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Abstract
Learning-to-rank (LTR) algorithms aim to or-
der a set of items according to some criteria.
They are at the core of applications such as web
search and social media recommendations, and
are an area of rapidly increasing interest, with
the rise of large language models (LLMs) and
the widespread impact of these technologies on
society. In this paper, we survey the diverse use
cases of LTR methods in natural language pro-
cessing (NLP) research, looking at previously
under-studied aspects such as multilingualism
in LTR applications and statistical significance
testing for LTR problems. We also consider
how large language models are changing the
LTR landscape. This survey is aimed at NLP
researchers and practitioners interested in un-
derstanding the formalisms and best practices
regarding the application of LTR approaches in
their research.

1 Introduction

Ranking, i.e., ordering according to some property,
is a central problem for many natural language
processing (NLP) and information retrieval (IR)
tasks such as search, question answering, document
summarization, and machine translation. While
NLP and IR tasks overlap, generally speaking in
IR ranking problems are query-based (e.g. search,
QA), while this is not necessarily true for NLP
tasks. Learning-to-rank (LTR) is the process of
applying machine learning methods to the task of
ranking, i.e., to learn how to order elements in a
sample from a data distribution. This is in con-
trast to performing the ranking using non-learning
approaches, e.g. rule-based heuristics. LTR is com-
monly treated as a supervised learning problem,
although research on unsupervised methods and re-
inforcement learning for LTR also exists (Narayan
et al., 2018; Stoehr et al., 2023). In this paper we
focus on the formal background of LTR and the
most widely-used supervised methods. We also dis-
cuss the increasing use of large language models

(LLMs) for this task, and what we expect for the
future of LTR in NLP and machine learning more
broadly.

An NLP problem can be framed as a ranking
problem when multiple candidate solutions are
present and the top k options are considered to
get the final solution. This general definition fits
a wide number of scenarios. For example: (1) In
classification, one may set k = 1 and choose the
top-ranked result as the solution. When the number
of classes is large, or in multi-label classification
scenarios, a ranking would sometimes be more
suitable than choosing the most likely class. (2) In
machine translation the best possible translation(s)
may be chosen from a list of generated translations.
(3) In generating summaries for a given text, one
may modularize the problem by generating sum-
mary sentences or paragraphs separately, and then
ordering them.

Discussion around LTR typically focuses on IR
(e.g., web search) tasks, but many other use cases
exist within NLP, as these examples show. In in-
formation retrieval tasks, LTR is generally applied
to relevance ranking, where there is a query, and
a list of instances related the query which need
to be retrieved and ranked. However, in LTR for
many NLP tasks the query is optional, and the
core problem is to learn to rank a list of instances
with respect to some property of the list items (e.g.,
ranking a set of essays based on text quality), rather
than the (properties of) the query as in relevance
ranking. Further, LTR is also sometimes used as
an intermediate step in several NLP tasks (e.g., in
sequence tagging, to rank the possible tags for a
given token).

Three book-length works on LTR exist, to our
knowledge (Liu et al., 2009; Li, 2014; Lin et al.,
2021). While the first two focused on the defining
the problem and described commonly used meth-
ods, Lin et al. (2021) is about how recent neural
network architectures can be applied for LTR. All
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three books primarily focused on the methods them-
selves and not on specific use cases within NLP.
Additionally, there is little discussion on evaluation
and almost none on statistical significance testing
for LTR in these three books. This paper addresses
this gap, and provides some guidelines on:

1. common LTR methods and evaluation mea-
sures used, including recent generative large
language models (Section 2)

2. LTR use cases in NLP applications (Section 3)

3. significance testing for LTR (Section 4)

and ends by drawing some conclusions on current
trends and future directions (Section 5).

2 Methods in LTR

Li (2014) describes LTR as a supervised learning
problem where the training data consists of a collec-
tion of queries/requests and an associated ranked
list of items for each request. Formally, the task
is specified as follows: let {q1, q2, ...qm} be the
set of queries, and for each query qj , there is a
set of pairs (x1, y1), (x2, y2)..., (xn, yn) where xi
and yi refer to the ith item and its corresponding
relevance label respectively, and items can be doc-
uments/words/sentences/paragraphs. In an IR task,
relevance labels signify the relevance relation be-
tween a query-item pairing. In NLP, the function-
ality of relevance labels can be replaced with any
type of label suitable for an NLP task (i.e classes in
multi-label classification, indicator labels for candi-
dates in text generation, outputs of a machine trans-
lation system, etc.). Thus, any NLP problem can be
converted into an LTR problem without altering the
nature of the original problem/datasets/evaluation
measures.

The modeling goal in LTR is to learn a func-
tion f that can produce scores for an optimal rank-
ing. We note q may be null/empty, producing the
queryless ranking problems we will discuss in Sec-
tion 3.2. LTR methods can take on a variety of
forms with solutions that directly or indirectly opti-
mize for a ranking metric. They can be categorized
into three groups as pointwise, pairwise, and list-
wise methods, which differ based on the choice of
loss function and input representation.

For a given task to be framed as a ranking prob-
lem, the data is often partitioned into groupings,
usually corresponding to a query. So, each group-
ing contains a query and a set of items to rank

related to the query. In the absence of an explicit
query, groupings still exist and are used during
training and evaluation to designate appropriate ag-
gregations for metric calculation (e.g. averaging
over groupings) and for splitting into appropriate
train-test-validation sets. In this section, we will
discuss some of the commonly used loss functions,
supervised learning methods, and evaluation mea-
sures.

2.1 Loss Functions
A pointwise LTR method aims to learn a func-
tion f with parameters θ and a loss function L
such that f(q, xi, θ) = ŷi and L(yi, ŷi) is mini-
mized. The loss function L can take the form of
the mean squared error (if the relevancy labels are
continuous) or a cross entropy loss (if the rele-
vancy labels are categorical). Unlike other LTR
methods, the pointwise methods do not directly op-
timize for ranking metrics, and the learning task
can be framed as a regression or classification prob-
lem. However, the predictive scores learned from
these models are then used to order an input list of
items (rather than a direct classification or predic-
tion task). These approaches are the most simple
forms of LTR, but are often useful as preliminary
baseline scores for more complex methods.

A pairwise LTR method aims to learn the
query-item relevance between pairs of items. For
(xi, yi), (xj , yj), a pair of resulting items for a
query q, a pairwise training label y′ij can be formed
by taking the difference of the relevance labels yi
and yj , i.e. y′ij = yi − yj where y′ij would be pos-
itive if yi > yj and negative if yi < yj , and this
can be treated as a binary label. To form the input
representation, features are constructed by apply-
ing an operation (e.g. difference) to the features of
both data points in a given pair (Joachims, 2002).
Depending on the size of groupings, computational
complexity may be a challenge if all pairwise per-
mutations are to be constructed. Tymoshenko et al.
(2017) presents an example of an alternating pair-
wise algorithm used to construct training exam-
ples, while Lee and Vajjala (2022) use a sampling
method that anchors the lowest and highest ranked
examples and uniformly samples a data point in-
between these examples. The pairwise LTR func-
tion f then takes the form of f(q, xi, xj , θ) = ŷ′ij .
A loss function L(y′ij , ŷ

′
ij) is minimized, which is

usually the cross-entropy loss.
A listwise LTR method aims to learn a function

to estimate a full list of scores to rank the item list.
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It takes the form f(q, [x1, .., xn], θ) = [ŝ1, ..., ŝn].
A ranking is then obtained by sorting [ŝ1, ..., ŝn] in
descending order. In past work, listwise methods
made use of the permutation probability and the
top-one probability as the learning objective (Cao
et al., 2007).

2.2 Ranking Models

While pointwise methods are often covered in pa-
pers referring to LTR models, this section will
mainly focus on models that implement pairwise
and listwise objectives due to their popularity in
applied NLP.

Pairwise Models: SVMrank (Joachims, 2002)
frames the pairwise ranking objective within the
SVM algorithm, and has been a popular choice
in NLP. After the feature distances and indicator
binary labels are applied to pairs of ranking data,
the problem is treated as an SVM classification
problem. Models with outputs that are differen-
tiable functions of parameters are also very popu-
lar: RankNet (Burges et al., 2005), LambdaRank
(Burges et al., 2006), and LambdaMART (Burges,
2010) use gradient descent to update a pairwise
model. RankNet explicitly defines a cost function
to update via gradient descent, while LambdaRank
bypasses this in favor of directly defining a gradi-
ent function that can optimize for a specific metric.
LambdaMART implements the LambdaRank ob-
jective with boosted regression trees.

Pairwise ranking objectives have also been op-
timized by modern neural network architectures
for NLP tasks. Lee and Vajjala (2022) fine-tuned
a transformer (Vaswani et al., 2017) model on the
pairwise ranking objective for automatic readabil-
ity assessment, while dos Santos et al. (2015) used
a convolutional neural network (CNN) to learn the
relationship between nominals in a sentence. How-
ever, SVMrank remains one of the most popular
non-neural methods for pairwise ranking in NLP,
and is often listed as a competitive baseline.

Listwise ListNet (Cao et al., 2007) is a proba-
bilistic ranking model where the probability of a
list item being ranked in the first position given
the all other items in a list, is predicted per item
in the list. ListMLE (Xia et al., 2008) builds on
ListNet by proposing an alternative loss function
that has a number of desirable properties (i.e or-
der sensitive, good approximation of a binary loss
on permutations, continuous and differentiable).

As with the pairwise methods, transformer mod-
els have also been used to optimize for listwise
objectives. ListBERT (Kumar and Sarkar, 2022)
finetunes a RoBERTa model with several listwise
losses for ranking e-commerce products, whereas
Yan et al. (2020) propose a listwise ranker based
on a recurrent neural network (RNN) auto-encoder
for ranking biomedical question-answer pairs.

2.3 Contrastive Learning
Chopra et al. (2005) describe a supervised or self-
supervised learning objective where a loss function
is designed to enforce similar representations for
data of the same category, and dissimilar repre-
sentations for data of different categories (Jaiswal
et al., 2021). First introduced in computer vision
literature, this type of learning objective and rele-
vant loss functions have been popular in NLP under
the name “contrastive learning”. This has been ex-
plored in NLP for some ranking tasks in recent
years (Reimers and Gurevych, 2019; Briakou and
Carpuat, 2020; Gao et al., 2021; Min et al., 2022;
Chernyavskiy et al., 2022; Liu et al., 2023; Rau and
Kamps, 2022).

2.4 Ranking with Generative Models
Generative sequence-to-sequence models have also
been used to tackle ranking problems in the recent
past. Unlike the BERT-based methods that opti-
mize pairwise or listwise losses, generative models
use a prompt-based approach, which outputs tokens
rather than numerical scores, and ranking problems
are treated accordingly. For example, Nogueira
et al. (2020) used a pre-trained T5 model (Raffel
et al., 2020), an encoder-decoder model, to rank
documents by specifying an input template with
slots for “Query”, “Document”, and “Relevant” and
the relevance score is obtained by applying a soft-
max function on the logits for the output tokens
“true” and “false”, which are analogous to binary
relevance labels. RankT5 (Zhuang et al., 2022)
fine-tunes the T5 model to extend to both pairwise
and listwise ranking losses.

An increasing body of recent research explores
using decoder-only LLMs as (re)rankers. Ji et al.
(2023) investigated ChatGPT’s ability to rank the
outputs of various models on a diverse set of tasks
including NLP tasks and open-ended generation
tasks. Most work on LLM-based (re)ranking evalu-
ates their performance on query-focused, IR tasks.
This is typically done in two stages: retrieval and
reranking. Given the query, an set of candidates
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is first retrieved from the large pool of passages
or documents, using either an LLM for dense
retrieval or a more efficient search method, e.g.
BM25 (Robertson and Zaragoza, 2009); then these
candidates are reranked using the LLM for im-
proved ranking accuracy. This can be done with or
without fine-tuning. For example, Ma et al. (2023a)
fine-tuned an LLM both for both dense retrieval
and for pointwise reranking, and another pointwise
reranking approach based on instruction distillation
was proposed by Sun et al. (2023a).

Other work has shown that LLMs are effective
rerankers in zero-shot settings. Liang et al. (2023)
used zero-shot prompting for pointwise ranking:
they prompt the model to predict whether docu-
ment a relevant is relevant to query q, and score
by the probability of the answer being “Yes”. Qin
et al. (2023) used a pairwise approach: they prompt
the model to predict whether document a is more
relevant than document b to query q. Listwise
reranking approaches take the candidate documents
and generate a reordered list of document identi-
fiers (Ma et al., 2023b; Sun et al., 2023b; Pradeep
et al., 2023a,b; Tang et al., 2023). Zhuang et al.
(2023) tested LLMs as query likelihood models in
both zero-shot and few-shot settings. Experiments
have shown listwise approaches to be more effec-
tive than pointwise or pairwise (Ma et al., 2023b;
Pradeep et al., 2023a), and the increasing context
window sizes of LLMs make them increasingly
attractive. For more information on the usage of
generative language models for search and recom-
mendation tasks, we refer the reader to the surveys
by Zhu et al. (2024) and Wu et al. (2023).

Ranking also plays a role in an increasingly pop-
ular workflow called retrieval-augmented genera-
tion (RAG). Here, given a query, a small subset of
relevant documents is retrieved and ranked, and an
LLM then generates the output using the retrieved
documents as additional context (Gao et al., 2023).

2.5 Software Tools

Ranklib1 has implementations for a variety of LTR
algorithms and XGBoost2, a popular library for
gradient boosted models, contains an implementa-
tion of LambdaRank. Tensorflow Ranking3 is an
open-source library for developing neural ranking
models and AllRank is a similar open-source li-

1https://sourceforge.net/p/lemur/wiki/RankLib/
2https://xgboost.readthedocs.io/en/stable/
3https://www.tensorflow.org/ranking

brary for PyTorch 4. Recent work on LlamaIndex5

and LangChain6 provide an interface for connect-
ing LLMs with indexed, textual data to be ranked.

2.6 Evaluation

The choice of evaluation measure when using LTR
methods in NLP applications primarily depends
on whether the task is that of relevance ranking
of items for a given query or ranking a full list of
items without such a query. Some commonly used
evaluation measures are listed below grouped into
two categories accordingly.

Evaluating ranking for a given query : Nor-
malized Discounted Cumulative Gain (NDCG) and
Discounted Cumulative Gain (DCG) (Järvelin and
Kekäläinen, 2017) are measures of the goodness
of a ranked list in terms of relevance, and are com-
monly used in retrieval tasks. P@k, R@k, F1@K
i.e., Precision/recall/F1 score with a cut-off at kth
position (typically, k = 5 or 10) are also used in rel-
evance ranking tasks (e.g., ranking of keyphrases).
Mean Reciprocal Rank (MRR) and Mean Average
Precision (MAP) are measures commonly reported
in question-answering tasks, where there may typ-
ically be a single best answer. Reciprocal rank is
the inverse of the rank of the best answer and MAP
is the mean of the average precision, i.e., the area
under the precision recall curve. Both these are not
used in situations where the ranking of the entire
list is relevant, and are not commonly reported in
NLP use cases of LTR.

Evaluating ranking without an explicit query:
When there are two ranked lists, one from a rank-
ing model and one ground truth ranking, Kendall’s
Tau (τ ) and Spearman’s rank correlation (ρ) are
used to compare the two ranked lists. Pearson corre-
lation is also sometimes used in such cases. Rank-
ing Accuracy/Perfect Match Ratio, which is the
proportion of data instances where the ranking or-
der from the model exactly matches the reference
order, is also a commonly measure. One major
difference among these metrics is their approach to-
wards handling ties. While ranking accuracy does
not handle ties, τ penalizes ties in ground-truth
and predictions, and ρ calculates the average rank
of ties. Some recent research (Lee and Vajjala,

4https://github.com/allegro/allRank
5https://gpt-index.readthedocs.io/en/latest/

index.html
6https://python.langchain.com/en/latest/index.

html
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2022) recommends reporting multiple evaluation
measures due to these differences.

Software libraries such as SciPy (Virtanen et al.,
2020), scikit-learn (Pedregosa et al., 2011), ranx7,
evaluate8 and TREC-eval9 have implementations
of most of these metrics. While some research ex-
plored new evaluation measures for specific rank-
ing tasks such as information ordering (Lapata,
2006; Madnani et al., 2007) and temporal ordering
of events (Jeblee and Hirst, 2018), or improving
existing measures (Katerenchuk and Rosenberg,
2016), such measures were not widely adopted into
mainstream LTR research in NLP.

The discussion in this section focused on the gen-
eral methods for LTR including the nature of data,
modeling techniques, and evaluation measures, and
how an NLP problem and corresponding datasets
can be viewed through an LTR lens. In the next
section, we look into how LTR methods are used
across various NLP applications in practice.

3 Overview of LTR Applications in NLP

In previous surveys, ranking approaches have been
separated as ranking creation (ordering according
to a criteria, with or without a query) vs. rank-
ing aggregation (combining previously-computed
rankings) (Li, 2014), or re-ranking (of a previously
computed ranking) vs. direct ranking, sometimes
called dense ranking or dense retrieval (Lin et al.,
2021). In this paper, we distinguish the applica-
tions based on whether the ranking is done when
there is a query/reference and a set of items to be
ranked in terms of relevance to the query, i.e. rank-
ing with a query (Section 3.1) vs. when there is no
explicit query, only a list of items to be ranked , i.e.
ranking without a query(Section 3.2)10. Aligning
with the growing efforts in the NLP community on
studying and expanding multilingual support for
NLP applications, we note the multilingual cover-
age of LTR use cases within NLP where possible.

3.1 Ranking with a Query

Question answering, which involves tasks such as
selection and ranking of relevant passages for a
given question, extracting answer spans from each
passage or choosing from a multiple-choice setup

7https://github.com/AmenRa/ranx
8https://huggingface.co/evaluate
9https://github.com/usnistgov/trec_eval

10Our process for selecting the relevant papers is explained
in Appendix A. See also Appendix B for more information.

is a classic example of ranking with a query. A re-
lated task is community question answering, where
a similarity-based ranking of other questions that
are close to the user’s query is performed. These
are the commonly seen use cases of LTR in NLP
research, and a range of methods from traditional
ranking approaches to tree kernels and convolu-
tional neural networks were explored (e.g., Be-
linkov et al., 2015; Louis and Lapata, 2015; Malhas
et al., 2016; Tymoshenko et al., 2017; Do et al.,
2017; Pirtoaca et al., 2019; D’Souza et al., 2019;
Yan et al., 2020; Zhang et al., 2023). Except Be-
linkov et al. (2015) and Malhas et al. (2016) who
used Arabic datasets, all others cited worked only
with English datasets.

LTR as the primary task LTR methods are ap-
plied in several NLP tasks that involve the creation
of a ranked list from the given set of items. Rank-
ing texts by relevance to a given query (Severyn
and Moschitti, 2015), query-focused single and
multi-document summarization (Jin et al., 2010;
Yin et al., 2012; Cao et al., 2016; Lu et al., 2016;
Liu and Xu, 2023), re-ranking of n-best outputs
in machine translation (Shen et al., 2004; Li et al.,
2013; Niehues et al., 2015; Li and Wang, 2018;
Lee et al., 2021) and optical character recognition
(Tomeh et al., 2013) are examples of such tasks
that have some form of ranking problem in their
pipeline. There are several other NLP applications
of this kind, such as choosing best headlines for a
given article (Kourogi et al., 2015; Higurashi et al.,
2018), ranking tweets by their credibility with re-
spect to an event (Gupta and Kumaraguru, 2012),
ranking relevant reviews for medical products in
e-commerce applications (Uppal et al., 2019), rank-
ing reader emotions in a given document (Lin and
Chen, 2008), and differential diagnosis, using LTR
to find the most probable diseases given a clinical
description text (Amiri et al., 2021). LTR methods
are also used on sub-sentence level for tasks such as
ranking of potential words/phrases for lexical sub-
stitutions (Szarvas et al., 2013; Liang et al., 2018;
Paetzold and Specia, 2017) or ranking keyphrases
(Eichler and Neumann, 2010)

Amongst these, excluding papers working with
machine translation datasets, only three papers
(Tomeh et al., 2013; Kourogi et al., 2015; Higurashi
et al., 2018) reported experiments with non-English
(Arabic and Japanese) datasets. Pairwise ranking
methods are more commonly used, although some
reported comparisons with listwise methods, and
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showed either comparable or slightly better results
over pairwise methods (Lu et al., 2016; Jin et al.,
2010; Yin et al., 2012; Szarvas et al., 2013).

LTR as an intermediate step: The tasks men-
tioned so far have a ranking/ordering problem spec-
ified in their definition. However, LTR methods
have also been used as an intermediate step for
other standard NLP tasks that are not particularly
specified as a ranking task, to choose the final pre-
diction for the NLP model, among the possible
options. For example, Ji et al. (2006) and Darwish
et al. (2017b) use LTR for sequence tagging prob-
lems, to rank the possible tags for a given word.
Entity linking (Zheng et al., 2010; Chen and Ji,
2011; McNamee et al., 2011), morphological anal-
ysis (Darwish and Mubarak, 2016; Darwish et al.,
2017a), coreference resolution (Irwin et al., 2011;
Tran et al., 2011), referring expression generation
(Zarrieß and Kuhn, 2013), surface realizations in
text generation (Zarrieß et al., 2012; Mazzei and
Basile, 2019), and slot ranking in dialog systems
(Wang et al., 2022) are other examples of this kind,
where LTR methods were used in the pipeline of
some classic NLP tasks.

A few other examples include: disease normal-
ization i.e., determining which diseases are men-
tioned in the text (Leaman et al., 2013), identifying
phrasal verbs (Pichotta and DeNero, 2013), short
answer scoring (Mohler et al., 2011), choosing the
target languages in cross-lingual transfer (Lin et al.,
2019), and ranking of labels in multi-label text clas-
sification (Azarbonyad et al., 2021), knowledge
graphs (Gao et al., 2022), language modeling (Fry-
denlund et al., 2022), fact-checking (Fajcik et al.,
2023), and ensembling of LLM outputs (Jiang et al.,
2023).

While pairwise methods (especially SVMrank)
dominate here too, listwise approaches were found
to be useful for some of the tasks (e.g., coreference
resolution (Tran et al., 2011), surface realization,
the task of generating linear form of a text given a
syntactic representation (Mazzei and Basile, 2019),
multilabel classification (Azarbonyad et al., 2021)).
In terms of non-English datasets, LTR was used
with Arabic (Darwish and Mubarak, 2016; Darwish
et al., 2017b,a), Spanish and Catalan (Tran et al.,
2011), German (Zarrieß et al., 2012; Zarrieß and
Kuhn, 2013), and French (Mazzei and Basile, 2019)
and Chinese (Mazzei and Basile, 2019; Jiang et al.,
2023) across a range of tasks. Clearly there is more
language diversity in this set of tasks compared to

others that used LTR in NLP so far.

3.2 Ranking without a Query
In NLP, it is common to see problems that seek a
ranking of items without a specific query. Informa-
tion ordering tasks, where the goal is to rank a given
set of items based on a criteria (e.g., coherence, po-
larity, formality, readability, etc.) are examples of
tasks of this kind. LTR has also been studied as an
alternative to classification and regression in tasks
such as readability assessment and essay scoring
where there is no associated query. While the rank-
ing methods used themselves are not different in
such cases, the evaluation measures used are of-
ten different from the ones used where there is a
reference/query (see Section 2.6 for a discussion).

Text summarization without a reference query
is an example where LTR methods have been used
to rank sentences (Narayan et al., 2018). Ordering
the sentences in a paragraph (Kumar et al., 2020),
and temporal ordering of events in clinical notes
(Jeblee and Hirst, 2018) are other examples.

Readability assessment is the problem of deter-
mining the readability of a text. In this task, the
input is comprised of lists of texts to be ranked by
readability, and the outputs are the same lists of
texts, sorted by readability. Pairwise ranking has
been well studied for this task (Pitler and Nenkova,
2008; Tanaka-Ishii et al., 2010; Ma et al., 2012;
Vajjala and Meurers, 2016; Liu et al., 2018; Lee
and Vajjala, 2022) and recent research (Lee and Va-
jjala, 2022) showed that a pairwise ranking based
approach performed better in cross-domain and
cross-lingual transfer scenarios for this task. Of
these, while Tanaka-Ishii et al. (2010) reported re-
sults on English and Japanese datasets, Lee and
Vajjala (2022) employed English, French and Span-
ish datasets.

Essay scoring is the task of evaluating stu-
dent/learner essays and assignments automatically.
While this is generally modeled as a classifica-
tion/regression problem, a popular approach is
to order a collection of student writings instead
of grading them separately. Yannakoudakis et al.
(2011), Kuzi et al. (2019) and Yang et al. (2020)
demonstrated the usefulness of ranking methods
for English essay scoring.

Ranking words/phrases in problems where the
input is a set of words, and the output is a set of
scores which can then be ranked, such as senti-
ment intensity ranking (Wang et al., 2016), polarity
and formality ranking (Brooke and Hirst, 2014)
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can also be considered as examples of tasks with-
out a query. Wang et al. (2017) discuss ranking
approaches for measuring semantic coherence be-
tween pairs of texts. Of these, only MacLaugh-
lin and Smith (2021) mentions working with non-
English (Latin) data along with English. Ranking
speakers in terms of their relative power in politi-
cal debates (Prabhakaran et al., 2013, 2014), docu-
ments for plagiarism detection (Chong and Specia,
2012) and passages in a document in terms of their
quotability (MacLaughlin and Smith, 2021), and
ranking different versions of a claim for quality
Skitalinskaya et al. (2021) are some uncommon
examples.

While this list is not exhaustive, these examples
demonstrate the diverse usage of LTR methods for
various NLP tasks, and how many of the use cases
are different from the traditional IR task of rele-
vance ranking of a set of items in response to a
query. This diversity also resulted in the use of
many different, task-specific and language-specific
datasets while using LTR in NLP. Our main obser-
vations are summarized as follows:

1. Although pointwise/pairwise/listwise ranking
approaches have all been explored for vari-
ous NLP tasks, pairwise ranking is the most
commonly used approach. While we did not
find any noticeable trend in the choice among
these approaches, it has to be noted that pair-
wise methods are relatively easier to imple-
ment and even standard binary classification
techniques can be used to learn to compare
pairs, whereas listwise methods require more
careful consideration, and are computation-
ally more intensive, which could explain the
preference for pairwise LTR methods in NLP.

2. In terms of multilinguality, only about 22% of
the papers listed in this section explored non-
English datasets (16/73), with Arabic used
across five tasks.

Note that LTR approaches are not necessarily the
best-performing solution for some of the tasks and
traditional classification or regression approaches
may be better solutions, based on the nature of the
task. Our aim in this section is only to provide
an overview of where (and how) LTR methods
are adapted for various NLP tasks, not to assess
whether they are the best-performing approach for
a given task.

4 Significance Testing

As this survey aims to guide NLP researchers and
practitioners, we consider it important to discuss
not only how to implement and evaluate ranking,
but also how to reliably compare different methods.
Therefore, in this section, we present an overview
of significance testing methods, before analyzing
the actual usage of such methods in the papers we
surveyed and providing recommendations.

4.1 Methods
The goal of significance testing is to determine the
probability that the difference in score between
two algorithms, termed the “test statistic”, is due to
chance. If the difference is indeed due to chance,
the true expected value of the test statistic is 0 – this
is termed the “null hypothesis”. More formally, the
test statistic δ is defined as the absolute difference
in scores between two models on some test set D,
i.e. δ = |m1(D) −m2(D)|. The null hypothesis
is that the true value of δ = 0. The probability of
obtaining a δ greater than or equal to the observed
value, assuming the null hypothesis, is called the
“p-value”. If p is smaller than some pre-determined
significance level (usually 0.05 or 0.01), the null
hypothesis is rejected, and the difference is consid-
ered significant.

In IR research, significance testing has be-
come the norm in shared tasks such as those at
TREC (Voorhees and Harman, 2005), and some
studies compared the suitability and reliability of
statistical significance tests on common evaluation
measures (Sanderson and Zobel, 2005; Parapar
et al., 2021). Regarding NLP specifically, one use-
ful reference on hypothesis testing is the textbook
by Dror et al. (2020), as well as the papers on
which it is based (Dror et al., 2017, 2018, 2019).
The book includes a survey of the most relevant
significance tests for common NLP tasks, matching
tasks and their evaluation measures with the most
appropriate test. In NLP settings, significance tests
are usually paired, which means that they compare
the results of two algorithms on every example in
the test set, and then provide an aggregate p-value.
There are several types of tests.

Parametric tests make assumptions about the
distribution of the test statistic under the null hy-
pothesis (typically normality). They are less likely
than non-parametric tests to accept the null hypoth-
esis when it should be rejected, but if the distribu-
tion is unknown, non-parametric tests should be

1906



used instead. The paired student’s t-test (Fisher,
1935) is the most popular parametric test in NLP.

Non-parametric tests can be grouped into
sampling-free and sampling-based methods.
Sampling-free tests include several variations of
the sign test including Wilcoxon’s signed rank
test (Wilcoxon, 1945). This test ranks the test cases
by the difference between the two scores (large to
small), then sums the signed ranks of this ordered
list of test cases. This test “is actually applicable
for most NLP setups” (Dror et al., 2018).

Sampling-based tests include the Fisher-Pitman
permutation test (Pitman, 1937; Fisher, 1935;
Noreen, 1989) and the bootstrap test (El Barmi
and McKeague, 2013). These tests are more ro-
bust because they consider the actual values of
the test statistic, not just the signed ranks; on the
other hand, they are more computationally expen-
sive. The permutation test checks how often δ is
greater than the observed value if we randomly
swap the scores of the two systems and consider
all permutations (or some random sample if that is
unfeasible). The bootstrap test is similar, but we
sample test cases with replacement from the actual
test set rather than randomly swapping outputs.

Dror et al. (2018) propose a simple decision tree
to select the appropriate test: if the distribution of
the test statistic is known (or can be shown to be
normal or similar to some reference distribution),
we should prefer a parametric test. Otherwise, we
should prefer sampling-based methods as long as
the test set is not too small (because of the sampling
error) or too large (for computational feasibility),
and sampling-free methods otherwise.

Other approaches Evert (2004) presents a
model-based approach which he applies to the task
of collocation extraction, a query-less task. This
method assumes that precision scores are the re-
sult of a random experiment and follow a bino-
mial distribution. The null hypothesis, i.e., that
the distribution means are the same, is tested using
Fisher’s exact test. Similarly, Goutte and Gaussier
(2005) compute a distribution for the evaluation
metric (focusing on precision, recall, and F-score),
then sample from the distributions of two systems
to test for a significant difference. Riezler and
Hagmann (2021) proposed another model-based
method, which is applicable to a wide range of
evaluation measures, and can handle hyperparame-
ter variation and multiple test sets.

Bayesian approaches (Gelman et al., 2020) have

also been used for hypothesis testing in NLP. Sad-
eqi Azer et al. (2020) compare various hypothesis
testing approaches, including Bayesian ones, on the
question answering task, and provide guidelines for
selecting the best approach based on the kinds of
hypotheses they support. Whereas frequentist ap-
proaches produce a single point estimate of the
p-value, Bayesian methods produce a probability
distribution for the test statistic. The Bayesian ana-
log of confidence intervals and p-values can then
be computed. Bayesian approaches are easier to
interpret and more robust to the size of the test set.
So far, Bayesian hypothesis testing has been fo-
cused on classification tasks (Carrasco et al., 2020),
but there exists a Bayesian version of Wilcoxon’s
signed rank test (Benavoli et al., 2014), which is
applicable to many different tasks and evaluation
measures.

There are still open issues regarding significance
tests. They generally assume that test cases are
independent and identically distributed (IID), but
this is rarely the case in NLP data, as test sets can
contain sentences from the same document, au-
thor, source, etc. (Dror et al., 2018) How to handle
evaluation scores based on cross-validation is an-
other open issue (Raschka, 2018). Note that some
of the resources covered in this section provide a
toolkit or experimental scripts for significance test-
ing (Raschka, 2018; Dror et al., 2020; Carrasco
et al., 2020; Sadeqi Azer et al., 2020), and that sig-
nificance tests are implemented in some libraries
for scientific computing, such as SciPy (Virtanen
et al., 2020).

4.2 Actual Usage of Significance Testing
To assess actual usage of significance testing in this
area, we inspected all the works cited in this survey
for mentions of significance testing. We focused on
papers reporting experiments that compare differ-
ent algorithms, and excluded survey papers, papers
that are specifically about significance testing itself,
IR evaluation practices, toolkits, etc. This leaves a
total of 108 papers.

The most frequently used test was the paired
t-test, which was applied in 15 papers (see Ap-
pendix C for details) to a wide variety of metrics
including precision, recall, F-score, MAP, gener-
alized average precision, P@K, MRR@k, NDCG,
correlation measures, perplexity and metrics used
for coreference resolution. The second-most fre-
quent was Wilcoxon’s test, used in six papers. Var-
ious tests were used once in four different papers.
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An un(der)specified test was used in a further 11 pa-
pers. Finally, Evert (2004) and Goutte and Gaussier
(2005) both proposed novel tests which they then
applied to NLP ranking tasks. The latter was also
used by Fajcik et al. (2023).

This leaves 69 of 108 papers (64%) that do not
report statistical significance. Note that in a few
papers, it was difficult to determine from the text if
and how significance testing was performed (due
to vague usage of the term “significant”), so the
statistics we provide are approximate. At any rate,
there is still a tendency not to report statistical sig-
nificance in this line of work. However, as some
have noted, bringing about statistical reforms in a
field may take a lot of effort and time (Sakai, 2014).

In summary, we recommend the following:

• To compare systems reliably, significance test-
ing should be required. This could include
adding this to so-called “responsible NLP
checklists” for publication. Common tests
are easy to carry out, thanks to toolkits and
libraries that implement them.

• Additional statistical measures should also be
considered (Sakai, 2014; Fuhr, 2017), such as
confidence intervals (to assess the reliability
of each score) and effect sizes (to quantify the
actual gain provided by one algorithm over
another).

• Various tests are available and there is a lot
of variability in actual usage, with the t-test
currently being the most common. Dror et al.
(2018) provide useful guidance on choosing
an appropriate test, but neglects some ap-
proaches, e.g. Bayesian methods.

• We would implore researchers to avoid de-
scribing gains as being “significant” when no
appropriate test has been applied. Also, when
discussing significance, it is important to re-
member that statistical significance does not
necessarily entail practical significance (Hull,
1993, inter alia).

5 Conclusions and Future Directions

This survey shows a snapshot of LTR methods and
current practices in the use of LTR in NLP, and
provides guidance and resource pointers for sig-
nificance testing, an under-practiced element of
evaluation. Our key insights so far are summarized
below:

1. LTR is applied in a diverse range of tasks in
NLP beyond the traditional information re-
trieval task, resulting in the usage of many dif-
ferent kinds of task-specific datasets and eval-
uation measures. Most of this research is dom-
inated by English datasets, though, with 22%
of papers reporting on non-English datasets.

2. Pairwise approaches are more commonly
adopted in NLP literature than listwise ap-
proaches, with an increasing interest in rank-
ing with generative models and the use of
LLMs in zero-shot settings in recent times.

3. Significance testing is not a common prac-
tice in this field and some papers report with
unspecified tests. We summarized the avail-
able literature on the appropriate tests for LTR
tasks and evaluation measures, offering rec-
ommendations for doing significance testing
for LTR in NLP, and found that most (approx.
64%) of papers surveyed reported no signifi-
cance testing.

Future Directions: There has been growing in-
terest in using LLMs as zero-shot rankers (see Sec-
tion 2.4 for a discussion), following the current
trend of using large language models as natural
language APIs. This strand of research has been
primarily focused on (re-)ranking for information
retrieval and question answering. We expect this
trend to continue, and hyphothesize that new use
cases within NLP could emerge for ranking and
learning-to-rank.

The information retrieval community has been
working on increasing the diversity of rankings
(Radlinski et al., 2008; Haldar et al., 2022), which
could be relevant for NLP problems that rely on
sampling techniques and diverse text generation
(e.g., machine translation, keyphrase generation).
There is also emerging research on how neural rank-
ing models can benefit from traditional IR or LTR
methods (Zhang et al., 2021; Saha et al., 2023),
and equivalent ideas on the relevance of traditional
NLP to ranking may emerge. We hope to see more
research applying significance testing across LTR
in NLP and more multilingual LTR use cases in
future.

6 Limitations

While LTR methods have been effective in NLP, the
IR community has traditionally utilized LTR meth-
ods to a greater extent. Since work in IR can in-
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clude the search and retrieval of textual data, there
is not a clear boundary between LTR methods for
IR and LTR methods specific to NLP use cases. For
this study, we have chosen to cover LTR applica-
tions in tasks that are NLP-specific, opting against
more general IR-centric LTR approaches that may
operate on textual data as a medium. However with
the current trend of retrieval-augmented generation
with LLMs, we anticipate that these boundaries
will be blurred even more in the near future. Ad-
ditionally, we focused mainly on supervised LTR
approaches in this paper, which overlooks other
applications of LTR which follow unsupervised
methods or use reinforcement learning and other
approaches for learning to rank. We also consid-
ered non-NLP tasks to be out-of-scope of this work,
however LTR may of course be applied to other do-
mains – other discrete domains may find much of
the work described here transferrable, but there are
nuances and tricks for LTR in continuous domains
which are not covered by this survey. Finally, it
should be noted that our approach to selecting the
papers (described in Appendix A) poses limita-
tions on the coverage of this survey.
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Appendices

A Selecting papers

We searched the ACL Anthology for query terms in-
volving popular LTR algorithms such as SVMrank,
ListNet, ListMLE9 and AdaRank, and using the
queries "learning to rank" and "learning-to-rank".
Among the results, we excluded papers that dis-
cussed the classic information retrieval task (search,
crosslingual information retrieval, etc.), and se-
lected papers with the goal of representing diverse
NLP tasks where LTR methods are used. Vision-
language tasks are also not included. Other non-
NLP venues (e.g., CIKM, SIGIR, PlosOne, etc.)
also sometimes report on research that employes
LTR methods on NLP tasks, and we included them
where relevant, based on Google Scholar result for
the same queries.

B Tabulated surveyed papers

In performing this review we tabulated a range
of information about the ∼ 150 papers surveyed.
Some statistics throughout the paper are gener-
ated using information in this spreadsheet. It
is too large to fit in a paper format, but we
make it available here: https://github.com/
nishkalavallabhi/LTRSurvey2024.

C Details on usage of significance testing

The most frequently used test was the paired t-
test, which was applied in 15 papers to a wide
variety of metrics including precision, recall, F-
score, MAP, generalized average precision, P@K,
MRR@k, NDCG, correlation measures, perplexity
and metrics used for coreference resolution (Xia
et al., 2008; Irwin et al., 2011; Yannakoudakis
et al., 2011; Gupta and Kumaraguru, 2012; Szarvas
et al., 2013; Severyn and Moschitti, 2015; Nogueira
et al., 2020; Yan et al., 2020; Amiri et al., 2021;
Azarbonyad et al., 2021; Skitalinskaya et al., 2021;
Zhang et al., 2021; Frydenlund et al., 2022; Tang
et al., 2023; Zhuang et al., 2023). The second-most
frequent was Wilcoxon’s test, which was similarly
applied to many different metrics, in a total of six
papers (Burges et al., 2005; Jin et al., 2010; Chen
and Ji, 2011; Louis and Lapata, 2015; Higurashi
et al., 2018; Lee and Vajjala, 2022). Additionally,
McNamee et al. (2011) applied the sign test to
P@1, Liang et al. (2023) used the paired bootstrap
on various metrics, Burges et al. (2006) reported
the overlap of confidence intervals on NDCG, and

Narayan et al. (2018) conducted one-way ANOVA
with post-hoc Tukey HSD tests on the distribution
of ranks. An un(der)specified test was used in a
further 11 papers (Lin and Chen, 2008; Tran et al.,
2011; Ma et al., 2012; Zarrieß and Kuhn, 2013; Va-
jjala and Meurers, 2016; Li and Wang, 2018; Min
et al., 2022; Rau and Kamps, 2022; Zhuang et al.,
2022; Liu et al., 2023; Liu and Xu, 2023).
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