@inproceedings{liu-etal-2024-self-regulated,
title = "Self-Regulated Sample Diversity in Large Language Models",
author = "Liu, Mingyue and
Frawley, Jonathan and
Wyer, Sarah and
Shum, Hubert P. H. and
Uckelman, Sara and
Black, Sue and
Willcocks, Chris",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.122",
doi = "10.18653/v1/2024.findings-naacl.122",
pages = "1891--1899",
abstract = "Sample diversity depends on the task; within mathematics, precision and determinism are paramount, while storytelling thrives on creativity and surprise. This paper presents a simple self-regulating approach where we adjust sample diversity inference parameters dynamically based on the input prompt{---}in contrast to existing methods that require expensive and inflexible setups, or maintain static values during inference. Capturing a broad spectrum of sample diversities can be formulated as a straightforward self-supervised inference task, which we find significantly improves the quality of responses generically without model retraining or fine-tuning. In particular, our method demonstrates significant improvement in all supercategories of the MMLU multitask benchmark (GPT-3.5: $+4.4\%$, GPT-4: $+1.5\%$), which captures a large variety of difficult tasks covering STEM, the humanities and social sciences.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-self-regulated">
<titleInfo>
<title>Self-Regulated Sample Diversity in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingyue</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Frawley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Wyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hubert</namePart>
<namePart type="given">P</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Shum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Uckelman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sue</namePart>
<namePart type="family">Black</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Willcocks</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sample diversity depends on the task; within mathematics, precision and determinism are paramount, while storytelling thrives on creativity and surprise. This paper presents a simple self-regulating approach where we adjust sample diversity inference parameters dynamically based on the input prompt—in contrast to existing methods that require expensive and inflexible setups, or maintain static values during inference. Capturing a broad spectrum of sample diversities can be formulated as a straightforward self-supervised inference task, which we find significantly improves the quality of responses generically without model retraining or fine-tuning. In particular, our method demonstrates significant improvement in all supercategories of the MMLU multitask benchmark (GPT-3.5: +4.4%, GPT-4: +1.5%), which captures a large variety of difficult tasks covering STEM, the humanities and social sciences.</abstract>
<identifier type="citekey">liu-etal-2024-self-regulated</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.122</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.122</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1891</start>
<end>1899</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Regulated Sample Diversity in Large Language Models
%A Liu, Mingyue
%A Frawley, Jonathan
%A Wyer, Sarah
%A Shum, Hubert P. H.
%A Uckelman, Sara
%A Black, Sue
%A Willcocks, Chris
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F liu-etal-2024-self-regulated
%X Sample diversity depends on the task; within mathematics, precision and determinism are paramount, while storytelling thrives on creativity and surprise. This paper presents a simple self-regulating approach where we adjust sample diversity inference parameters dynamically based on the input prompt—in contrast to existing methods that require expensive and inflexible setups, or maintain static values during inference. Capturing a broad spectrum of sample diversities can be formulated as a straightforward self-supervised inference task, which we find significantly improves the quality of responses generically without model retraining or fine-tuning. In particular, our method demonstrates significant improvement in all supercategories of the MMLU multitask benchmark (GPT-3.5: +4.4%, GPT-4: +1.5%), which captures a large variety of difficult tasks covering STEM, the humanities and social sciences.
%R 10.18653/v1/2024.findings-naacl.122
%U https://aclanthology.org/2024.findings-naacl.122
%U https://doi.org/10.18653/v1/2024.findings-naacl.122
%P 1891-1899
Markdown (Informal)
[Self-Regulated Sample Diversity in Large Language Models](https://aclanthology.org/2024.findings-naacl.122) (Liu et al., Findings 2024)
ACL
- Mingyue Liu, Jonathan Frawley, Sarah Wyer, Hubert P. H. Shum, Sara Uckelman, Sue Black, and Chris Willcocks. 2024. Self-Regulated Sample Diversity in Large Language Models. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 1891–1899, Mexico City, Mexico. Association for Computational Linguistics.