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Abstract

Aspect-based sentiment analysis (ABSA) is a
task that aims to determine the sentiment po-
larity of aspects by identifying opinion words.
Recent advancements have predominantly been
rooted either in semantic or syntactic meth-
ods. However, both of them tend to inter-
ference from local factors such as irrelevant
words and edges, hindering the precise identi-
fication of opinion words. In this paper, we
present Distance-based and Aspect-oriented
Graph Convolutional Network (DAGCN) to
address the aforementioned issue. Firstly, we
introduce the Distance-based Syntactic Weight
(DSW). It focuses on the local scope of aspects
in the pruned dependency trees, thereby reduc-
ing the candidate pool of opinion words. Addi-
tionally, we propose Aspect-Fusion Attention
(AF) to further filter opinion words within the
local context and consider cases where opin-
ion words are distant from the aspect. With
the combination of DSW and AF, we achieve
precise identification of corresponding opinion
words. Extensive experiments on three public
datasets demonstrate that the proposed model
outperforms state-of-the-art models and verify
the effectiveness of the proposed architecture.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a
fine-grained sentiment analysis task that aims to
determine the sentiment polarity of a given aspect
within a sentence. The sentiment polarity can be
classified into three categories: positive, neutral,
and negative. For instance, in Figure 1, the aspect

“skype” can be determined to have positive senti-
ment polarity based on opinion word “cool”. In
fact, opinion words carry certain sentiment infor-
mation and ABSA primarily focuses on identifying
opinion words that are relevant to the aspect.

∗ Corresponding author
† Corresponding author

Figure 1: An example sentence with its dependency tree.
There are two aspects (bolded in black) in this sentence
but these aspects contain opposite sentiment polarities.

Previous studies have explored heavily on atten-
tion mechanism methods and achieved promising
results (Chen et al., 2017; Ma et al., 2017a; Nguyen
and Le Nguyen, 2018; Liu et al., 2018; Ma et al.,
2018; Mokhosi et al., 2019). In these works, At-
tention mechanism is utilized to model the correla-
tion between aspects and context words. However,
they always suffer noise that high weights might
be given wrongly to words that are irrelevant to the
aspect.

For the purpose of filtering out the noise brought
by the attention mechanism, Semantic-Relative Dis-
tance (SRD) is proposed to measure semantic corre-
lation degree (Zeng et al., 2019). It could help atten-
tion mechanism identify opinion words more accu-
rately in local range. Therefore, a plenty of studies
(Liu et al., 2022; Yu and Zhang, 2023) utilized SRD
or its variants to improve ABSA task. However,
this local scope is still large, and it also tends to rec-
ognize other words as opinion words mistakenly.
To prove it, we conduct a statistical analysis of
SRD with the datasets, Lap14 and Res14, provided
by (Fan et al., 2019). Table 1 shows that the data
with SRD <= 2 accounts for approximately 51%
of the total dataset. While the data with SRD <= 6
essentially constitutes the majority of the dataset.

On the other hand, more significant efforts (Tang
et al., 2020; Chen et al., 2021; Yan et al., 2021;
Li et al., 2021b; Tang et al., 2022; Zhang et al.,
2022; Zhong et al., 2023) in ABSA have focused
on dependency tree, which has ability to analyze
syntactic structure from the grammatical perspec-
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Table 1: Statistical ratio of syntactic distance and
semantic-related distance.

Dataset Category <=2 <=4 <=6

Lap14
SD 83.33% 97.27% 99.25%

SRD 51.41% 75.05% 84.84%

Res14
SD 85.86% 98.13% 99.60%

SRD 51.30% 75.85% 87.93%

tive. Subsequently, GCNs and GATs aggregate
node features over the adjacency matrix derived
from the dependency tree to determine the senti-
ment polarity of the aspect. However, dependency
tree just reveals whether syntactic connection exists
between context words and aspects, and it’s hard
to distinguish which words are valuable.

To tackle the issues above, we would like to re-
duce noise in dependency tree just like SRD and
focus on opinion words precisely. Some studies
(He et al., 2018; Zhou et al., 2021; Chen et al.,
2022) have shown that in most cases opinion words
are close to the aspects in a dependency tree, which
means that we can only consider context words
surrounding aspects syntactically. Figure 2 demon-
strates that syntactic distance (SD) between opinion
words and aspects in most cases is shorter than 2
and the data with SD larger than 6 comprises an
extremely small portion. Besides, Table 1 shows
that the amount of data for SD is obviously larger
than the amount of data for SRD when their values
are equal. This statistical result indicates that SD
could better reflect that context words surrounding
aspects are more likely to be opinion words.

Therefore, we propose Distance-based Syntactic
Weight (DSW) computed through Aspect-Oriented
Dependency Tree (Wang et al., 2020). Note that
AODT is utilized from the perspective of SD in our
paper, rather than dependency relationships. DSW
characterizes the syntactic correlation strength be-
tween context words and aspects, and enhances the
precision of identifying opinion words. Then, we
define Distance-based Weighted Matrix (DWM) to
store DSW. Considering that opinion words are far
away from aspects, we introduce Aspect-Fusion
attention (AF) to further discern candidate opin-
ion words within both local and long range scopes.
Finally, we combine DWM and AF to build an adja-
cency matrix and a Graph Convolutional Network
(AoGCN) is constructed over it.

Due to the fact that GCNs over dependency tree
perform poorly on the reviews with informal ex-

Figure 2: Syntactic distance statistics in Lap14 and
Res14.

pression, similar to DualGCN (Li et al., 2021a),
we build another GCN (SaGCN) by employing
self-attention mechanism. Specifically, we incor-
porate a Kullback-Leibler (KL) divergence loss to
ensure that the two GCNs learn distinct features,
with AoGCN focusing on syntactic information and
SaGCN emphasizing semantic information. Main
contributions are summarized as follows:

• We propose DSW to augment the precision in
discerning opinion words within a local scope
and more precisely elevate the contribution of
opinion words to ABSA task.

• We present AF to account for situations where
opinion words are distant from aspects. It
remedies the local-centric focus and overlook
of the global context.

• We conduct experiments on the SemEval 2014
and Twitter datasets, and achieved state-of-
the-art results, validating the effectiveness of
the DAGCN architecture. To facilitate the
reproducibility of our work, datasets and the
source code are provided on GitHub1.

2 Related Work

Aspect-based sentiment analysis primarily fo-
cuses on utilizing opinion words to determine the
sentiment polarity of aspects. Early works (Thel-
wall and Buckley, 2013; Kim et al., 2013) often

1https://github.com/lancorrect/DAGCN.git
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relied on constructing aspect-specific sentiment lex-
icons or manually specified features, without incor-
porating syntactic features.

Recently, lots of works have focused exten-
sively on attention mechanism to determine the
semantic correlation between context words and
aspects (Wang et al., 2016b; Chen et al., 2017;
Ma et al., 2017a; Nguyen and Le Nguyen, 2018;
Liu et al., 2018; Ma et al., 2018; Mokhosi et al.,
2019; Deng et al., 2019). Ma et al. (2018) designed
stacked attention mechanisms to capture both local
and global features, enhancing the performance of
LSTM. Deng et al. (2019) proposed a novel sparse
self-attention mechanism to differentiate the impor-
tance of different words for sentiment polarity.

There have been several studies focusing on the
distance between aspects and opinion words, as
it is believed to contain rich semantic knowledge
(Zeng et al., 2019). In addition to utilizing SRD
to extract semantic information, Liu et al. (2022)
also used the absolute distance between aspects and
context words to differentiate their importance. Yu
and Zhang (2023) created a local context weighted
adjacency graph with SRD in order to emphasize
significance of local context and avoid long range
influence. However, these methods were hard to
precisely identify opinion words within relatively
large local scopes.

In addition, the dependency tree has been widely
used before. Nguyen and Shirai (2015) integrated
syntactic information by combining dependency
relation and phrases. Wang et al. (2016a) utilized
underlying syntactic information to learn a high-
level feature representation. With the emergence of
Graph Convolutional Networks (GCNs) and Graph
Attention Networks (GATs), GCN-based and GAT-
based methods have been employed to learn syntac-
tic information from the dependency tree (Zhang
et al., 2019; Sun et al., 2019; Wang et al., 2020;
Tang et al., 2020; Zhang et al., 2022; Chen et al.,
2021; Yan et al., 2021; Li et al., 2021b; Tang et al.,
2022; Zhong et al., 2023; Jiang et al., 2023). Li
et al. (2021b) selected relevant knowledge from
a knowledge graph and incorporated it into the
dependency tree to improve its expressive power.
Tang et al. (2022) considered the relationship labels
of the dependency tree and proposed an adaptive
fusion module for semantic information. Unfor-
tunately, the dependency tree contained consider-
able noise, with non-opinion words interfering with
the model’s judgment. Additionally, these meth-
ods failed to recognize the contribution of opinion

words to the ABSA task.

3 The Proposed model

Figure 3 illustrates the overview of DAGCN.
Given a pair of sentence-aspect (s, a), where
s = {w1, w2, ..., wn} and a = {a1, a2, ..., am},
an aspect is a part of the sentence. m is the end po-
sition of aspect in s. Before feeding the input into
the model, we first map each word to its embedding
with the embedding table E ∈ R|V |×de , where |V|
represents the size of the embedding table and de
denotes the dimension of the word embeddings.
Then, an encoder such as BiLSTM or BERT is
utilized to learn contextual information from the
sentence. The input x is fed into the encoder, result-
ing in hidden state vectors H = {h1, h2, ..., hn},
where hi ∈ R2dh and 2dh represents the dimension
of the hidden state vectors obtained from the en-
coder. We use H as the initial node representation
and input it into AoGCN and SaGCN for aggrega-
tion operations. For the BERT encoder, we con-
struct inputs in the format required by BERT, which
is "[CLS] sentence [SEP] aspect [SEP]". [CLS] and
[SEP] are special tokens in BERT used for classifi-
cation and sentence separation, respectively. Sub-
sequently, we elaborate on the details of DAGCN.

3.1 Distance-based Weighted Matrix (DWM)

Algorithm 1 Distance-based Weighted Matrix

Require: aspect a = {a1, a2, ..., am}, sen-
tence s = {w1, w2, ..., wn}, positions p =
{k, k + 1, ..., km−1}, dependency Tree T

Ensure: Distance-based Weighted Matrix M
1: Initialize a zero initialization matrix M
2: Convert T into AODT
3: for i = 1 to m do
4: for j = 1 to n do
5: if ai and wj are directly connected then
6: SD = 1
7: else
8: SD = DFS(ai, wj)
9: end if

10: DSW = exp(α · SD)
11: Mp[i−1]j = DSW , Mjp[i−1] = DSW
12: end for
13: end for
14: return M

Given that the primary focus of ABSA is on
aspects, edges in the dependency tree not directly
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Figure 3: The overall architecture of DAGCN. Values over the edges in AODT represent DSW.

linked to the aspect are perceived to offer limited as-
sistance in prediction. Therefore, it’s necessary to
prune the dependency tree and reduce noise. Based
on this issue, we propose Distance-based Syntactic
Weight and construct DWM.

Algorithm 1 describes the construction pro-
cess of DWM. For an input sentence, we use a
dependency parser to perform syntactic analysis
and generate a dependency tree. Followed by R-
GAT(Wang et al., 2020), Aspect-Oriented Depen-
dency Tree (AODT) eliminates all edges not di-
rectly linked to aspects and prioritizes GCN’s fo-
cus on the aspect’s local context in the dependency
tree. However, in contrast to AODT, when context
words are not directly linked to aspects, we use the
result of depth-first search (DFS) to represent the
distance between them, rather than using virtual re-
lation to depict their connection. Note that maybe
the context words are not linked to aspects at all.
In such cases, we set SD between words to infin-
ity. Additionally, if an aspect consists of multiple
words, we need to calculate SD between each word
in an aspect and the context words separately.

Then, we multiply SD by a scalar α (α < 0)
and apply the exponential function exp() to ob-
tain DSW. If SD between the context words and
aspects is large, DSW is close to 0, indicating that
the context words are negligible for the aspect. If
SD between context words and aspects is smaller,
DSW becomes larger, indicating that context words

within the local scope of the aspect contribute sig-
nificantly to determining the sentiment polarity. At
this stage, each DSW ranges from 0 to 1. A zero
initialization matrix M ∈ Rn×n is built as DWM
to store DSWs and p = {k, k + 1, ..., km−1} repre-
sents the aspect positions in s. With DSW, opinion
words can be more efficiently and accurately identi-
fied, stand out from other unrelated context words.

3.2 Aspect-Fusion Attention (AF)
While we have narrowed down the candidate

range for opinion words, non-opinion words still
exist within this scope, and there are few instances
where opinion words have a substantial syntactic
distance from aspects. Therefore, we introduce
AF and the computation process is described as
follows:

Aaf = avg(tanh(HaW
a
af × (KafW

K
af )

T + b))

(1)

Where Kaf is the output H of the encoder. W a
af ∈

R2dh×2dh and WK
af ∈ R2dh×2dh are learnable

weights. Note that Ha is obtained from H by keep-
ing only the word embeddings at the aspect posi-
tions, i.e., Ha = {0, 0, .., ha1 , ha2 , ..., ham , ..., 0},
Ha ∈ Rn×2dh . In fact, as an aspect may comprise
multiple words, AF considers each word in the as-
pect as a query to compute attention scores with
context words. With AF, the aspect could distin-
guish important words for itself in short or long
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distance. Average pooling, denoted as avg() , is
then utilized to average attention scores for regrad-
ing them as a whole. Finally, a zero-initialization
matrix Aaf ∈ Rn×n is constructed and the output
vector is copied to the aspect positions in Aaf .

3.3 Aspect-oriented GCN (AoGCN)

In order to incorporate local and global syntac-
tic information, we combine DWM with AF. The
process of fusion is defined as follows:

Mij =

{
1, AFij > β

Mij , otherwise
(2)

Where Mij indicates the corresponding value of
DWM between wi and wj . AFij represents the
attention weight between wi and wj in Aaf . β is a
hyperparameter (β > 0).

When AFij is higher than β, it indicates that
the corresponding context word is highly important
for the aspect, and its distance weight in DWM
needs to be increased to the maximum value. Con-
versely, when AFij is smaller than or equal to β,
it suggests that the context word contributes less
to the prediction, and its distance weight remains
unchanged. Then, we multiply AF by DWM to
obtain the adjacency matrix for AoGCN:

Aao = Aaf ×M (3)

Where Aao ∈ Rn×n. Aao ensures the identification
of the most probable opinion words, whether in
local or global contexts. Specially, we treat the
element of Aao as Comprehensive Syntactic Value
(CSV), which explain the significance of context
words from the perspective of overall syntax.

Based on Aao, we can build AoGCN. Assume
that the input to the l-th layer is hl−1 and the output
is hl. The initial input is h0. In the l-th layer, the
hidden state hli of the i-th node can be updated by
aggregating the hidden states of its neighboring
nodes through the following operation:

hli = σ(
n∑

j=1

AaoW lhl−1
j + bl) (4)

where W l and bl are learnable weight matrix and
bias, respectively. σ is a non-linear activation func-
tion. The output of AoGCN in the last layer is
denoted as Hao = {hao1 , hao2 , ..., haon }, where haoi
represents the hidden state of word wi in the last
layer of AoGCN.

3.4 Self-attention GCN (SaGCN)

Similar with DualGCN (Li et al., 2021a), an-
other GCN (SaGCN) is built with self-attention
mechanism. It prioritizes semantic features and
greatly assists in sentences with unclear syntactic
structures. The attention scores between every pair
of words indicates the level of semantic correlation.
The calculation is shown as followed:

Asa =
QWQ

sa × (KWK
sa )

T

√
dh

(5)

Where Q and K are the same as the input of the
l-th layer, which is hl−1. WQ

sa ∈ R2dh×2dh and
WK

sa ∈ R2dh×2dh are learnable weight matrices.
Similar to AoGCN, SaGCN ultimately obtains the
graph representation Hsa.

3.5 BiAffine Module

To effectively interact the features learned by
AoGCN and SaGCN, we employ a mutual BiAffine
transformation (Tang et al., 2020) as an intermedi-
ate exchange:

H ′
ao = softmax(HaoW1(Hsa)

T )Hsa

H ′
sa = softmax(HsaW2(Hao)

T )Hao

(6)

where W1 and W2 are learnable parameters.
H ′

ao and H ′
sa represent the output results

of the BiAffine Module, respectively. Sup-
pose that the aspect nodes in H ′

ao are repre-
sented by

{
haoa1 , h

ao
a2 , ..., h

ao
am

}
and in H ′

sa by{
hsaa1 , h

sa
a2 , ..., h

sa
am

}
. Then, we can obtain the fi-

nal representation of aspects through the following
calculation:

haoa = f(haoa1 , h
ao
a2 , ..., h

ao
am) (7)

hsaa = f(hsaa1 , h
sa
a2 , ..., h

sa
am) (8)

hf = [haoa , hsaa ] (9)

Where f(·) represents average pooling and [·] de-
notes concatenation operation. Next, we input the
final representation of aspects into a linear layer,
and then the output passes through a softmax()
function to obtain a probability distribution vector
for sentiment polarity:

p(a) = softmax(Wfhf + bf ) (10)

Where Wf and bf are learnable weight matrix and
bias.
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Table 2: Experimental results comparison on three publicly benchmark datasets.

Models
Restaurant Laptop Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
IAN(Ma et al., 2017b) 78.6 - 72.10 - - -
RAM(Chen et al., 2017) 80.23 70.80 74.49 71.35 69.36 67.30
TNet(Li et al., 2018) 80.69 71.27 76.54 71.75 74.90 73.60
LCF(Zeng et al., 2019) 82.50 73.92 76.02 70.58 72.25 70.92
ASGCN(Zhang et al., 2019) 80.77 72.02 75.55 71.05 72.15 70.40
CDT(Sun et al., 2019) 82.30 74.02 77.19 72.99 74.66 73.66
InterGCN(Liang et al., 2020) 82.23 74.01 77.86 74.32 - -
R-GAT(Wang et al., 2020) 83.30 76.08 77.42 73.76 75.57 73.82
DGEDT(Tang et al., 2020) 83.90 75.10 76.80 72.30 74.80 73.40
DualGCN(Li et al., 2021a) 84.27 78.08 78.48 74.74 75.92 74.29
SSEGCN(Zhang et al., 2022) 84.72 77.51 79.43 76.49 76.51 75.32
MWGCN(Yu and Zhang, 2023) 82.56 74.58 76.36 72.28 72.86 70.73
DAGCN 84.72 78.08 78.96 75.07 77.10 75.66
LCF+BERT(Zeng et al., 2019) 87.14 81.74 82.45 79.59 77.31 75.78
R-GAT+BERT(Wang et al., 2020) 86.60 81.35 78.21 74.07 76.15 74.88
DGEDT+BERT(Tang et al., 2020) 86.30 80.00 79.80 75.60 77.90 75.40
BERT4GCN(Xiao et al., 2021) 84.75 77.11 77.49 73.01 74.73 73.76
T-GCN+BERT(Tian et al., 2021) 86.16 79.95 80.88 77.03 76.45 75.25
DualGCN+BERT(Li et al., 2021a) 87.13 81.16 81.80 78.10 77.40 76.02
SSEGCN+BERT(Zhang et al., 2022) 87.31 81.09 81.01 77.96 77.40 76.02
MWGCN+BERT(Yu and Zhang, 2023) 86.36 80.54 79.78 76.68 75.00 74.30
APARN(Ma et al., 2023) 87.76 82.44 81.96 79.10 79.76 78.79
DAGCN+BERT 88.03 82.64 82.59 79.40 78.73 78.01

3.6 Loss Function
To ensure that the features learned by AoGCN

and SaGCN are distinct, we introduce the KL di-
vergence to measure the difference between them.
Suppose that the probability distributions of Aao

and Asa are denoted as P (X) and Q(X), respec-
tively, the KL divergence loss is calculated as fol-
lows:

ℓkl(θ) =
∑

x∈X
P (x)log

P (x)

Q(x)
(11)

Where θ represents all trainable parameters.
In addition, we also employ the standard cross-

entropy loss function commonly used in ABSA,
which can be defined as follows:

ℓc(θ) = −
∑

(s,a)∈D

∑

c∈C
logp(a) (12)

Where D contains all the sentence-aspect pairs and
C is the set of sentiment polarities.

Then, we combine the KL divergence loss with
the cross-entropy loss to obtain the final objective
function:

ℓ(θ) = ℓc(θ) + γ · ℓkl(θ) (13)

Where γ (γ < 0) is a hyperparameter and ℓ(θ)
represents the objective function. The model pa-

rameters are optimized by minimizing the objective
function.

4 Experiments

Statistics for the three experimental datasets and
implementation details could be found in A.1 and
A.2, respectively.

4.1 Main Results
As shown in Table 2, we compare the proposed

model with previous works using evaluation met-
rics such as accuracy and macro F1-score. These
baseline models are described in detail in A.3.
The experimental results demonstrate that DAGCN
outperforms all baseline models on the Restau-
rant dataset and are competitive to state-of-the-art
(STOA) baseline models on Laptop and Twitter
datasets. These results validate the effectiveness of
the model architecture.

Compare with semantic models The experi-
ment results of DAGCN highlight the importance
of incorporating syntactic structures, compared
with some attention-based methods (i.e., IAN,
RAM, and TNet). Besides, DAGCN outperforms
methods using SRD (i.e., LCF, MWGCN) on all
datasets, no matter encoder is BiLSTM or BERT.
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Table 3: Experimental results of ablation study.

Models
Restaurant Laptop Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
DAGCN 84.72 78.08 78.96 75.07 77.10 75.66
w/o KL divergence loss 83.47 76.79 76.74 72.93 73.41 71.50
w/o AF 82.84 75.19 76.58 72.27 74.00 72.85
w/o DWM 82.39 73.85 78.16 74.27 73.12 70.61
w/o DSW 82.84 75.07 76.11 73.16 74.30 72.44

Table 4: Case studies of our DAGCN model compared with other baselines.

Sentences LCF CDT DAGCN Target
it ’s fast , light , and simple to use. P P P P
I complained to the waiter and then to the manager, but the inten-
sity of rudeness from them just went up. N O N N

The food is so good and so popular that waiting can really be a
nightmare. P N N N

The mountain lion os is not hard to figure out if you are familiar
with microsoft windows. N N P P

It proves that DSW elevates the emphasis on the
significance of opinion words and assists DAGCN
in accurately identifying opinion words within a
more confined local context.

Compare with syntactic models Our proposed
model outperforms syntactic models (i.e., CDT,
R-GAT and DGEDT) mostly in all datasets, be-
cause it can distinguish the contribution of context
words in determining the aspect’s sentiment polar-
ity. Notably, when the encoder of syntactic models
is BERT, our model achieves superior performance
on Restaurant and Laptop datasets. Previous works
relying solely on the dependency tree might intro-
duce syntactic noise. They also require multiple
aggregations to capture features of opinion words
located further from the aspect, which can lead to
overfitting. In our approach, we link opinion words
to the aspect directly and enable more targeted ag-
gregation in GCN.

Compare with SOTA model When encoder is
BiLSTM, the proposed model performs worse than
SSEGCN on Laptop dataset and the reason is that
DAGCN’s capability of capturing global seman-
tic features is not as strong as SSEGCN’s. More
details could be found in Appendix A.4. We also
notice that DAGCN performs worse compared to
APARN on Twitter dataset, when encoder is BERT.
The primary reason is that the AMR parser used in
APARN has been trained on the dataset highly sim-
ilar to Twitter dataset, making it more adapted to

Twitter dataset. However, our model achieves com-
parable result on Twitter dataset. Meanwhile, the
results on Restaurant and Laptop represent that for-
mal language exhibits a more comprehensive and
lucid syntactic structure. Overemphasizing seman-
tic features might overlook the richness embedded
within the syntactic information.

4.2 Ablation study

To validate the necessity of the proposed mod-
ules, we further conduct ablation experiments. As
shown in Table 3, we first remove the KL diver-
gence loss and utilize the loss function proposed in
DualGCN as the objective function. The model’s
performance decreases, with a reduction in accu-
racy of 1.48%, 2.81%, and 4.79% on the Restau-
rant, Laptop, and Twitter datasets, respectively.
This significant drop in performance demonstrates
that the KL divergence loss effectively prevents
AoGCN and SaGCN from learning redundant in-
formation and is also better than DualGCN’s loss
function. Furthermore, we remove AF and the
model’s performance is also compromised. With-
out AF, the model fails to aggregate global syn-
tactic features. Next, by removing the DWM, we
observe a significant decline in accuracy of 2.75%
and 5.16% on the Restaurant and Twitter datasets,
respectively. This further confirms the usefulness
of pruning the dependency tree and that the utiliza-
tion of DSW reveals the indispensability of local
syntactic information. Finally, similar with AODT,
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Figure 4: Two visualization examples of CSV in two cases.

we replace DSW with direct connection and set
no links between context words and aspects when
SD is longer than 4. We observe a decrease in
the model’s performance, which is attributed to
the presence of non-opinion words within the local
syntactic scope. Equal aggregation fails to high-
light the importance of opinion words. In summary,
each proposed module contributes significantly to
the overall model, and their absence leads to a per-
formance degradation.

4.3 Case study

To further analyze the performance of DAGCN,
we conduct a detailed analysis on real examples.
As shown in Table 4, we select LCF, CDT to com-
pare their classification capabilities with DAGCN.
In each example, the aspect is indicated in italics,
and the notations P, N, and O represent positive,
negative, and neutral sentiment, respectively. In the
first example, the aspect is "use" and its correspond-
ing opinion words are "fast", "light", and "simple".
These words have similar positive sentiment, mak-
ing it unambiguous for LCF and CDT to quickly
distinguish the sentiment polarity. In the second
example, SRD between "manager" and the opinion
word "rudeness" exhibits a small value, leading
LCF to identify "rudeness" within the local con-
text through attention mechanisms. However, the
considerable SD between the aspect and the opin-
ion word hampers information transmission. This
illustrates the necessity of creating direct edges
between them by removing irrelevant dependency
relation and filtering words around the aspect. In
the third example, due to the larger SRD value
between "nightmare" and "waiting", LCF prefers

closer context words. While in the dependency tree,
"waiting" has a strong syntactic relationship with
"nightmare", allowing CDT to make the correct
judgment. This demonstrates that relying solely
on semantics would be limited and syntax must
be considered. Due to the accurate pruning of the
dependency tree and the focus on local syntactic
information, the proposed model precisely captures
sentiment information corresponding to the opinion
words. Moreover, in the final example, both LCF
and CDT focus on "hard" while overlooking the
negation’s role in reversing sentiment. DAGCN,
however, leverages AF to elevate the significance
of negation words, achieving better performance.

4.4 Visualization

In Figure 4, we present visualizations of two
illustrative instances to investigate the efficacy of
the proposed model in discerning opinion words.
In the initial case, the opinion word of "liking"
to the pivotal aspect "windows 8" is exploited via
DWM, elevating the salience of "liking". Concur-
rently, AF intelligently mitigates the weights of
other lexical entities (e.g., "really") within the local
scope, enabling the model to concentrate on per-
tinent opinion words. Moreover, the subsequent
instance encompasses multiple aspects and opin-
ion words. Without the confines of adhering to
local syntactic distances, the model could inad-
vertently misattribute opinion words from distant
aspects as classification criteria. However, by lever-
aging DWM and AF, we effectively obviate such
external influences, enabling precise discernment
of corresponding opinion words, thereby resulting
in superior classification outcomes.
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5 Conclusion

In this paper, we have presented a novel DAGCN
model. With the statistical analysis of syntactic dis-
tance, there’s a higher probability of opinion words
appearing in the local context. Hence, we employ
DSW to assign higher weights to words closer to
the aspects in terms of syntactic distance, and it
could also eliminate noise in the dependency tree.
Furthermore, we construct DWM to store DSW
and update DWM by AF to enhance the accuracy
of identifying opinion words and accommodate sce-
narios where opinion words are distant from the
aspects. Finally, inspired by previous work, we
define a SaGCN to deal with some reviews with un-
structured syntax and KL divergence is integrated
into the loss function to guarantee distinct learn-
ing for AoGCN and SaGCN. Compared with other
baselines, DAGCN achieves superior performance
on public datasets, which demonstrates the effec-
tiveness of the proposed architecture.

6 Limitations

Firstly, DAGCN could not outperform APARN
on the Twitter dataset, when using BERT as the
encoder. This might be attributed to the fact that
CoreNLP excels at parsing syntactically structured
sentences but may not perform as well on informal
expressions as AMR. In future work, we aim to
leverage the advantages of CoreNLP and AMR to
enhance ABSA task.

Secondly, DAGCN employs additional hyperpa-
rameters (α, β and γ) that require extensive ex-
periments to optimize the model. This process
demands significant time and computational re-
sources. Therefore, transitioning from manual hy-
perparameter selection to adaptive parameter tun-
ing is highly justified.

Lastly, DAGCN primarily addresses the core
problem of sentiment classification in this paper
and has not been adapted for end-to-end ABSA and
ASTE tasks. We plan to investigate DAGCN’s gen-
eralization capabilities for complex ABSA tasks in
our future work.
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A Appendix

A.1 Datasets

We conduct experiments on three public bench-
mark datasets for ABSA. Restaurant and Laptop
reviews datasets are from SemEval 2014 Task 4 and
Twitter dataset consists of tweets. In the Twitter
dataset, we exclude tweets with the "conflict" label.
All datasets contain data with three sentiment po-
larities: positive, neutral, and negative. The aspect
terms and sentiment polarities have been annotated
in the datasets. The statistics of the three datasets
are shown in Table 5. In this paper, we follow the
Creative Commons Attribution 4.0 International
Licence of the datasets.

A.2 Implementation Details

We utilize Stanford’s CoreNLP2 as the depen-
dency parser in our approach. We initialize word
embeddings using 300-dimensional GloVe3 vectors
as a lookup table. In the encoder, the dimensions of
the hidden states for BiLSTM and BERT are set to
50 and 768, respectively, with a dropout rate of 0.7.
We use the bert-base-uncased4 version of BERT.
When encoder is BiLSTM, the model is trained for
50 epochs and takes approximately 26s to train one
epoch on a single RTX 3090 GPU with the batch
size of 16. When encoder is BERT, epochs are set
to 15 and DAGCN takes approximately 96s to train
one epoch on a single RTX 3090 GPU with batch
size of 16. The total parameter sizes of DAGCN
are about 1.2M and 113M, respectively.

2https://stanfordnlp.github.io/CoreNLP/
3https://nlp.stanford.edu/projects/glove/
4https://github.com/huggingface/transformers
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Table 5: Statistics for the three experimental datasets.

Dataset Split Positive Neutral Negative

Laptop
Train 976 455 851
Test 337 167 128

Restaurant
Train 2164 637 807
Test 727 196 196

Twitter
Train 1507 3016 1528
Test 172 336 169

The AoGCN and SaGCN have a layer depth of
1 and a dropout rate of 0.1. We optimize the pa-
rameters using the Adam optimizer with a learning
rate of 0.002. The three hyperparameters, α, β, and
γ, are set to (-0.7, 0.9, -0.3), (-0.7, 0.3, -0.8), and
(-0.2, 0.6, -0.2) for three datasets respectively.

A.3 Baseline Models

To thoroughly evaluate the effectiveness of our
proposed model, we compare DAGCN against
state-of-the-art baselines, including:

1. IAN (Ma et al., 2017b) proposes a new ap-
proach for ABSA by separately modeling the
targets and contexts using interactive attention
networks.

2. RAM (Chen et al., 2017) integrates a recur-
rent neural network with a weighted-memory
mechanism to capture sentiment features.

3. TNet (Li et al., 2018) combines a BiLSTM
layer with a CNN layer to extract salient fea-
tures from transformed word representations.

4. LCF (Zeng et al., 2019) introduces a new idea
that the local context of aspects contains sig-
nificant information and SRD is proposed to
pay more attention in local scope.

5. ASGCN (Zhang et al., 2019) first employs a
GCN to learn aspect representations in aspect
based sentiment analysis task.

6. CDT (Sun et al., 2019) uses a BiLSTM for
learning sentence features and a GCN is ap-
plied to the dependency tree to enhance the
embeddings.

7. InterGCN (Liang et al., 2020) constructs
a heterogeneous graph for each instance by
leveraging aspect-focused and inter-aspect
contextual dependencies

8. R-GAT (Wang et al., 2020) encodes syntax
information through a aspect-oriented depen-
dency tree structure and introduces depen-
dency relation into convolution.

9. DGEDT (Tang et al., 2020) proposes a depen-
dency graph enhanced dual-transformer net-
work that utilizes a dual-transformer structure
to mutually reinforce the flat and graph-based
representations.

10. DualGCN (Li et al., 2021a) utilizes two
GCNs to learn syntactic information and se-
mantic information, respectively.

11. SSEGCN (Zhang et al., 2022) proposes an
aspect-aware attention mechanism with self-
attention to learn aspect-related and global
semantics of a sentence and then combines
them with syntactic information.

12. MWGCN (Yu and Zhang, 2023) generates
a local context weighted adjacency graph
based on SRD and proposes another weight-
ing method to retain global semantics.

13. LCF+BERT (Zeng et al., 2019) is the lcf
model whose encoder is replaced by a pre-
trained BERT.

14. R-GAT+BERT (Wang et al., 2020) is the R-
GAT model whose encoder is replaced by a
pre-trained BERT.

15. DGEDT+BERT (Tang et al., 2020) is the
DGEDT model whose encoder is replaced by
a pre-trained BERT.

16. BERT4GCN (Xiao et al., 2021) integrates the
contextual features output from BERT and the
syntactic knowledge from dependency graphs.

17. T-GCN+BERT (Tian et al., 2021) utilizes at-
tention and layer ensemble to explicitly con-
sider dependency types in the graph.

18. DualGCN+BERT (Li et al., 2021a) is the
DualGCN model whose encoder is replaced
by a pre-trained BERT.

19. SSEGCN+BERT (Zhang et al., 2022) is the
SSEGCN model whose encoder is replaced
by a pre-trained BERT.

20. MWGCN+BERT (Yu and Zhang, 2023) is
the MWGCN model whose encoder is re-
placed by a pre-trained BERT.
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(a) The dependency tree

(b) A part of AODT with DSW

Figure 5: Error Analysis on Laptop Dataset.

21. APARN (Ma et al., 2023) employs semantic
structure called Abstract Meaning Representa-
tion to have abundant semantic representation
and integrates it with attention mechanism to
improve sentence features.

A.4 Error Analysis on Laptop Dataset

In this section, we investigate the reason why the
proposed model performs worse than SSEGCN on
Laptop dataset. An instance is selected for analysis,
which is "I love the dock where I can simply drop a
file ontop of a particular program, and the program
will simply open that file.". The second "program"
is the aspect and its corresponding sentiment polar-
ity is positive. Figure 5a shows the dependency tree
of the instance. In order to make the figure concise
and aesthetically pleasing, Figure 5b shows just a
part of AODT with DSW.

From the human perspective, "dock" and the
aspect are in a parallel relationship and their senti-
ment polarity should be the same. SSEGCN makes
the correct classification because it has the ability
to capture hierarchical semantic features and obtain
long-distance semantic commonalities. However,
the proposed model determines this aspect to be
neutral. The reason perhaps is that “love” has low
DSW (DSW=0.06) and AF fails to grasp very long-
distance semantic relationship. Therefore, DAGCN
tends to focus on syntactic information and have a
relatively weaker grasp of global semantics. In fu-
ture work, we will continue to enhance the model’s
long-distance semantic understanding capabilities.

A.5 MAMS Results

To further verify the effectiveness and robust-
ness, we conduct another experiment on MAMS
dataset (Jiang et al., 2019). Followed by Li et al.
(2021a), we remove instances with "conflict" la-

Table 6: Statistics for MAMS dataset.

Dataset Split Positive Neutral Negative

MAMS
Train 3380 5042 2764
Dev 403 604 325
Test 400 607 329

Table 7: Experimental results comparison on MAMS
dataset.

Models
MAMS

Accuracy Macro-F1
BERT(Kenton and Toutanova, 2019) 80.11 80.34
T-GCN(Tian et al., 2021) 83.38 82.77
dotGCN(Chen et al., 2022) 84.95 84.44
APARN(Ma et al., 2023) 85.59 85.06
DAGCN 85.25 84.87

bel. Table 6 shows the statistics for MAMS dataset.
Followed by Ma et al. (2023), we compare the
performance between DAGCN and other baseline
models when encoder is BERT.

As shown in Table 7, DAGCN outperforms most
of baseline models and achieves comparable results
compared to APARN. Note that dotGCN similarly
prunes the dependency tree and introduces multiple
additional loss functions. However, in comparison
to dotGCN, our model’s tree pruning is more intu-
itive, and we have only introduced one additional
loss function. From the experimental results, it is
evident that our model surpasses dotGCN, thereby
affirming the effectiveness and robustness of our
proposed approach.

A.6 Effect of the dependency parser

In order to validate generalization, we conduct
an study based on the proposed method using an-
other dependency parser: Biaffine Parser (Dozat
and Manning, 2016). Table 8 shows the perfor-
mance of dependency parsers when encoder is
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Table 8: Experimental results comparison on different dependency parser.

Dependency Parser
Restaurant Laptop Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
Biaffine Parser 83.47 76.57 78.01 74.71 75.92 74.87
CoreNLP 84.72 78.08 78.96 75.07 77.10 75.66

GloVe and the result of CoreNLP is same with the
result of DAGCN in Table 2. We can find easily that
CoreNLP performs better than Biaffine Parser. Be-
sides, DAGCN with Biaffine Parser also surpasses
most of baseline models introduced in Table 2. It
demonstrates that DAGCN’s performance would
not change dramatically when using different de-
pendency parsers and further affirms that our model
has stronger generalization.

A.7 Effect of the DAGCN Layer Number

Figure 6: Effect of the number of DAGCN layers.

In this section, we investigate the impact of
DAGCN layer number on the performance. Figure
6 illustrates the changes in accuracy and macro-F1
scores on the Restaurant and Laptop datasets as the
layer number varies from 1 to 5. From the results,
we can observe that the model performs optimally
when the number of GCN layers is 1. As the num-
ber of layers increases, particularly when it reaches
5, the performance diminishes. This is attributed
to the direct connection between the aspects and
context words through the construction of DWM.
With fewer layers, the model avoids excessive ag-
gregation operations, whereas a higher number of

layers can lead to overfitting.
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