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Abstract

Recent studies introduced effective compres-
sion techniques for Large Language Models
(LLMs) via post-training quantization or low-
bit weight representation. Although quantized
weights offer storage efficiency and allow for
faster inference, existing works have indicated
that quantization might compromise perfor-
mance and exacerbate biases in LLMs. This
study investigates the confidence and calibra-
tion of quantized models, considering factors
such as language model type and scale as con-
tributors to quantization loss. Firstly, we reveal
that quantization with GPTQ to 4-bit results in
a decrease in confidence regarding true labels,
with varying impacts observed among different
language models. Secondly, we observe fluctu-
ations in the impact on confidence across differ-
ent scales. Finally, we propose an explanation
for quantization loss based on confidence levels,
indicating that quantization disproportionately
affects samples where the full model exhibited
low confidence levels in the first place. We
make our code and quantized models publicly
available.1

1 Introduction

Large language models (LLMs) are widely used
in a variety of natural language generation applica-
tions (Bahdanau et al., 2014; Brown et al., 2020;
Winata et al., 2021; Le Scao et al., 2022; Touvron
et al., 2023). LLMs have been proven to achieve
high performance in zero and few-shot prompting,
providing results on par with fine-tuned baselines,
especially in commonsense reasoning tasks (Zhang
et al., 2022; Le Scao et al., 2022; Jiang et al., 2023).
Kaplan et al., 2020 show that emerging abilities
come with the scale increase, which makes well-
performing larger models less accessible and limits
their practical usability. A range of efficient com-
pression and acceleration methods, including quan-

1https://github.com/upunaprosk/
quantized-lm-confidence
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Figure 1: Quantization-induced absolute confidence
shifts in original (pre-compression) low and high con-
fidence samples (BLOOM and OPT models, HEL-
LASWAG benchmark). The bin with the largest mean
confidence shift is highlighted.

tization, have been developed that help to alleviate
high latency and extensive storage demands (Gupta
and Agrawal, 2020; Tao et al., 2022). Despite its
efficacy as a compression technique, recent works
show that quantization may degrade the initial per-
formance and amplify the sensitivity of an LLM to
certain linguistic phenomena and stereotypes (Liu
et al., 2023; Ramesh et al., 2023). However, less
attention has been paid to explaining the compres-
sion loss, particularly its variance across different
texts. In this paper, we extend the existing research
on the compression loss estimation; in particular,
we measure the impact of quantization on the con-
fidence of LLMs that can be initially overconfident
in both right and wrong predictions (Jiang et al.,
2021; Xiao et al., 2022b; Ahuja et al., 2022; Desai
and Durrett, 2020).

Our main contributions are the follow-
ing: (i) we investigate how quantization with
GPTQ (Frantar et al., 2022) influences the cali-
bration and confidence of LLMs, (ii) we assess the
confidence alignment between compressed and full
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Model ARC EASY BOOLQ HELLASWAG OPENBOOKQA PIQA XSTORY

Acc.↑ CE↓ Acc.↑ CE↓ Acc.↑ CE↓ Acc.↑ CE↓ Acc.↑ CE↓ Acc.↑ CE↓

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
7B 81.10 ↓ 1.18 7.94 ↑0.83 83.61 ↓ 0.86 38.62 ↑3.13 61.30 ↓ 1.53 34.3 ↑1.29 32.60 ↓ 0.40 45.24 ↑2.08 80.83 ↓ 0.65 45.24 ↓0.4 78.89 ↓ 0.27 4.78 ↓0.08

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
7B 75.25 ↓4.29 9.99 ↑1.72 75.05 ↓2.51 38.78 ↓7.66 56.94 ↓3.23 37.8 ↑4.07 34.0 ↓4.2 44.56 ↑3.13 78.67 ↓2.01 44.94 ↓0.58 76.77 ↓2.05 4.97 ↑0.24

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
560M 47.35 ↓1.56 29.13 ↑1.13 55.14 ↓6.94 26.91 ↓2.85 31.58 ↓0.47 64.81 ↓0.49 17.2 ↓0.6 61.16 ↑ 1.61 64.09 ↓1.14 40.98 ↑0.32 61.22 ↓1.39 5.13 ↓0.03

1.1B 51.47 ↓2.27 25.07 ↑2.17 59.08 ↑0.74 32.8 ↑2.65 34.44 ↓0.87 58.51 ↑0.85 20.0 ↓2.2 58.88 ↑0.74 67.14 ↓0.98 42.27 ↓0.68 62.54 ↓1.52 5.77 ↑0.15

1.7B 56.31 ↓1.81 21.99 ↑0.35 61.77 ↓0.12 38.29 ↓0.06 37.54 ↓0.82 55.67 ↑0.51 21.40 ↓ 1.60 56.64 ↑0.97 68.77 ↓0.76 41.4 ↓0.49 64.66 ↓0.53 5.65 ↑0.08

3B 5947 ↓2.27 19.68 ↑1.31 61.62 ↑0.09 34.67 ↓0.86 41.39 ↓0.91 52.33 ↑0.82 21.6 ↓ 0.40 56.32 ↓0.15 70.84 ↓0.82 42.12 ↓0.25 66.78 ↓0.53 5.76 ↑0.2

7.1B 65.03 ↓1.56 15.57 ↑1.06 62.81 ↑0.19 32.28 ↑0.19 46.49 ↓1.11 48.54 ↑1.07 25.20 ↓ 0.80 53.23 ↑0.01 72.63 ↑0.28 42.52 ↓0.24 70.55 ↓0.33 5.53 ↓0.1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
125M 43.56 ↓ 1.05 32.76 ↑0.62 55.44 ↓ 2.72 30.13 ↓3.48 29.18 ↓ 0.59 62.84 ↑0.48 16.6 ↑ 0.20 61.19 ↑0.45 62.00 ↓ 0.81 41.51 ↑0.11 58.84 ↓ 1.0 5.9 ↓0.12

350M 44.20 ↑ 0.08 31.21 ↑1.79 57.65 ↓ 3.46 29.62 ↓4.4 32.02 ↓ 0.18 60.09 ↑0.30 17.60 ↓ 1.40 61.92 ↓0.19 64.47 ↓ 0.92 41.58 ↑0.19 62.48 ↓ 1.79 5.97 ↓0.35

1.3B 56.99 ↓ 0.85 20.85 ↑0.85 57.67 ↓ 2.73 26.42 ↑0.01 41.56 ↓1.00 52.7 ↑0.16 23.4 ↓ 1.40 55.04 ↑3.32 71.71 ↓ 0.76 41.49 ↑0.34 70.28 ↓ 1.58 5.6 ↑0.23

2.7B 60.77 ↓ 1.64 17.63 ↑1.56 60.24 ↓ 5.05 25.86 ↑0.01 45.86 ↓ 0.51 48.93 ↓0.15 25.0 ↓ 2.20 52.6 ↑2.76 73.78 ↓ 0.98 41.87 ↑0.39 70.42 ↑ 0.13 5.83 ↓0.06

6.7B 65.57 ↓ 0.08 15.58 ↓0.18 66.05 ↓ 0.83 28.05 ↓1.72 50.51 ↓ 0.65 45.25 ↑0.01 27.6 ↓ 1.20 50.99 ↑1.44 76.28 ↓ 0.22 43.72 ↓0.65 73.6 ↓ 0.19 5.62 ↓0.17

13B 67.13 ↑ 0.38 14.21 ↓0.69 65.93 ↓ 0.09 29.47 ↓0.52 52.43 ↓ 0.59 43.03 ↑0.47 27.2 ↓ 0.05 52.33 ↓0.23 75.84 ↑ 0.11 43.87 ↓0.43 76.04 ↓ 0.07 5.15 ↑0.21

Table 1: Zero-shot accuracy scores (Acc.) and calibration error (CE) for full LLMs by benchmark with the
difference in scores after quantization. We report expected CE for binary tasks and adaptive CE for multi-class
benchmarks (ARC, BOOLQ, OPENBOOKQA). Notations: =MISTRAL; =LLAMA; =BLOOM; =OPT.

LLMs at scale, (iii) we explain the quantization
loss from the initial confidence perspective.

Our null hypothesis is that the compressed vs.
full predictive probability distributions are indis-
tinguishable since prior work discussed a negli-
gible accuracy drop in performance after quanti-
zation (Jacob et al., 2017; Dettmers et al., 2022;
Xiao et al., 2022a). We analyze the relation-
ship between models by comparing calibration
scores—indicating a model’s ability to accurately
reflect true probabilities—before and after quanti-
zation. To the best of our knowledge, our research
is the first attempt to explain the quantization loss
through the lens of predictive probabilities.

2 Related Work

The pretrained knowledge embedded in very large
models has paved the way to parameter-efficient
adaptation for downstream tasks, such as prompt-
ing and few-shot learning, bypassing the neces-
sity for fine-tuning (Brown et al., 2020; Wei et al.,
2022). The inference of LLMs can be acceler-
ated through a low-bit representation of trained
weights (quantization) and effective tensor slicing
across multiple GPUs (DEEPSPEED (Rasley et al.,
2020), ACCELERATE (Gugger et al., 2022), inter
alia). Prior studies have estimated compression
efficiency through: (1) latency-related measures
determining throughput and a multiple of the origi-
nal model’s inference speed-up, (2) the precision
of weights approximation, and (3) performance de-
crease (gap) (Jacob et al., 2017; Dettmers et al.,
2022; Xiao et al., 2022a; Frantar et al., 2022). Re-

cent comparative studies on interpreting compres-
sion loss have indicated that compression ampli-
fies biases and stereotypes, highlighting a disparate
quantization loss in multilingual LLMs across dif-
ferent architectures (Ramesh et al., 2023). In con-
trast, another line of research suggests that com-
pression enhances fairness (Hessenthaler et al.,
2022). Altogether, existing studies commonly mea-
sure compression loss by observing the deviation
in performance before and after quantization. In
this project, we adopt the recent GPTQ quantiza-
tion method for compressing model weights and
concentrate on the disparities between predictive
probability distributions instead. For the first time,
our approach reveals the relationship between the
initial level of predictive confidence and quantiza-
tion loss.

3 Methodology

We follow Jiang et al., 2020 and consider a clas-
sification problem where inputs to the model are
questions x paired with candidate answers y to
constitute concatenated sequences. The generative
model then processes these concatenated question-
answer pairs to predict the most probable answer ŷ
from the provided choices Y for a given x:

ŷ = arg max
y∈Y

pLM(y|x).

Here, the probability of the token sequence y is
derived as the product of individual token y[i] prob-
abilities within the sequence, conditioned on x and
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the preceding tokens y[1:i−1]:

pLM(y|x) =
|y|∏

i=1

pLM(y[i]|x, y[1:i−1]),

where |y| is the number of tokens composing the
answer y.

For the entailment generation benchmarks, we
use texts concatenated with possible completions
as inputs to the model. We compare the quantized
and full-precision models with the difference in the
probabilities of the sequences pLM(y|x), further
referred to as confidences.

3.1 Quantization
We quantize pre-trained weights of LLMs with a
post-training quantization method known as GPTQ
(OPTQ, Frantar et al., 2023). This approach
employs iterative layer-wise weight quantization
based on the input data, providing several bene-
fits compared to other quantization methods: mini-
mized weight approximation error, support for seri-
alization across various bit configurations, and sig-
nificantly accelerated inference using GPUs. We
follow the GPTQ 4-bit configuration outlined by
Frantar et al., 2023 and use a random sample of 128
sequences from the C4 dataset (Raffel et al., 2019)
for quantization and set a grouping size equal to
128. Additional details regarding the quantization
procedures can be found in Table 3 (Appendix A).

3.2 Evaluation
We focus on evaluating models’ confidence in pre-
dictions before and after quantization in a zero-shot
setting. In an ideal scenario, we expect the model’s
performance and confidence to remain consistent
after quantization, preserving the initial calibra-
tion level. We evaluate the performance of LLMs
post-compression using accuracy (Acc.) and cal-
ibration error (CE). For binary problems, we use
the Expected Calibration Error (ECE;Naeini et al.,
2015), calculated using reliability plots that bin
predicted probabilities and compare them against
actual accuracy. In multi-class benchmarks, we use
the Adaptive Calibration Error (ACE; Nixon et al.,
2019), which quantifies calibration performance by
dividing predictions into equally sized bins based
on confidence levels and comparing accuracy and
confidence within these subsets.

Details regarding the binning parameters used
are provided in Appendix B. We also examine two
cases of miscalibration: (1) the model’s rejection

Model Conf. Conferr Conftrue H

BLOOM 96.26 95.64 46.24 12.87
+ GPTQ 96.3 95.62 45.23∗ 12.89

OPT 96.51 95.57 50.37 12.12
+ GPTQ 96.5 95.55 49.78∗ 12.22

Mistral 96.85 95.02 61.14 10.96
+ GPTQ 96.89 95.13 59.73∗ 10.87

LLaMA 96.8 95.34 56.83 11.37
+ GPTQ 96.48 95.13 53.69∗ 12.21∗

Table 2: Confidence and prediction entropy evaluation
results on HELLASWAG for LLMs with ∼7B parame-
ters. Quantized LLMs become less confident in both cor-
rect and wrong predictions. Conf.: Mean confidence in
predictions; Conferr: Mean confidence in wrong predic-
tions; Conftrue: Mean confidence in true class; H=Mean
predictive entropy in the answers, multiplied by 100.
High entropy means that the model is more unsure about
its predictions. The ⋆ denotes a significant difference
with a confidence level set at 0.05 (paired t-test).

of correct predictions due to lower confidence and
(2) the model’s incorrect prediction due to higher
confidence. Specifically, we measure the model’s
confidence Conferr when predicting an incorrect
class and the model’s confidence in the true class
Conftrue.

4 Experiment Settings

Data We use six standard commonsense reason-
ing tasks for our analysis: ARC EASY (Clark et al.,
2018), BOOLQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), HELLASWAG (Zellers et al., 2019),
OBQA (OpenBookQA; Mihaylov et al., 2018),
and XSTORY-EN (Mostafazadeh et al., 2017).
These benchmarks vary in the types of language
inference abilities assessed in LLMs: (1) ques-
tion answering involving reading comprehension
(BOOLQ), (2) natural text entailment (XSTORY-
EN, HELLASWAG), (3) science fact knowledge
(ARC, OBQA), and (4) physical commonsense
(PIQA).

Models We use the following causal (auto-
regressive) LLMs in our experiments: (1) BLOOM
(Le Scao et al., 2022), (2) OPT (Zhang et al., 2022),
(3) Mistral-7B (Jiang et al., 2023), and (4) LLaMA-
7B (Touvron et al., 2023). To examine how con-
fidence loss varies across different scales, we use
various configurations of LLMs: BLOOM with
560M, 1.1B, 1.7B, 3B, and 7.1B parameters, and
OPT with 125M, 350M, 1.3B, 2.7B, 6.7B, and 13B
parameters.
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Figure 2: Mean Jensen-Shannon distances between full
and quantized LLMs across benchmarks. The distances
depict dissimilarities in true-class probability distribu-
tions.

5 Results

We conduct a series of experiments to estimate
the impact of quantization on various aspects of
LLMs’ performance, including calibration error,
prediction entropy, cases of maximum confidence
change, and the distribution dissimilarities between
full and compressed models. We find variance
in quantization impact across different families of
models and their sizes, suggesting that scale and
pre-training directly affect the further quantization
loss.

Calibration Impact Table 1 outlines the classifi-
cation results after quantization, evaluated through
calibration error and accuracy metrics, along with
the variation of these scores compared to the un-
compressed LLMs. The general trend is that quanti-
zation amplifies the pre-existing high calibration er-
ror present in the models before compression across
different models and benchmarks. This trend re-
mains consistent across various model families, no-
tably affecting the LLaMA-7B, which experiences
a ∼10% increase in pre-compression calibration
error on the HELLASWAG dataset. Overall, scores
associated with the HELLASWAG dataset are more
significantly impacted compared to those of the
BOOLQ and PIQA benchmarks.

Confidence Impact Table 2 presents the results
obtained from four models, each having a near-
equivalent number of parameters. Notably, across
all models, a consistent trend of overconfidence
emerges in both pre- and post-quantization stages,
with an average confidence level around ∼0.95 for
incorrect predictions. Our analysis further shows

a statistically significant impact of quantization
on the confidence associated with true-class pre-
dictions. Additionally, we observe an increase in
entropy for the quantized LLMs shown in Table 5
(see Appendix D). This increase suggests an ampli-
fication in the variance across answers, reflecting
increased uncertainty in answer selection due to
quantization.

Identifying Cases of Confidence Change To
identify instances of confidence change, we seg-
ment the models’ predictions into bins and cal-
culate the confidence changes after quantization
within each bin. In Figure 1, we depict the mean
confidence changes for the BLOOM and OPT mod-
els on the HELLASWAG benchmark. The plot il-
lustrates that samples with lower pre-quantization
confidence levels are significantly affected by the
quantization process, whereas samples in which
the original model was confident show less impact.
This observation suggests that quantization predom-
inantly influences the confidence of samples where
the original model exhibited lower confidence lev-
els.

Jensen-Shannon Distances To illustrate the ex-
tent of differences between the distributions of the
full and compressed models, we plot the mean
Jensen-Shannon distances across benchmarks in
Figure 2. These distances reflect the dissimilarity
between the true-class probability distributions of
the models. We find that the distances between
original and compressed decrease as the model size
scales up. Notably, most model families show a
consistent trend in this behavior, except for LLaMa,
which diverges from the patterns observed in other
models of similar size (∼7B).

6 Conclusion

This paper investigates the impact of quantiza-
tion on the confidence and calibration of LLMs.
We demonstrate that quantization leads to an in-
crease in calibration error and statistically signifi-
cant changes in confidence levels for correct pre-
dictions. Through a detailed examination of con-
fidence shifts, we identify instances of confidence
change occurring in data where models lack con-
fidence before quantization. Overall, our findings
provide insights into quantization loss and suggest
a potential direction for future work, emphasizing
the need to focus on calibrating LLMs, specifically
on uncertain examples. For example, future work
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may focus on integrating the models’ calibration,
such as temperature scaling, into the quantization
pipeline. Also, we have demonstrated that differ-
ent model families, including LLAMA, MISTRAL,
BLOOM, and OPT, exhibit varying degrees of sus-
ceptibility to quantization, as measured by changes
in confidence levels. This suggests another direc-
tion for future research – benchmarking LLMs
based on their response to quantization-induced
confidence shifts.

Limitations

Our quantization techniques are currently limited
to 4-bit post-training quantization with GPTQ.
However, future work can benefit from exploring
training-aware quantization approaches, studying
different quantization factors, such as 2- and 3-bit
weight representation, and quantization of activa-
tions.

In our evaluations, we employ zero-shot tech-
niques, enabling the estimation of the pure quanti-
zation effect. Previous studies mentioned in related
work included a fine-tuning step, whereas our ap-
proach avoids it. Yet, future work could involve
few-shot analysis since this method has the poten-
tial to amplify or compensate for confidence and
quantization loss.

Further research could apply our analysis to
other generative tasks. Instead of predictive dis-
tributions over labels, one could consider those
across tokens. This means using the full model’s
predictions as references and comparing the con-
fidence in these generations after the quantization
process.
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A Quantization Parameters

Parameter Value

Num bits 4
Group size 128
Dampening factor (%) 0.01
Desc act false
Symmetry true
True sequential true

Table 3: Configuration for GPTQ

B Evaluation Details

In this section, we provide further details on the
used measures for the experiments.

Jensen-Shannon Divergence In Figure 2, we
give the distance dissimilarities in the true-class
probability distributions using the Jensen-Shannon
divergence. For a given dataset, we focus on the
true class probabilities, p ∈ Rn, for the full model,
and q ∈ Rn for the quantized one, where n denotes
the number of instances.

The Jensen Shannon-Divergence between these
two distributions is defined by:

JSD(p, q)

=
1

2

(
KL

(
p || p+ q

2

)
+KL

(
q || p+ q

2

))
,

=
n∑

i=1

pi ln

(
2pi

pi + qi

)
+ qi ln

(
2qi

pi + qi

)
,

where KL denoted the Kullback-Leibler diver-
gence and pi and qi are the true-class probabilities
of the i-th instance for the full and quantized
model respectively.

These distances are then averaged over all the
studied datasets.

Expected Calibration Error (ECE) Let us
consider a model h, which assigns confidence
(which are probabilities) of belonging in a given
class. These confidence scores can be divided
into several bins Bm,m = 1, . . .M where M is
the number of bins. More precisely, an instance
belongs to the bin Bm if its confidence score in
the true class confi is in a given range (e.g. if

(m − 1)/M ≤ confi ≤ m/M ). In a given bin
Bm, we can also measure the accuracy of the
model, i.e., compute the ratio of instances in the
bin Bm that are well-classified.

The expected calibration error is then defined
as the weighted mean, where the weights depend
on the number of instances in the bin of the abso-
lute difference between the accuracy acc(Bm) of
the bin and the mean confidence score in the bin
conf(Bm) =

1

|Bm|
∑

i∈Bm
confi., i.e.,

ECE =

M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|,

where n is the sample size. Note this error has
been developed for binary classification tasks and
can be extended to multi-class settings using the
so-called SCE (Nixon et al., 2019), but this first
extension has been shown to be not relevant for all
studies (Ulmer et al., 2022). The authors rather use
the adaptive calibration error, which works with
equal size bins.

Adaptive Calibration Error (ACE) The adap-
tive calibration error is defined by

ACE =
1

CM

C∑

c=1

M∑

m=1

|acc(Bm, c)−conf(Bm, c)|,

where C is the number of classes, M is the num-
ber of bins that are created, acc(Bm, c) is the accu-
racy on class c in the m-th bin and conf(Bm, c) is
the mean confidence score for class c in the m-th.
In this case, all the bins have the same size, which
is equal to ⌊C/M⌋.

Implementation Details Our experiments use
evaluation scripts derived from the EleutherAI
Language Model Evaluation Harness (Gao et al.,
2023).2 To quantize the models we use scripts from
Auto-GPTQ package.3 We run quantization and in-
ference for all the experiments on a single NVIDIA
A-100 GPU. For the largest model, uncompressed
OPT-13B, the evaluation run took roughly two
hours for all the datasets. Frantar et al., 2022 report
GPTQ runtime for the models.

2https://github.com/EleutherAI/
lm-evaluation-harness

3https://github.com/PanQiWei/AutoGPTQ
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C Confidence Evaluation in LLMs after Quantization

In this last experiment we study the evolution of the confidence score for our different models on the six
studied datasets. More precisely, we study the mean difference of confidence score between full and
quantized models for different ranges of confidence scores of the full model.

As presented in Figure 3, the change of probabilities is the lowest one when the model is over-confident
and the uncertainty of the model is impacted (i.e., increased) by the quantization. This observation goes
hand in hand with the entropy values, serving as a measure of model uncertainty, shown in Table 5 (Ap-
pendix D). We also note that, in the case of binary problems (PIQA, BOOLQ and XSTORY CLOSE EN),
that the most impacted confidence scores are the ones for which the model is not confident it its prediction.

0.0

0.1

0.2

Arc Easy PiQA BoolQ HellaSwag OpenBookQA XStory

BLOOM-7.1B

0.0

0.1

0.2

Arc Easy PiQA BoolQ HellaSwag OpenBookQA XStory

OPT-6.7B

0.0

0.2

Arc Easy PiQA BoolQ HellaSwag OpenBookQA XStory

LLaMA-7B

0.25-0.40 0.55-0.70 0.85-1.00
0.0

0.1

0.2

Arc Easy

0.50-0.60 0.70-0.80 0.90-1.00

PiQA

0.50-0.60 0.70-0.80 0.90-1.00

BoolQ

0.25-0.40 0.55-0.70 0.85-1.00

HellaSwag

0.25-0.40 0.55-0.70 0.85-1.00

OpenBookQA

0.50-0.60 0.70-0.80 0.90-1.00

XStory

Mistral-7B

Figure 3: Confidence difference for models across datasets. For each dataset (in column) and each model (in
line), we provide the difference in prediction scores between the full and quantized models. More precisely, each
bar represents the mean difference in confidence between the quantized and full models, with confidence in the
full model represented on the horizontal axis. Note that some ranges start from 0.5 for binary tasks and 0.25 for
multi-class (with four classes) tasks. For a confidence lower than the previous one, there is no chance of being
assigned to the associated class.
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D Confidence Evaluation Results

Model ARC EASY BOOLQ HELLASWAG OPENBOOKQA PIQA XSTORY

Conf. Conferr Conf. Conferr Conf. Conferr Conf. Conferr Conf. Conferr Conf. Conferr

· · · · · ·
7B 88.45 75.44 76.21 64.8 96.85 95.02 79.2 78.93 94.78 89.39 95.23 95.57
7BQ 88.15 75.61 76.75∗ 65.56 96.89 95.13 79.01 79.07 94.67 88.8 95.26 95.72

· · · · · ·
7B 84.68 73.12 75.75 67.78 96.8 95.34 78.64 78.85 94.24 90.32 95.01 95.51
7BQ 81.6∗ 71.93 68.95∗ 63.55 96.48∗ 95.13 78.25 78.68 93.99 90.05 94.8 94.94

· · · · · ·
560M 76.45 73.76 64.74 64.38 96.39 96.27 78.28 78.77 91.47 89.8 94.47 94.62
560MQ 75.89 73.68 61.89∗ 62.76 96.47 96.35 78.74 79.11 91.76 90.07 94.55 95.22
1.1B 76.2 72.22 70.63 69.16 96.45 96.16 78.3 78.81 92.1 89.99 94.36 94.46
1.1BQ 76.0 72.95 73.28∗ 72.08 96.52 96.18 77.97 78.31 91.78 89.58 94.21 94.87
1.7B 77.47 72.86 76.12 74.9 96.24 95.89 78.05 78.57 91.89 89.75 93.96 94.08
1.7BQ 76.34∗ 72.44 76.06 74.85 96.11 95.91 77.52 78.31 91.54 89.56 93.87 94.32
3B 78.6 73.11 72.5 70.55 96.24 95.75 78.3 78.56 92.37 89.57 94.36 94.08
3BQ 77.24∗ 72.23 71.59∗ 69.93 96.43 96.02 77.5 77.9 92.25 89.2 94.15 94.32
7.1B 79.95 73.11 69.97 66.55 96.26 95.64 78.36 78.52 92.71 88.05 94.59 94.85
7.1BQ 79.46 72.85 69.59∗ 66.58 96.3 95.62 78.17 78.59 92.53 89.03 94.56 94.54

· · · · · ·
125M 75.9 74.29 67.95∗ 67.42 96.31 96.29 77.6 78.42 90.96 89.31 94.1 94.86
125MQ 75.88 74.57 64.45 64.21 96.29 96.15 78.14 79.62 91.39 89.89 94.31 94.59
350M 75.45 73.25 67.45 66.57 96.07 95.91 78.36 79.38 91.39 88.85 94.17 94.62
350MQ 76.46∗ 74.84 63.03∗ 62.34 96.25 96.03 78.26 78.68 91.33 89.23 94.38 94.43
1.3B 77.67 72.44 64.25 62.24 96.31 95.74 78.35 79.07 91.91 88.69 94.39 94.47
1.3BQ 77.02∗ 72.54 64.26 63.5 96.14 95.58 78.56 79.16 91.94 88.59 94.31 94.87
2.7B 78.22 71.73 63.67 61.81 96.32 95.51 78.45 78.68 91.89 87.93 94.42 94.6
2.7BQ 77.58∗ 71.69 63.66 62.07 96.2 95.62 77.89 77.66 92.14 88.02 94.35 94.64
6.7B 80.46 72.14 65.88 62.46 96.51 95.57 78.65 79.16 93.29 89.78 94.38 95.32
6.7BQ 80.29 72.52 64.16∗ 60.9 96.5 95.55 78.66 78.32 93.13 89.4 94.55 94.69
13B 81.36 72.42 67.3 63.32 96.49 95.48 78.7 78.75 93.23 88.64 94.98 95.53
13BQ 80.96∗ 72.4 66.78∗ 62.35 96.5 95.52 79.08 79.46 93.03 88.77 94.77 95.18

Table 4: Mean confidence evaluation results across benchmarks. Conf.: Mean confidence in predic-
tions; Conferr: Mean confidence in wrong predictions. The ⋆ is used to denote a significant difference
with a confidence level set at 0.05 (paired t-test). Q denotes quantized models. Notations: =MISTRAL;

=LLAMA; =BLOOM; =OPT.
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Model ARC EASY BOOLQ HELLASWAG OPENBOOKQA PIQA XSTORY

Conftrue H Conftrue H Conftrue H Conftrue H Conftrue H Conftrue H

· · · · · ·
7B 76.82 43.09 71.37 71.05 61.14 10.96 30.93 72.41 79.52 17.69 47.4 16.05
7BQ 75.76∗ 44.42∗ 71.37 70.07∗ 59.73∗ 10.87 30.36 73.19 79.14 18.11 47.27 16.1

· · · · · ·
7B 70.22 56.26 66.83 71.19 56.83 11.37 31.28 73.87 77.04 19.53 46.88 16.62
7BQ 65.01∗ 66.4∗ 61.48∗ 84.3∗ 53.69∗ 12.21∗ 28.42∗ 76.09 75.3∗ 20.61∗ 46.97 17.65∗

· · · · · ·
560M 44.01 82.38 51.83 90.77 31.5 12.41 17.68 75.57 62.89 27.68 47.93 18.72
560MQ 42.42∗ 83.81∗ 49.78∗ 93.37∗ 31.07∗ 12.26 17.65 73.97 62.07 27.52 48.16 18.61
1.1B 47.33 83.0 54.95 82.92 34.51 12.35 19.62 75.19 65.82 25.78 48.11 19.33
1.1BQ 45.23∗ 83.28 55.5∗ 79.2∗ 33.67∗ 12.28 18.26∗ 76.23 64.99∗ 26.44 48.3 19.66
1.7B 51.15 79.99 57.09 74.65 37.52 13.11 21.19 75.97 67.06 26.28 46.93 19.99
1.7BQ 49.21∗ 83.58∗ 56.95 74.95 36.52∗ 13.38 19.83∗ 77.84∗ 66.23∗ 27.16∗ 47.41 20.4
3B 54.29 76.14 56.73 79.88 41.26 12.91 22.3 74.9 69.3 25.11 47.1 19.1
3BQ 52.07∗ 80.42∗ 56.34∗ 81.98∗ 40.41∗ 12.55∗ 21.64 77.03∗ 68.75 25.6 47.57 19.55
7.1B 59.1 71.97 57.67 83.21 46.24 12.87 24.64 75.42 71.88 23.84 46.8 18.6
7.1BQ 57.79∗ 73.52∗ 57.33∗ 83.89∗ 45.23∗ 12.89 23.74∗ 75.9 71.38 24.41∗ 46.69 18.65

· · · · · ·
125M 40.09 83.61 52.46 86.7 29.04 12.86 16.95 77.19 61.88 28.97∗ 48.26 20.12
125MQ 39.12∗ 83.58 50.99∗ 91.0∗ 28.62∗ 12.75 16.27 76.26 61.22 28.24 48.33 19.54
350M 41.01 85.36 53.4 87.14 32.03 13.51 17.41 76.08 63.78 28.0 47.69 19.77
350MQ 40.69 82.59∗ 51.72∗ 92.36∗ 31.84 13.09 17.05 75.09 62.73∗ 28.31 48.04 19.16
1.3B 52.33 79.37 53.88 90.87 41.5 13.03 22.51 75.63 70.02 26.08 47.12 18.73
1.3BQ 50.83∗ 81.23∗ 52.07∗ 91.22 40.47∗ 13.26 22.2 75.09 69.52 25.96 47.21 18.76
2.7B 55.63 77.64 54.34 91.63 45.84 12.84 24.63 74.97 72.0 25.68 46.89 18.82
2.7BQ 53.91∗ 79.47∗ 52.88∗ 91.66 45.12∗ 13.09 23.71 76.5 71.45 25.45 46.9 18.78
6.7B 60.58 70.14 57.42 88.65 50.37 12.12 26.42 74.26 74.42 22.67 46.81 18.3
6.7BQ 60.08 70.89 56.57∗ 90.78∗ 49.78∗ 12.22 26.45 74.65 74.26 22.96 46.63 18.06
13B 62.35 67.09 58.24 86.84 52.15 12.25 26.85 73.83 74.56 22.26 46.88 17.13
13BQ 62.06 68.26∗ 58.38 87.45∗ 51.61∗ 12.24 26.67 73.7 74.38 22.69∗ 46.98 17.38

Table 5: Mean confidence in true classes and predictive entropy evaluation results across benchmarks.
Conftrue: Mean confidence in true class; H=Mean Predictive entropy in the answers, multiplied by 100. The
⋆ is used to denote a significant difference with a confidence level set at 0.05 (paired t-test). Q denotes quantized
models. Notations: =MISTRAL; =LLAMA; =BLOOM; =OPT.
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