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Abstract
The logical information contained in text is
of significant importance for logical reasoning.
Previous approaches have relied on embedding
text into a low-dimensional vector to capture
logical information and perform reasoning in
Euclidean space. These methods involve con-
structing special graph architectures that match
logical relations or designing data augmenta-
tion frameworks by extending texts based on
symbolic logic. However, it presents two ob-
vious problems. 1) The logical information
reflected in the text exhibits uncertainty that is
difficult to represent using a vector. 2) Integrat-
ing logical information requires modeling logi-
cal operations (such as ∪, ∩, and ¬), while only
simple arithmetic operations can be performed
in Euclidean space. To address both the prob-
lems, we propose Beta-LR, a probabilistic em-
bedding method to capture logical information.
Specifically, we embed texts into beta distribu-
tion on each dimension to eliminate logical un-
certainty. We also define neural operators that
enable interpretability and perform logical op-
erations based on the characteristics of the beta
distribution. We conduct experiments on two
datasets, ReClor and LogiQA, and our Beta-LR
achieves competitive results. The experiments
demonstrate that our method effectively cap-
tures the logical information in text for reason-
ing purposes. The source code is available at
https://github.com/myz12138/Beta-LR.

1 Introduction

In recent years, there has been an increasing fo-
cus on logical reasoning (Nilsson, 1991; Habernal
et al.; Liu et al., 2023), which presents a signifi-
cant challenge as it necessitates the extraction of
crucial information from text. Figure 1 provides an
example of a logic reasoning problem taken from
the ReClor (Yu et al.) dataset, which serves as a
benchmark for evaluating logical reasoning capa-
bilities. This dataset is in the form of a context, a
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Context:
(s1) The television show Henry was not widely watched until it was 

scheduled for Tuesday evenings immediately after That' s Life, (s2) 

the most popular show on television. (s3) During the year after the 

move, (s4) Henry was consistently one of the ten most-watched 

shows on television. (s5) Since Henry' s recent move to Wednesday 

evenings, (s6) however, (s7) it has been watched by far fewer people. 

(s8) We must conclude that Henry was widely watched before the 

move to Wednesday evenings because it followed That' s Life and 

not because people especially liked it.

Question:
Which one of the following, if true, most strengthens the argument?

Options:
A. The show that now follows That's Life on Tuesdays has double 

the number of viewers it had before being moved.

B. Henry has been on the air for three years, but That's Life has been 

on the air for only two years.

C. After its recent move to Wednesday, Henry was aired at the same 

time as the second most popular show on television.

D. That's Life was not widely watched during the first year it was 

aired.

Answer: A

Figure 1: A logical reasoning example from ReClor (Yu
et al.) dataset. It requires to learn logical information
contained in sentences {s1, s2, ..., s8} of context and
perform logical operations over them to integrate logi-
cal information, which will be used for answering the
question.

question, and four answer options. In order to deter-
mine the most suitable answer option, it is crucial
to acquire a comprehensive understanding of the
logical information embedded within the sentences
{s1, s2, ..., s8} of context and effectively integrate
them through a series of logical operations.

Given the remarkable performance of large-scale
pre-trained language models (Devlin et al.; Liu
et al., 2019b; Yang et al., 2019; Lan et al.; He et al.)
in text comprehension, previous research has pro-
gressed towards the development of methods that
delve into contextual contexts to extract and ana-
lyze logical information. Notably, methods such
as DAGN (Huang et al.), FocalReasoner (Ouyang
et al., 2021) and HGN (Chen et al., a) adopt a strat-
egy of dividing the context and options into dis-
tinct units. These units are then integrated through
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the construction of specialized graphs, facilitating
the process of reasoning. In contrast, LReasoner
(Wang et al.) employs a context extension frame-
work based on symbolic logic, supplemented by the
utilization of data augmentation methods to predict
the answer.

However, these methods rely on embedding text
into low-dimensional vectors and performing rea-
soning in Euclidean space, which introduces cer-
tain limitations. 1) The logical information rep-
resented in text across different sentences often
exhibits uncertainty, which is challenging to cap-
ture through a single vector representation. This
uncertainty refers to the core logical content that
sentences emphasize when interacting with each
other is different. As illustrated in Figure 1, the
blue clauses denote critical components where log-
ical information intersects between s1, s4, and s7,
similar to the green clauses between s1 and s5, as
well as the orange clauses between s1 and s8. 2)
Handling logical operations (such as ∪,∩, and¬)
in an interpretable manner in Euclidean space re-
mains an unresolved issue. Previous works perform
vaguely through simple arithmetic operations on
vectors to integrate logical information. Indeed,
this information should be represented as a logical
union operation on multiple sentences.

Motivated by the probabilistic embedding in
knowledge graph (Ren and Leskovec, 2020), we
propose Beta-LR, a novel probabilistic embedding
method designed for logical reasoning based on
Beta distribution. Our Beta-LR learns the logical
information within the context and models logi-
cal operators using beta distributions with bounded
support. To ensure the preservation of logical in-
tegrity, we first employ a syntactic division of the
context based on punctuation, avoiding any dis-
ruption caused by more fine-grained splitting. We
then embed the sentences from the divided context,
along with the question and options, as beta distri-
butions defined on the [0, 1] interval, effectively
eliminating logical uncertainty. Additionally, we
define logical intersection and negation operators
to facilitate logical union operations based on De
Morgan’s laws, enabling the interpretable integra-
tion of logical information. In this process, our
beta-LR demonstrates unique advantages in model-
ing logical negation operation compared with other
probabilistic embedding methods. Finally, the inte-
grated logical information is utilized to predict the
best answer.

We conduct experiments on two logical reason-

ing datasets: ReClor (Yu et al.) and LogiQA (Liu
et al.). We utilize RoBERTa(Liu et al., 2019b) and
DeBERTa(He et al.) as our backbone pre-trained
model for evaluation. The experimental results
showcase the competitiveness of our approach and
its efficacy in capturing logical information within
textual data for reasoning purposes. Our contribu-
tions are three folds:

1) We propose a novel approach that leverages
beta distributions for capturing logical information.
And we define interpretable logical operators that
ensure reliable and meaningful integration of logi-
cal information, enabling more accurate reasoning.

2) Through experiments conducted on two
datasets, we demonstrate the competitiveness of
our approach. Additionally, our ablation studies
highlight the significance of interpretable logical
operators and relative modules in effectively inte-
grating contextual information.

3) Our case study experiment demonstrates that
embedding text into beta distributions can effec-
tively capture and mitigate the uncertainty of tex-
tual information. This highlights the effectiveness
of our Beta-LR.

2 Related Work

2.1 Logical Reasoning of Text

Previous researchers have dedicated significant ef-
forts to logical reasoning tasks. In terms of model
design, DAGN (Huang et al.) introduced a net-
work that extracts discourse units from text and
performs chain reasoning using graph networks.
FocalReasoner (Ouyang et al., 2021) constructs
facts by extracting core components from sentences
and builds a hypergraph to facilitate interaction
at the sentence and entity levels. HGN (Chen
et al., a) employs a holistic graph network to pro-
cess context at the discourse and word levels, en-
abling finer-grained relationship extraction for log-
ical reasoning. In terms of data augmentation,
LReasoner (Wang et al.) proposes a template-
based method to convert logical expressions into
text, expanding the dataset through extended text.
MERIt (Jiao et al.) adopts a Meta path guided con-
trastive learning approach for self-supervised pre-
training on rich unlabeled text data, which benefits
downstream reasoning tasks. While these mod-
els and methods have achieved notable results, they
have also encountered limitations due to the limited
ability of traditional pre-trained models. Building
on this, our proposed method focuses on enhancing
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the embedding representation’s capability to cap-
ture logical information, starting from the level of
data embedding representation.

2.2 Probabilistic Embedding

Several notable approaches in the field of prob-
abilistic embedding have been proposed for un-
certain knowledge graph reasoning (Ren and
Leskovec, 2020; Yang et al., 2022; Wang et al.,
2022). For example, Query2Box (Ren et al.) in-
troduces a probabilistic framework that models un-
certainty in knowledge graph embeddings by rep-
resenting entities and relations as boxes in a high-
dimensional space. ConE (Zhang et al., 2021) pro-
poses a method representing entities and relations
as cones in a high-dimensional space to capture
the uncertainty in the existence of certain relation-
ships between entities. BEUrRE (Chen et al., b)
extends the Query2box framework to handle un-
certain knowledge graph reasoning. These works
collectively contribute to the advancement of prob-
abilistic embedding techniques.

3 Preliminary

3.1 Problem

We address the problem of logical reasoning in
the Machine Reading Comprehension (MRC) task
(Zhang et al., 2019; Liu et al., 2019a). Our ob-
jective is to develop a model that can effectively
extract and reason with logical information from
a given dataset. The dataset consists of a context
C, which provides a background or a passage of
text, a question Q that needs to be answered using
the information in the context, and four correspond-
ing options O1, O2, O3, O4. The challenge lies in
identifying the logical structure and relationships
within the context and leveraging this information
to select the most appropriate option Oa that cor-
rectly answers the question.

3.2 Beta Distribution

The beta distribution is a continuous probability
distribution defined on the interval [0, 1]. The dis-
tribution is characterized by two shape parameters,
commonly denoted as Beta(α, β) (α > 0, β > 0).
Our methodology extensively leverages its prob-
ability density function (PDF) expressed as equa-
tion 1:

p(x) =
xα−1(1− x)β−1

B(α, β)
(1)

where x ∈ [0, 1] and B(·) is the beta function. The
uncertainty of a Beta distribution can be measured
by its entropy: H = lnB(α, β)− (α− 1)[ψ(α)−
ψ(α+β)]−(β−1)[ψ(β)−ψ(α+β)], where ψ(·)
represents the digamma function.

We leverage two crucial properties of the beta
distribution in our approach. 1) When the beta
distribution is used as the prior distribution for
a parameter in Bayesian inference, the posterior
distribution obtained after incorporating observed
data also follows a beta distribution. 2) The beta
distribution allows for the overlay or stacking of
multiple beta distributions, enabling the creation of
composite distributions.

4 Methodology

To enhance our ability to capture and utilize logi-
cal information, we introduce a novel probabilistic
embedding method, Beta-LR. The architecture of
Beta-LR is detailed in Figure 2. The process be-
gins with segmenting the context into individual
sentence units and encoding them using beta dis-
tributions, as discussed in section 4.1. We then
proceed to develop and apply logical operators,
which allow us to integrate and interpret the log-
ical information across these sentences, creating
a cohesive logical representation of the context in
section 4.2. In the final step, outlined in section 4.3,
we integrate this comprehensive context representa-
tion with the given question and options, enabling
accurate answer prediction.

4.1 Encoder
To effectively extract logical information at
a granular level and ensure its integrity, we
employ syntactic techniques to divide the context
into fundamental sentence units. The context,
represented as C, is split into a collection of
sentences {s1, s2, . . . , sN} using punctuation
as the basis for segmentation. For each op-
tion Oj , we utilize RoBERTa, a pre-trained
language model, to embed token sequences.
These sequences are formed by concatenating
{<s>s1||s2|| . . . ||sN</s>Q</s>Oj</s>},
where {||, </s>} act as separators in RoBERTa.
Given the token sequence {ti1, ti2, . . . , tiK}
with length K for si, the output embedding
{vit1 , vit2 , . . . , vitK} is averaged to form the vector
representations of si in Euclidean space:

Esi =
1

|K|

|K|∑

j=1

vitj (2)
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Intersection

(a) Calculate Shared 
Logical Information

(c) Perform Logical 
Union Operation

Intersection

Negation

Intersection

Negation

Integration of Logical Information

RoBERTa

MLP

Concat

 MLP

Prediction

<s>  ( Context) The television 
show Henry was...after That' s 
L i f e  | |  . . .  | |  W e  m u s t 
conclude...people especially 
l iked i t .  </s> (  Quest ion)  
Which one of the following, if 
t rue,  most  s trengthens the 
argument?  </s> ( Option) The 
show tha t  now fol lows . . . 
before being moved.  </s>

(b) Update Logical Information

Figure 2: The overall architecture of our proposed model, Beta-LR. For logical reasoning, each sentence, along with
the question and options, is encoded into beta distributions. Subsequently, these distributions undergo three steps to
effectively integrate the logical information for answer prediction. (a) Calculate shared logical information. (b)
Update logical information. (c) Perform logical union operation. We depict beta distribution on each dimension by
different points to demonstrate the integration of logical information. The representation of beta distribution for
different points are shown in Figure 3. And the gray arrows indicate the process of logical operations.

Points Representation of  Beta Distribution

Logical information of sentence si

Logical information of question Q

Logical information of option Oj

Shared logical information obtained through 
logical intersection operation on several 

Updated logical information obtained through 
logical intersection operation on     and  

Opposite logical information of  each

Shared logical information obtained through 
logical intersection operation on several  

Integrated logical information of context 

Figure 3: The illustration of representation of beta dis-
tribution for different points.

Due to the limitations of traditional embeddings in
resolving the ambiguity of logical information in
context and performing interpretable logical opera-
tions, we advocate for the use of bounded supported
probability embeddings. Specifically, we map text
representations into a beta distribution along each
dimension. We aim to generate a novel embed-
ding Bsi = [(α1, β1), (α2, β2), . . . , (αd, βd)] ∈
R2d, where the parameters correspond to the d-
dimensional beta distribution. The embedding Bsi

is derived on the vector representation following

equation 3:

Bsi = 1 + σ(f(Esi ; θ)), (3)

where f(·) denotes a Multi-Layer Perceptron, and
θ represents its associated parameters. Notably,
we use the rectified linear unit (ReLU) activation
function σ on the beta distribution parameters and
add a constant of 1 to ensure the parameters re-
main stable within a suitable range. This technique
effectively prevents the parameters of the beta dis-
tribution from becoming zero after passing through
the ReLU and helps control the initial parameter
values of Bsi between 1 and 2 ensuring a more re-
liable convergence during the training process. By
embedding text into beta distributions, we effec-
tively capture and encapsulate logical information
in a robust and nuanced manner, significantly en-
hancing the interpretability and comprehension of
inherent logical relationships in the data.

To facilitate the utilization of Bsi for logical
operations, we partition it into two components
Bα

si = [α1, α2, ..., αd] and Bβ
si = [β1, β2, ..., βd].

These components represent the parameter vec-
tors α and β, respectively. Thus, Bsi can be
expressed as Bsi = [Bα

si||B
β
si ] ∈ R2d. Simi-

larly, employing the same approach, we can ob-
tain embeddings BQ = [Bα

Q||B
β
Q] ∈ R2d and

BOi = [Bα
Oj
||Bβ

Oj
] ∈ R2d to represent Q and Oj ,

respectively.
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4.2 Integration of Logical Information
In the context C, each si inherently contains cru-
cial logical information, which is a significantly
important aspect. The integration of this logical
information is vital for enhancing logical clarity
and improving answer prediction accuracy.

Calculate Shared Logical Information To em-
phasize important details, often referred to as
shared logical information (SLI), and to enhance
the logical expression of si, we propose the mod-
eling of a logical intersection operator, denoted as
I. This operator is designed to compute a new
embedding that encapsulates SLI. As depicted in
Figure 4, the objective of I is to calculate a new em-
bedding Binter, representing the intersection of the
distributions in the given set of n input embeddings
Bs1 , Bs2 , . . . , BsN :

Binter = I(Bs1 , Bs2 , . . . , BsN ) (4)

We model the intersection operator I by tak-
ing the weighted product of the PDFs of the input
embeddings based on the additivity of beta distribu-
tions. This approach intuitively aligns with the as-
sumption that regions exhibiting high density in the
new distribution should also exhibit high density in
all input distributions. It has been shown that when
Bsi = [(α1, β1), (α2, β2), . . . , (αd, βd)] ∈ R2d

represents d-dimensional Beta distributions, the
weighted product of PDFs can be viewed as a linear
interpolation of the parameters of the inputs (Ren
and Leskovec, 2020). Therefore, the parameters
of Binter can be described as [(

∑
wi ⊙α,

∑
wi ⊙

β)] ∈ R2d, where α ∈ RN×d and β ∈ RN×d.
Here, wi ∈ Rd and ⊙ denotes the dimension-
wise product. The weights wi are calculated using
an MLP-based attention mechanism as defined in
Equation 5:

wi =
exp(MLPAtt([B

α
si||B

β
si ]))∑N

j=1 exp(MLPAtt([Bα
sj||B

β
sj ]))

, (5)

where MLPAtt(·) : R2d → Rd is a Multi-Layer Per-
ceptron. Through this mechanism, the operator I
effectively captures the strong correlation and con-
sistency between SLI and the logical information
represented by each Beta distribution. Employing
I , we compute the embedding Binter that encapsu-
lates SLI, as illustrated in Figure 2 (a).

Update Logical Information In the subsequent

step, as shown in Figure 2 (b), Binter is employed
to update Bsi based on the conjugate prior prop-
erty of the beta distribution. We interpret the ini-
tial embedding Bsi and Binter as representations
of the prior distribution and the likelihood func-
tion, respectively. Then, we calculate the poste-
rior distribution, denoted as B′

si , by taking the
weighted product of the probability density func-
tions of Binter and Bsi , as shown in Equation 6. It
is important to note that while the calculation of
B′

si is conceptually different from that of Binter,
they follow a similar computational procedure.

B′
si = I(Bsi , Binter) (6)

Perform Logical Union Operation Lastly, to
model the logical union of B′

si and obtain a new
embedding that represents the integrated logical
information of the context, we face the challenge
of defining an interpretable logical union operator.
To address this, we transform union operations into
a combination of intersection and negation opera-
tions, leveraging De Morgan’s laws (Saha, 2022).
This approach allows us to effectively model the
logical union in a computationally feasible manner.

Considering logical negation operations, as de-
picted in Figure 5, we propose a probabilistic nega-
tion operator N that operates specifically on the
embedding representation B′

si of si, generating an
alternative embedding representation B̂′

si that en-
capsulates the opposite logical information. The
formulation of this operator is expressed in Equa-
tion 7:

B̂′
si = N (B′

si) (7)

Leveraging the distinctive properties of the beta
distribution’s probability density function, we for-
malize the logical negation operator by taking the
reciprocal of the beta distribution’s two parameters:
N [(α, β)] =

[(
1
α ,

1
β

)]
. This method ensures that

regions with high probability density in the original
distribution correspond to low-density regions in
the negated output, and vice versa, providing strong
interpretability for the logical negation operator.

As illustrated in Figure 2 (c), given N embed-
dings {B′

s1 , B
′
s2 , . . . , B

′
sN

}, we compute a new em-
bedding Bunion to represent the integrated logical
information of the context. This calculation em-
ploys the operators I and N as per Equation 8:

Bunion = N (I(N (B′
s1),N (B′

s2), . . . ,N (B′
sN

)))
(8)
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0 0.16 0.59 1

B1
B2

0 0.35 1

(B1, B2)

Figure 4: Illustration of intersection operator I. I is
targeted to compute a new embedding that encapsulates
SLI by taking the weighted product of the PDFs.

0 0.57 1

Bi

0 1

(Bi)

Figure 5: Illustration of the negation operator N . N
generates a new embedding encapsulating the opposite
logical information by taking the reciprocal of its pa-
rameters.

4.3 Answer Prediction

After integrating the logical information from the
context, we obtain the embedding Bunion, which
is then inputted into the answer prediction module.
Recognizing the significance of the initial global
feature, we calculate the average of the initial em-
beddings of all tokens within the context, resulting
in the embedding BC ∈ R2d. Furthermore, we
acquire the embeddings BQ and BOj as discussed
in Section 2.1. To construct the final representation,
we concatenate the embeddings Bunion ∈ R2d,
BC ∈ R2d, BOj ∈ R2d, and BQ ∈ R2d to form
Bcat ∈ R8d. Subsequently, Bcat is passed through
a Multi-Layer Perceptron to acquire the predicted
probability pj for each option j. The option with
the highest probability is deemed the correct option
Oa. To train our model in an end-to-end manner,
we employ cross-entropy loss.

5 Experiment

We evaluate the performance of our Beta-LR on
two datasets, ReClor (Yu et al.) and LogiQA (Liu
et al.). Furthermore, we conduct an ablation study
to examine the effectiveness of logical operators
and crucial modules. During the training process,
the AdamW (Loshchilov and Hutter, 2017) with
β1 = 0.9 and β2 = 0.99 is taken as the optimizer

and batch size is set to 8. The learning rate is 1e-
6 for ReClor and 5e-6 for LogiQA. The model is
trained for 20 epochs and 10 epochs on ReClor and
LogiQA respectively, to obtain the optimal results.

5.1 Dataset and Baselines
The ReClor dataset comprises a total of 6,138 ex-
amples, with 4,638 examples dedicated to training,
500 examples for validation, and 1,000 examples
for testing. The test examples are further divided
into two categories: EASY examples and HARD
examples. We assess the performance of our model
on the test set, as well as on the EASY and HARD
subsets separately. The LogiQA dataset contains
8678 samples, which have been randomly parti-
tioned into training, validation, and testing sets,
consisting of 7,376, 651, and 651 samples respec-
tively.

To enable effective comparison with previous
studies, we utilize RoBERTa-large and DeBERTa-
xlarge as our backbone model with employing ac-
curacy as the evaluation metric. In addition, our
method mainly aims to identify the logical content
and capture logical information of context. In order
to avoid the impact of additional data processing
techniques, we have selected the methods without
data augmentation as baselines, which including
pre-trained language models (Liu et al., 2019b),
DAGN (Huang et al.), FocalReasoner (Ouyang
et al., 2021), HGN (Chen et al., a),LReasoner
(Wang et al.) and Logiformer(Xu et al.). No-
tably, we compare with Logiformer only on syntax
graph branch because logical graph branch is not
designed in our model.

5.2 Results
Table 1 and Table 2 report the best experimental
results on RoBERTa backbone and DeBERTa back-
bone respectively. We observe varying degrees of
improvement compared to baseline models. On the
ReClor dataset, Beta-LR achieves 6.7% increase
and 7.2% increase on valid sets and test sets. Si-
multaneously, our method demonstrates a superior
capability to solve challenging problems, as evi-
denced by a remarkable 12.0% improvement on
HARD subsets compared to a modest 3.8% im-
provement on EASY subsets. On the LogiQA
dataset, Beta-LR also shows remarkable improve-
ments with achieving 13.1% increase in validation
accuracy and 15.3% increase in test accuracy. Ad-
ditionally, our method achieves consistent improve-
ment over DeBERTa backbone,with 3.2% in vali-
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Model
ReClor LogiQA

Valid Test Test-E Test-H Valid Test

Random 25.0 25.0 25.0 25.0 25.0 25.0
RoBERTa 62.6 55.6 75.5 40.0 35.0 35.3
DAGN 65.2 58.2 76.1 44.1 35.5 38.7
FocalReasoner 66.8 58.9 77.1 44.6 41.0 40.3
HGN 66.4 58.7 77.7 43.8 40.1 39.9
LReasoner 65.2 58.3 78.6 42.3 - -
Logiformer 63.6 59.9 75.0 48.0 38.3 37.6
Beta-LR(RoBERTa) 66.8(↑ 6.7%) 59.6(↑ 7.2%) 78.4(↑ 3.8%) 44.8(↑ 12.0%) 39.6(↑ 13.1%) 40.7(↑ 15.3%)

Table 1: Experimental results (Accuracy: %) of Beta-LR compared with baseline models on RoBERTa backbone.
Test-E and Test-H are the EASY subset and HARD subset on ReClor, respectively. The results of each baseline
model align with the findings reported in their respective published papers. The content within the parentheses (·)
represents the improvement compared to RoBERTa.

Model
ReClor

Valid Test
DoBERTa 74.4 68.9
LReasoner 74.6 71.8
HGN 76.0 72.3
Beta-LR(DeBERTa) 76.8(↑ 3.2%) 72.9(↑ 5.8%)

Table 2: Experimental results (Accuracy: %) of Beta-LR
compared with baseline models on DeBERTa backbone.

Model Valid Test
Beta-LR(RoBERTa) 66.8 59.6

-w/o embedding in beta distribution 64.0 56.2
-w/o update of logical information 65.8 57.9
-w/o weighted product 63.2 57.1

Table 3: Ablation results (Accuracy: %) on ReClor.

dation accuracy and 5.8% increase in test accuracy
on Reclor.

5.3 Ablation Study

We conduct a series of ablation studies on three
aspects to verify the importance of logical opera-
tors and relative modules. The results are shown in
Table 3.

Embedding in Beta Distribution We replaced
the embedding of text into beta distributions with
vectors in Euclidean space to analyze the ability of
Beta-LR to capture logical information for reason-
ing. For logical intersection and union operation,
we employed weighted attention and arithmetic av-
eraging on vectors as replacements. And negation
operation is not required. The results demonstrated
a significant decline in performance due to these
replacements. The accuracy dropped to 64.0% and
56.2% on the valid and test sets. This indicates
that embedding text into vectors alone cannot effec-
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Figure 6: The experimental results under different hyper-
parameter d.
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Figure 7: The experimental results under different hyper-
parameter m.
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tively capture logical information, and the absence
of dedicated logical operators hinders the integra-
tion of logical information.

Update of Logical Information We remove the
step that calculates Binter and update the logical
information of each sentence during the process
of integrating logical information. Instead, we uti-
lized the initial logical information to represent the
sentences directly, completing the union operation
to generate Bunion. The accuracy witnessed a de-
crease of 1.0% and 1.7% on two sets. This outcome
serves as evidence that calculating shared logical
information is indeed necessary and updating the
logical information to obtain a more refined rep-
resentation proves to be beneficial for performing
logical reasoning.

Weighted Product We replace the weighted prod-
uct of PDFs in the intersection operation with a sim-
ple average. As a result, the performance drops to
63.2% and 57.1% on valid and test sets respectively.
It proves that by employing the weighted product,
the model can better focus on key information, en-
abling the generation of more comprehensive and
accurate text logical expressions.

5.4 Parameter Analysis
In Beta-LR, we employ the embedding of text into
beta distributions, where the embedding size d
plays a crucial role as a significant hyper-parameter
that impacts the overall outcome. To investigate the
influence of parameter d, we conducted an in-depth
analysis, and the results are presented in Figure 6.
The findings clearly indicate that our Beta-LR with
d = 512 achieves the best performance for both the
valid and test sets. A lower embedding size fails
to adequately express logical information, while a
higher embedding size introduces more redundant
information, thereby compromising the reasoning
ability, which provides a plausible explanation for
the observed outcomes.

During the intersection operation process, the
MLPAtt plays a crucial role. We study the impact
of the layer number, denoted as m, by considering
five sets of hyper-parameters for m. The accuracy
results are presented in Figure 7. It is evident that
the experimental performance is optimal when the
layer size is set to 2. Specifically, as m increases,
the accuracy of the experimental results decreases
on the validation and test sets. This observation
aligns with the explanation that an excessive num-

Model Number of parameters
Roberta-large 355M
DAGN 400M
FocalReasoner 414M
Beta-LR(RoBERTa) 360M

Table 4: The comparison results with the number of
parameters.

ber of layers carries a certain risk of overfitting and
integrating unnecessary logical information.

5.5 Case Study

We analyze the data example introduced in Fig-
ure 1 to verify the ability of our Beta-LR model
in capturing the uncertainty of logical information
within the context. It is evident that the level of
uncertainty in the logical information conveyed
by a sentence tends to increase with the number
of words it contains. For each sentence si, we
record the word count as Wi. Subsequently, we
calculate the final logical representations B′

si for
si, which are represented as multidimensional beta
distributions. The average entropy of these beta
distributions, denoted as Ei, is calculated to quan-
tify the uncertainty. A Spearman’s correlation test
is conducted between these two sets of data. The
test results in a correlation coefficient of 0.762 with
a significance level of p < 0.05, as presented in
Figure 8. This statistically significant result under-
scores the strong relationship between the two data
sets, thereby demonstrating the effectiveness of our
proposed method in capturing the uncertainty of
logical information within sentences.

5.6 Size Analysis

We analyze the parameter count in our model to
confirm its scalability advantage. The comparison
results, displayed in Table4, indicate the number of
parameters in relation to the baseline model. No-
tably, our model showcases a mere addition of 5M
parameters at the RoBERTa scale, which is substan-
tially smaller than that of other baseline models.
This observation demonstrates the unification of
complexity and accuracy in our model.

5.7 Error analysis

We conducted error analysis on the ReClor dataset.
This dataset integrates various logical reasoning
skills and can be divided into 17 types. The de-
tailed results of different types of logical reasoning
are shown in Table5. Compared to the baseline, our
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Context

(s1) The television show Henry was not widely watched until it was scheduled for Tuesday evenings 
immediately after That' s Life, (s2) the most popular show on television. (s3) During the year after the 
move, (s4) Henry was consistently one of the ten most-watched shows on television. (s5) Since Henry' s 
recent move to Wednesday evenings, (s6) however, (s7) it has been watched by far fewer people. (s8) We 
must conclude that Henry was widely watched before the move to Wednesday evenings because it 
followed That' s Life and not because people especially liked it.

Sentence s1 s2 s3 s4 s5 s6 s7 s8

�� 19 6 5 11 7 1 8 25

�� 0.9623 0.8968 0.8674 1.0296 1.0696 0.8968 1.1099 1.1352

Spearman's correlation 0.762

p 0.028(<0.05)

Figure 8: The results of Spearman correlation coefficient and p-value of two sets of data Wi and Ei.

Reasoning Type RoBERTa-large Beta-LR
Centered Necessary Assumptions 71.0 66.7(↓)
Sufficient Assumptions 46.7 63.3(↑)
Strengthen 61.7 59.6(↓)
Weaken 47.8 54.9(↑)
Evaluation 69.2 76.9(↑)
Implication 39.1 43.5(↑)
Conclusion/Main Point 63.9 58.3(↓)
Most Strongly Supported 42.9 53.6(↑)
Explain or Resolve 58.3 63.1(↑)
Principle 50.8 67.7(↑)
Dispute 50.0 63.3(↑)
Technique 52.8 66.7(↑)
Role 56.2 56.3(↑)
Identify a Flaw 61.5 64.1(↑)
Match Flaws 45.2 29.0(↓)
Match the Structure 56.7 60.0(↑)
Others 52.1 57.5(↑)

Table 5: The results on different logical reasoning types.
↓, ↑ respectively mean that Beta-LR is better and worse
than baseline model.

model has made significant improvements in most
types of logical reasoning, but performs poorly in
the following problem types: Centered Necessity
Assumptions, strength, Conclusion/Main Point and
Match Flaws. These problems revolve identifying
contextually relevant information that strengthens
reasoning or arguments, which exist noticeable se-
mantic gap between context and arguments. How
to improve the ability to comprehend and align
deep semantic information will be a key focus area
in our future work.

6 Conclusion

In this paper, we introduce Beta-LR, a probabilistic
embedding method for interpretable logical reason-
ing. Our work is the first to address logical reason-
ing at the level of data embedding representation.
Through experiments conducted on two datasets,
we demonstrate that Beta-LR achieves competitive
performances in logical reasoning tasks. The re-

sults validate the effectiveness of our method in
capturing and utilizing logical information for rea-
soning purposes. By addressing the challenges of
logical uncertainty and the fusion of logical infor-
mation, Beta-LR provides a valuable solution for
enhancing logical reasoning capabilities.

Limitations There could be two limitations to
our approach. Firstly, Our Beta-LR only calcu-
lates the shared logical information among all sen-
tences, but overlooks the shared components be-
tween any two sentences. Additionally, represent-
ing large amounts of textual logical information
using bounded beta distributions still presents chal-
lenges. In future research, we will explore more
comprehensive probabilistic embedding methods
to effectively learn logical information from text.
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