information1.

E Detailed Experiment Results

We design different question templates for
classification-based method and generative tem-
plates for generation-based method to explore the
best settings for current methods.

Classification-based method: We design six
question templates for event detection, as shown in
Table 10. Table 11 presents five question templates
for event argument extraction. The descriptions of
synthesis process added to the questions help the
model to achieve better results.

Generation-based method: Table 12 show the
templates we design for each event type in DE-
GREE and AMPERE. We express the arguments in
a more natural way and aggregate them in a single
sentence. For instance, we use "several times" to
represent the argument times. Note that in the infer-
ence stage, the model enumerates all 16 templates
of each event type and generates the templates filled
with the target event content present in the source
sentence. The structured event triggers and argu-
ments can be parsed directly through comparing
the output with the initial template.

EAE method: Inspired by PAIE (Ma et al.,
2022), we explore the performance of three types
of templates. The concatenation template just con-
catenates all argument roles of the given event type,
while the soft template connects different roles with
learnable, role-specific pseudo tokens. The manual
template designs natural language to connect all
argument roles for specific types. We show an ex-
ample of the above three templates in Table 13. The
results of different templates are shown in Table 14.
The manual template with the base model outper-
forms other template settings, which is consistent
with the research intuition that well-designed tem-
plates are more semantically coherent and provide

1https://github.com/goodbai-nlp/AMRBART
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Questions PLM Tri-I Tri-C

What is the trigger in the event? BERT-b 93.69 92.14
BERT-l 94.00 92.36

What happened in the event? BERT-b 93.60 92.28
BERT-l 93.81 92.58

What happened in the zeolite synthesis event? BERT-b 93.75 92.43
BERT-l 93.48 92.46

action BERT-b 93.34 91.71
BERT-l 93.67 92.23

synthesis action BERT-b 92.85 91.53
BERT-l 94.11 92.38

null BERT-b 93.14 91.61
BERT-l 93.94 92.42

Table 10: Results of different questions in ED task. The best result of large model is highlighted in bold and the
best result of base model is underlined. Note that b denotes the base model and l denotes the large model in column
PLM.

Questions PLM Arg-I Arg-C

<argument role> BERT-b 55.72 55.47
BERT-l 56.36 55.76

<argument role> in <trigger> BERT-b 67.20 66.82
BERT-l 66.92 66.49

What is the <argument role>? BERT-b 56.42 56.06
BERT-l 56.38 56.07

What is the <argument role> in <trigger>? BERT-b 67.27 66.76
BERT-l 68.13 67.86

Table 11: Results of different questions in EAE task. The best result of large model is highlighted in bold and the
best result of base model is underlined. Note that b denotes the base model and l denotes the large model in column
PLM.

more information about zeolite synthesis. The re-
sults of the large model show that the soft template
achieves best performance with the introduction of
role-specific pseudo tokens, which can significantly
reduce the effort to design the template.

F Results of LLMs

Currently, large language models exhibit strong
few-shot learning and even zero-shot learning capa-
bilities for information extraction (Agrawal et al.,
2022). Following the prompt format in Ma et al.
(2023), we explore the performance of LLMs in
ZSEE. Specifically, we investigate the performance
of LLMs on difficult samples that are difficult to
handle by current SOTA methods. We leverage the
ChatGPT (gpt-3.5-turbo-0301)2 by giving the task
definition and five demonstrations for each event

2https://openai.com/blog/openai-api

type. The results on difficult samples are shown
in Table 15. We observe that when performing the
EAE task, the large language model can extract sev-
eral event arguments that are difficult to identify by
PAIE (the best EAE model on ZSEE). Inevitably,
however, there are hallucinations in the results of
LLM, where arguments that are irrelevant to the
task definition are extracted. The LLM will con-
fuse argument roles between different events, such
as predicting the solvent of Wash in the Add event
in Sample 1. The results of LLM are also not stable
enough, where arguments of other events in the
same sentence are predicted, as shown in Sample 2
and 3.

Thus, it remains difficult to obtain available
structured information on zeolite synthesis for sub-
sequent automated synthesis through LLMs di-
rectly. We assume that LLMs fine-tuned with
knowledge from the chemical synthesis domain can
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Event Type EAE Template

Add something was added to container at temperature.

Stir something was stirred at temperature at revolution per minute for
some time.

Age wait for some time at temperature at revolution per minute under pressure.

Wash wash something with something by several times.

Dry something was dried in container at temperature for some time under
condition.

Calcine something was calcined in container at temperature for some time under
condition.

Particle Recovery something was recovered for some time at revolution per minute by
adding something.

Set PH something was set to PH by adding something.

Cool something was cooled in container at temperature for some time under
condition.

Heat something was heated in container at heating rate to temperature for
some time at revolution per minute under pressure.

Crystallize crystallize in container at temperature for some time at
revolution per minute under pressure under condition.

Transfer something was transferred to container.

Seal something was sealed in container.

Sonicate something was sonicated with something.

React something was treated at temperature for some time under condition.

Rotate something was rotated in container at temperature for some time at
revolution per minute.

Table 12: All EAE templates we designed for ZSEE when training the DEGREE (Hsu et al., 2022) and AMPERE
(Hsu et al., 2023).

achieve better performance, but the fine-tuning pro-
cess is costly. Notably, Ma et al. (2023) and Zhou
et al. (2023) have discussed that LLMs would reach
a performance stagnation with increasing sample
size, whereas the performance of small language
models can often be enhanced. In summary, we
encourage further research on ZSEE to address the
existing challenges to achieve more accurate ex-
traction of experimental information for modular
automated synthesis.
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Types Template Examples

CT sample duration temperature container condition
ST <sample_left_0> sample <sample_right_0> <duration_left_0> duration

<duration_right_0> <temperature_left_0> temperature <temperature_right_0>
<container_left_0> container <container_right_0> <condition_left_0> condi-
tion <condition_right_0>

MT Calcine sample in container at temperature for duration under condition

Table 13: Different templates for ZSEE when training the PAIE (Ma et al., 2022). CT means the concatenation
template, ST indicates the soft template, and MT indicates the manual template. We present the templates of event
type Calcine.

Templates PLM Arg-I Arg-C

Concatenation Template BART-b 73.79 73.28
BART-l 73.90 73.39

Soft Template BART-b 74.30 73.80
BART-l 75.03 74.39

Manual Template BART-b 74.52 74.01
BART-l 74.58 74.17

Table 14: Results of different templates of PAIE (Ma et al., 2022). The best result of large model is highlighted in
bold and the best result of base model is underlined. Note that b denotes the base model and l denotes the large
model in column PLM.
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Sanple PAIE LLM

Sample1: Sodium aluminate (2.16 g) was dissolved in 10 ml

of distilled water in a plastic beaker .

(material, Sodium alumi-
nate (2.16 g))
(material, None)
(container, plastic beaker)

(material, Sodium alumi-
nate (2.16 g))
(material, 10 ml of dis-
tilled water)
(container, plastic beaker)
(solvent, distilled water)

Sample2: 8.51 g (2 mmol) of R2+(OH-)2 solution (0.235 mmol

g-1) was mixed with 0.1 g (0.84 mmol) of a 32 wt%

aqueous solution of NaOH and stirred for 15 min followed
by the addition of 1.5 g colloidal silica (Snowtex1 40, Nissan
Chemical Co.), which consists of 0.6 g (10.0 mmol) of SiO2,
and the mixture was stirred for 30 min.

(material, 0.1 g (0.84
mmol))
(material, None)

(material, 0.1 g (0.84
mmol))
(material, 8.51 g (2 mmol)
of R2+(OH-)2 solution
(0.235 mmol g-1))
(duration, 15 min)
(duration, 30 min)

Sample3: The relative molar composition of the starting
mixture was Ga2O3: P2O5: HF: 70 H2O: 1.7 amine,
obtained by successive addition with vigorous stirring of
0.61 g of orthophosphoric acid (85 wt% in water, Fisher) ,

3.18 g of deionized water , 0.5 g of Ga2O3 , 0.133 g of

hydrofluoric acid (40 wt% in water, Fluka) , and finally 0.36 g
of 1-methylimidazole (Fisher, 99 wt% in water) or the equivalent
amount of pyridine (0.35 g) was added with continuous stirring.

(material, 3.18 g of deion-
ized water)
(material, None)
(material, None)
(material, None)

(material, 0.61 g of
orthophosphoric acid (85
wt% in water, Fisher))
(material, 3.18 g of
deionized water)
(material, 0.5 g of
Ga2O3)
(material, 0.133 g of
hydrofluoric acid (40
wt% in water, Fluka))
(material, 0.36 g of 1-
methylimidazole (Fisher,
99 wt% in water))
(material, equivalent
amount of pyridine (0.35
g))
(action, continuous
stirring)
(container, Not explicitly
mentioned)

Table 15: EAE results of LLMs on difficult samples. The triggers of the given event type are marked in orange font
and the ground-truth arguments are highlighted in light blue. The purple font indicates the extraction errors of PAIE
and LLM.
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