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Abstract

Recently, contrastive learning has begun to gain
popularity in multimodal sentiment analysis
(MSA). However, most of existing MSA meth-
ods based on contrastive learning lacks more
detailed learning of the distribution of sample
pairs with different sentiment intensity differ-
ences in the contrastive learning representa-
tion space. In addition, limited research has
been conducted on the fusion of each modality
representation obtained by contrastive learning
training. In this paper, we propose a novel
framework for multimodal sentiment analy-
sis based on Contrastive Learning Guided by
Sentiment Intensity (CLGSI). Firstly, the pro-
posed contrastive learning guided by sentiment
intensity selects positive and negative sample
pairs based on the difference in sentiment in-
tensity and assigns corresponding weights ac-
cordingly. Subsequently, we propose a new
multimodal representation fusion mechanism,
called Global-Local-Fine-Knowledge (GLFK),
which extracts common features between dif-
ferent modalities’ representations. At the same
time, each unimodal encoder output is sepa-
rately processed by a Multilayer Perceptron
(MLP) to extract specific features of each
modality. Finally, joint learning of the common
and specific features is used to predict senti-
ment intensity. The effectiveness of CLGSI
is assessed on two English datasets, MOSI
and MOSEI, as well as one Chinese dataset,
SIMS. We achieve competitive experimental
results, which attest to the strong generaliza-
tion performance of our approach. The code
for our approach will be released in https:
//github.com/AZYoung233/CLGSI

1 Introduction

Sentiment is one of the most important ways for
human beings to perceive the world, and it can
significantly affect human behavior and decision-
making. MSA aims to comprehensively analyze
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human sentiments by integrating and examining in-
formation from diverse modalities (Cambria et al.,
2014; Morency et al., 2011), such as text, video
and audio. This integration and analysis enables
machines to better understand and interpret human
sentiments. Due to the rapid advancements in mul-
timedia and computer technologies, MSA has gar-
nered significant attention within the Natural Lan-
guage Processing (NLP) community (Liu et al.,
2022; Sun et al., 2020; Zadeh et al., 2017).

In recent times, contrastive learning has gained
popularity in the field of MSA. The MSA ap-
proaches based on contrastive learning involve
three significant issues: 1) the selection of positive
and negative sample pairs, 2) the attention given to
different positive and negative samples during the
learning process, and 3) the integration of modality
representations obtained after contrastive learning.
Several researchers have proposed solutions to ad-
dress these issues.

Mai et al. (Mai et al., 2022) first introduced con-
trastive learning in MSA and proposed Hycon. In
their method, positive and negative sample pairs
are first roughly divided using labels. During train-
ing, positive and negative sample pairs are dynami-
cally selected based on the similarity across modal-
ities. Another approach, ConFEDE, was proposed
by Yang et al. (Yang et al., 2023), who argued
that the text is generally more effective than audio
and video in MSA. Thus, ConFEDE selects sam-
ple pairs to be trained during the learning process
by considering text similarity, and only selects 2
positive samples and 4 negative samples for each
anchor.

Although the aforementioned methods have
yielded promising results, they do not account for
differences in sentiment intensity between samples.
Samples with sentiment intensity of -0.2 and -0.4
are likely to be treated as negative samples pair ac-
cording to the pairs selection mechanism of HyCon
and ConFEDE. However, they still have similarities
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in terms of labels and should not be pushed away in
the representation space. In contrast, ConKI, pro-
posed by Yu et al. (Yu et al., 2023), can alleviate
this problem to some extent by selecting positive
and negative sample pairs using predefined senti-
ment intervals (e.g., positive, weak positive, etc.)
in the dataset.

Moreover, the majority of existing studies treat
the learning of different sample pairs equally and
lack a detailed learning of the distribution of sam-
ple pairs with varying sentiment intensity differ-
ences in the representation space. Nevertheless,
in MSA, it is crucial to assign distinct attention
to sample pairs with differing sentiment intensity
differences during the optimization process of con-
trastive learning. For example, take the negative
sample pair A: {y1=-0.4, y2=+1} and B: {y1=-0.4,
y3=+0.6}. It is obvious that A exhibits a larger
sentiment intensity difference than B. Therefore,
it is necessary to pay more attention to A, that is,
letting the two samples in A have a greater relative
distance in the representation space.

In addition, the modal representations obtained
by contrastive learning training in the aforemen-
tioned studies are simply concatenated and fed into
the MLP, which lacks further exploration of the in-
tegration of representation information, potentially
restricting the model’s generalization performance.

Considering the aforementioned limitations, we
introduce a novel multimodal sentiment analysis
framework based on Contrastive Learning Guided
by Sentiment Intensity (CLGSI). Our contributions
are summarized as follows:

• We propose contrastive learning guided by
sentiment intensity. The selection of positive
and negative sample pairs in contrastive learn-
ing guided by the sentiment intensity differ-
ence, with corresponding weights being as-
signed accordingly. This enriches the con-
trastive learning process with fine-grained in-
formation.

• We propose a multi-modal representation
fusion mechanism, Global-Local-Fine-
Knowledge (GLFK), that mimics the human
cognitive process. We use the GLFK mech-
anism to fuse the representations of each
modality obtained by contrastive learning
training to extract the common features across
different modalities. At the same time, we
use MLP to process the output of each modal
encoder to extract the specific features of

each modality. Finally, the joint learning of
common features and specific features was
used to predict the sentiment intensity.

• We conduct extensive experiments on public
English and Chinese MSA datasets. Competi-
tive experimental results show that CLGSI can
better understand sentiment expressions under
different cultural differences, which proves
the good generalization performance and ef-
fectiveness of our model.

2 Related Work

2.1 Multimodal Sentiment Analysis

In the field of MSA, a major concern of researchers
is the fusion and interaction between modalities.
In earlier works, the main focus was on strategies
for modality fusion. There are two common fusion
strategies: early fusion and late fusion. Early fu-
sion, constructs a joint feature representation by
extracting the features of each modality and merg-
ing them at the input level (Morency et al., 2011;
Park et al., 2016; Rosas et al., 2013; Zadeh et al.,
2018b). Late fusion, firstly conducts sentiment
analysis based on each modality, and then uses
different mechanisms to incorporate the unimodal
sentiment decision into the final decision. The com-
mon decision mechanism is weighted voting and
majority voting (Alam and Riccardi, 2014; Cai and
Xia, 2015; Kampman et al., 2018; Nojavanasghari
et al., 2016).

Researchers have recently shifted their focus
from solely modality fusion to also considering
the interaction between modalities. For instance,
Zadeh et al. (Zadeh et al., 2017) proposed a tensor
fusion method that learns the intra-modal and inter-
modal dynamics of three modalities in an end-to-
end manner, aiming to improve MSA performance.
Rahman et al. (Rahman et al., 2020) developed
the Multimodal Adaptation Gate (MAG), which
fine-tunes the BERT model (Devlin et al., 2018) to
enhance MSA performance. Additionally, Han et
al. (Han et al., 2021) proposed a method that simul-
taneously maximizes the mutual information (MI)
between modalities and the MI between the mul-
timodal fusion results and unimodal inputs, thus
enhancing the model’s capabilities.

Subsequently, researchers began to focus on the
significance of simultaneously considering both
the common and specific features across different
modalities in the context of MSA. Hazarika et al.
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Figure 1: The overall architecture of CLGSI. F ∗
c denotes the common features, while Isv , Ist and Isa represent the

specific features associated with each modality.

(Hazarika et al., 2020) proposed MISA, which di-
vides each modality into modality-invariant sub-
spaces and modality-specific subspaces, and then
fuses them to predict sentiment. Similarly, Yang et
al. (Yang et al., 2022) introduced FDMER, which
decompose modalities into two subspaces, and in-
troduce a modality discriminator to guide the pa-
rameter learning of the common and private en-
coder in an adversarial manner. In this study, we
design two modules to extract the common features
among diverse modalities and the specific features
of each modality, and use these features to predict
sentiment intensity.

2.2 Contrastive Learning

Contrastive learning, as an effective method for
representation learning, has been widely explored
in the community. Previous research on contrastive
learning can be categorized into two main types:
self-supervised contrastive learning (Akbari et al.,
2021; Chen et al., 2020; Dufumier et al., 2021;
Radford et al., 2021) and supervised contrastive
learning (Hu et al., 2022; Khosla et al., 2020; Zha
et al., 2024). The key distinction between these
approaches lies in whether label information is
employed to guide the selection of positive and
negative sample pairs.

Recently, there has been a growing interest in
supervised contrastive learning into MSA. For in-
stance, Hycon, proposed by Mai et al. (Mai et al.,

2022), is the first to leverage contrastive learning
to enhance modal interactions in MSA. ConFEDE
proposed by Yang et al. (Yang et al., 2023), used
the similarity between texts to guide the joint execu-
tion of contrastive representation learning and con-
trastive feature decomposition. ConKI proposed
by Yu et al. (Yu et al., 2023), utilizes contrastive
knowledge injection so that the model can learn
both specific and general knowledge representa-
tions for each modality. Although these works
have achieved good results, they still have some
limitations, as discussed in the introduction.

3 Methodology

3.1 Overall Architecture
The overall architecture of CLGSI is shown in Fig-
ure 1. Each input modality is encoded differently:
text uses the BERT, while video and audio use
the pre-training toolkit for initial feature extrac-
tion (Yu et al., 2021), followed by the Transformer
Encoder (Vaswani et al., 2017). The encoded rep-
resentations of the sample’s text, video, and audio
modalities are denoted as It ∈ Rlt×dt , Iv ∈ Rlv×dv

and Ia ∈ Rla×da , respectively. Here, lm∈{t,v,a}
represents the sequence length of each modality,
and dm∈{t,v,a} represents the corresponding feature
vector dimension.

Based on these representations, the common fea-
tures between different modalities and the specific
features of each modality are extracted separately.
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Figure 2: The architecture of GLFK and Subnet

In the common feature extraction module, the con-
trastive learning guided by sentiment intensity is
performed to enhance the representation ability
of encoders. Finally, a 3-layer MLP was used to
jointly learn the common features and specific fea-
tures to predict the sentiment intensity.

3.2 Common Feature Extraction

In the common feature extraction module, the pri-
mary objective is to project the information from
different modalities into the same representation
space. For the text modality, the [CLS] vector
from BERT Ict ∈ R1×dt is used as the common
vector representation. For the video and audio
modalities, we use the last vector output from the
last layer of the Transformer encoder Icv ∈ R1×dv

and Ica ∈ R1×da as the common vector representa-
tion, respectively. Subsequently, these three vec-
tors are transformed to the same dimension using
a fully connected (FC) layer and a ReLU activa-
tion function, yielding Tc ∈ Rdc×1, Vc ∈ Rdc×1

and Ac ∈ Rdc×1. To enhance the representation
capability of the encoders from different modal-
ities, we employ the contrastive learning guided
by sentiment intensity, enabling these information
from different modalities to project onto the same
representation space (see section 3.4 for details).
Additionally, we stack Vc, Tc and Ac into a new ma-
trix Fc = [Vc, Tc, Ac] ∈ Rdc×3 which serves as the
input of GLFK, thereby facilitating the extraction
of common features between different modalities.

The GLFK, a novel representation fusion mech-
anism inspired by human cognitive processes, com-
prises four components: Global, Local, Fine, and
Knowledge (as illustrated in Figure 2(a)). To illus-
trate the mechanism, we draw an analogy between
reading academic papers and our approach. Typi-
cally, individuals begin by reading the abstract to
gain an overview of the research. This aligns with
the Global component of GLFK, where we em-
ploy a 1×1 convolution (Conv) operation to glob-

ally compress the information. As a result, the
Fc ∈ Rdc×3 is compressed to F 1

c ∈ Rdc×1, fa-
cilitating an overall understanding of the content.
Next, readers proceed to skim through the paper to
grasp the main work, followed by in-depth reading
to comprehend the technical details. This corre-
sponds to the Local and Fine components of GLFK.
Specifically, we utilize two 1×1 convolutions to
expand F 1

c ∈ Rdc×1 to F 2
c ∈ Rdc×β/2, and sub-

sequently expand it to F 3
c ∈ Rdc×β , where β is

a hyperparameter (set to 16 in this paper). Fol-
lowing these stages, readers possess a profound
understanding and knowledge of the paper. Lastly,
they summarize this knowledge, ultimately obtain-
ing refined insights. This process aligns with the
Knowledge component of GLFK, where a 1×1 con-
volution is employed to reduce the F 3

c ∈ Rdc×β/2

to F ∗
c ∈ Rdc×1. Consequently, the common fea-

tures across different modalities F ∗
c are obtained.

3.3 Specific Feature Extraction

In the specific feature extraction module, our fo-
cus lies on efficiently capturing the comprehensive
information within a modality. The sub-network
(Subnet) structure for specific feature extraction
is depicted in Figure 2(b). Given a modality
Im ∈ Rlm×dm ,m ∈ {t, v, a}, we begin by uti-
lizing global average pooling (GAP) along the se-
quence length to compressed Im to I1m ∈ R1×dm .
Subsequently, a two-step nonlinear transforma-
tion is applied to project I1m into a new lower-
dimensional space:

Ism = σ2(W2σ1(W1I
1T
m )),m ∈ {t, v, a}

where W1 ∈ R(dm/8)×dm , W2 ∈ Rds×(dm/8), and
Ism ∈ Rds×1, the σ1 represents the ReLU function,
the σ2 represents the Sigmoid function.
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3.4 Contrastive Learning guided by
Sentiment Intensity

3.4.1 Pair Selection
This section presents a two-step process to describe
the selection of positive and negative sample pairs:

1) Initially, we determine the initial positive
and negative pairs by calculating the difference
between their corresponding sentiment intensities.
Due to differing sentiment intensity ranges ([-3,3]
in MOSI/MOSEI and [-1,1] in SIMS), we use uni-
form mapping to convert label values to [-1,1],
only during contrastive learning. Given a batch
B, we calculate the sentiment intensity difference
between sample i ∈ B and different samples using
the following formula:

D(i,j) = |yi − yj | , j ∈ B & j ̸= i (1)

where yi and yj represent the sentiment intensity la-
bels of samples i and j, respectively. Subsequently,
we utilize a sentiment intensity difference threshold
(κ), a hyperparameter set to 0.4 in this paper, to de-
termine whether sample j is classified as an initial
positive or negative sample of i. This process is
illustrated in the subsequent equation:
{

D(i,j) > κ, (i, j) ∈ initial negative pairs

D(i,j) ≤ κ, (i, j) ∈ initial positive pairs

2) Based on the intra-modal and inter-modal
cases, we provide a detailed division of positive
and negative sample pairs. Given an set of initial
positive and negative sample pairs, for a sample i,
the intra-modal and inter-modal positive and nega-
tive sample pairs are chosen as follows:

• Intra-modal pairs:

P i
intra = {(T i

c , T
j
c ), (V

i
c , V

j
c ), (A

i
c, A

j
c)

| (i, j) ∈ initial positive pairs}
N i

intra = {(T i
c , T

k
c ), (V

i
c , V

k
c ), (A

i
c, A

k
c )

| (i, k) ∈ initial negative pairs}

• Inter-modal pairs:

P i
inter = {(V i

c , T
i
c), (V

i
c , A

i
c), (T

i
c , A

i
c)}∪

{(V i
c , T

j
c ), (T

i
c , V

j
c ), (V

i
c , A

j
c),

(Ai
c, V

j
c ), (T

i
c , A

j
c), (A

i
c, T

j
c )

| (i, j) ∈ initial positive pairs}
N i

inter = {(V i
c , T

k
c ), (T

i
c , V

k
c ), (V

i
c , A

k
c ),

(Ai
c, V

k
c ), (T

i
c , A

k
c ), (A

i
c, T

k
c )

| (i, k) ∈ initial negative pairs}

where T i
c , V i

c , Ai
c correspond to the representations

of three different modalities of sample i, while the
rest of the symbols have the same meaning.

By combining the intra-modal pairs and inter-
modal pairs of the sample i together, we obtain the
positive and negative sample pairs P i and N i of
sample i in contrastive learning process as follows:

P i = P i
intra ∪ P i

inter

N i = N i
intra ∪N i

inter

3.4.2 Contrastive Loss

After identifying the positive and negative sam-
ple pairs, we attempt to incorporate fine-grained
information into the contrastive learning training
process based on the sentiment intensity difference.

For instance, given samples i, j, and k, where the
sentiment intensity difference from i to j and k are
0.5 and 1.6, respectively (as defined by (1)), both
(i, j) and (i, k) are initial negative sample pairs of
i. However, the sentiment intensity difference be-
tween sample i and k is noticeably greater. Thus,
we assign a higher weight to (i, k) when calculat-
ing the contrastive loss to push samples i and k
further apart in the representation space compared
to samples i and j. In CLGSI, we design a weight
function (as visualized in Figure 3) by using the
non-linear function |tanh(x)| as follows:

ω(i,j) =
{ ∣∣tanh

(
D(i,j) − 2κ

)∣∣× 1.5, (i, j) ∈ initial positive pairs
| tanh

(
D(i,j)

)
| × 1.5, (i, j) ∈ initial negative pairs

(2)
For ease of presentation, we integrate intra-modal
and inter-modal contrastive learning into the same
formula. Given a batch B, the contrastive loss is

Figure 3: Weight function.
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expressed as follows:

Lcl = −Ei∈B log

∑
(a,p)∈P i

δ(a, p)

∑
(a,q)∈P i∪N i

δ(a, q)
(3)

where δ(a, p) = e[w(i,j)∗ sim(a,p)
τ

], and w(i,j) is the
weight specified by the equation (2).

An illustrative example of the learning process
is presented in the upper right corner of Figure 1.

3.5 Overall Learning Objectives

After extracting the common and specific features,
we concatenate the common feature vector F ∗

c

with the specific feature vectors Isv , I
s
t , I

s
a of the

three modalities to obtain F ∗ = [Isv ; I
s
t ; I

s
a;F

∗
c ] ∈

Rd∗×1, where d∗ = 3ds + dc. We then feed F ∗

into a 3-layer MLP to predict the sentiment inten-
sity value ŷi. Given the ground truth yi, the mean
absolute error is used to compute the MSA task
loss, given by:

Ltask =
1

Nb

Nb∑

i

|yi − ŷi|

where Nb is the number of samples in the batch B.
To combine both the task loss Ltask and the con-

trastive loss Lcl, we define the overall learning
objective of CLGSI as follows:

Loverall = Ltask + γLcl

where γ is a hyperparameter.

4 Experiment

4.1 Dataset and Metrics

We conduct extensive experiments on three popu-
lar datasets: MOSI (Zadeh et al., 2016) and MO-
SEI(Zadeh et al., 2018c) in English, and SIMS (Yu
et al., 2020) in Chinese. Appendix A provides fur-
ther details on the dataset.

To ensure a fair comparison, we report our exper-
imental results in both regression and classification.
For regression, we report the mean absolute error
(MAE) and Pearson correlation (Corr). For clas-
sification, we report the multi-class accuracy and
F1 score. We calculate the accuracy of 2-class pre-
diction (Acc-2) and 5-class (Acc-5) prediction for
CH-SIMS, and the accuracy of 2-class prediction
and 7-class prediction (Acc-7) for MOSI and MO-
SEI. In addition, the Acc-2 and F1 scores for SIMS

are computed for positive/non-positive (including
zero) classes. The Acc-2 and F1 scores for MOSI
and MOSEI are reported for negative/positive (ex-
cluding zero) and negative/non-negative (including
zero) classes. Higher values indicate better perfor-
mance for all metrics except for MAE.

4.2 Baselines
We provide a comprehensive comparison between
CLGSI and state-of-the-art baselines, which are
summarized in Tables 1 and 2. These baselines
include LF-DNN (Yu et al., 2020), MFN (Zadeh
et al., 2018a), LMF (Liu et al., 2018), TFN (Zadeh
et al., 2017), MulT (Tsai et al., 2019), MISA (Haz-
arika et al., 2020), MAG-BERT (Rahman et al.,
2020), HyCon (Mai et al., 2022), Self-MM (Yu
et al., 2021), and ConFEDE (Yang et al., 2023).
For the sake of fair comparison, all the methods we
selected have public code for easy replication. In
Appendixes B and C, we provide comprehensive
details of the models compared and the experimen-
tal setup, respectively.

4.3 Results
Tables 1 and 2 present the performance compari-
son results of each model on the SIMS, MOSI, and
MOSEI datasets. Overall, CLGSI achieves com-
petitive results compared to the baselines across all
three datasets.

On the MOSI dataset, CLGSI outperforms all
baselines in Acc-2, F1, Acc-7, and MAE. These re-
sults indicate that the newly introduced contrastive
learning mechanism in CLGSI effectively learns
the representations of different modalities, enabling
the model to perform well even on small datasets.
On the MOSEI dataset, CLGSI outperforms all
baselines in Acc-2, F1 and Acc-7. Particularly,
CLGSI improves by at least 0.5% over all baselines
in Acc-2 and F1. For the SIMS dataset, CLGSI out-
performs all baselines in Acc-2, while achieving
comparable performance to the best baseline Con-
FEDE in the other four metrics.

Moreover, CLGSI demonstrates strong perfor-
mance in multiclass classification metrics across
all three datasets. On the MOSI dataset, Acc-7
surpasses the baselines by at least 1.36%. On the
MOSEI dataset, Acc-7 outperforms the baselines
by at least 1.1%. Although CLGSI falls slightly
behind ConFEDE by 0.39% in Acc-5 on the SIMS
dataset, it still outperforms the other baselines in
Acc-5. This result shows that the contrastive learn-
ing mechanism in CLGSI can help the model cor-
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Model
MOSI MOSEI

Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr
LF-DNN 77.52/78.63 77.46/78.63 34.52 0.955 0.658 80.60/82.74 80.85/82.52 50.83 0.58 0.709
MFN 77.4/- 77.3/- 34.1 0.965 0.632 78.94/82.86 79.55/82.85 51.34 0.573 0.718
LMF -/82.5 -/82.4 33.2 0.917 0.695 80.54/83.48 80.94/83.36 51.59 0.576 0.717
TFN -/80.8 -/80.7 34.9 0.901 0.698 78.50/81.89 78.96/81.74 51.6 0.573 0.714
MulT -/83.0 -/82.8 40 0.871 0.698 81.15/84.63 81.56/84.52 52.84 0.559 0.733
MISA 81.8/83.4 81.7/83.6 42.3 0.783 0.776 83.6/85.5 83.8/85.3 52.2 0.555 0.756
MAG-BERT 82.13/83.54 81.12/83.58 41.43 0.79 0.766 82.51/84.82 82.77/84.71 50.41 0.583 0.741
HyCon -/85.2 -/85.1 46.6 0.713 0.79 -/85.4 -/85.6 52.8 0.601 0.776
Self-MM 83.44/85.46 83.36/85.43 46.67 0.708 0.796 83.76/85.15 83.82/84.90 53.87 0.531 0.765
ConFEDE 84.17/85.52 84.13/85.52 42.27 0.742 0.784 81.65/85.82 82.17/85.83 54.86 0.522 0.78
Self-MM* 82.54/84.77 82.68/84.91 45.79 0.712 0.795 82.68/84.96 82.95/84.93 53.46 0.529 0.767
ConFEDE* 83.24/84.76 83.23/84.8 41.98 0.755 0.779 82.36/84.78 82.45/84.55 52.99 0.55 0.757
CLGSI 83.97/86.43 83.63/86.25 47.96 0.703 0.79 84.01/86.32 84.21/86.18 54.56 0.532 0.763

Table 1: Results on MOSI and MOSEI. In Acc-2 and F1 score, the left and right sides of the slash (“/”) represent
“negative/non-negative” and “negative/positive”, respectively. Models with * are reproduced under the same
conditions, while other results are from (Yang et al., 2023).

Model
SIMS

Acc-2 F1 Acc-5 MAE Corr
LF-DNN 78.87 79.87 41.62 0.42 0.612
MFN 77.9 77.88 39.47 0.435 0.582
LMF 77.77 77.88 40.53 0.441 0.576
TFN 78.38 78.62 39.3 0.432 0.591
MulT 78.56 79.66 37.94 0.453 0.561
Self-MM 80.04 80.44 41.53 0.425 0.595
ConFEDE 82.23 82.08 46.3 0.392 0.637
Self-MM* 78.71 78.76 42.94 0.411 0.601
ConFEDE* 81.05 81.13 46.34 0.377 0.655
CLGSI 81.18 80.59 45.95 0.408 0.634

Table 2: Results on SIMS. Models with * are reproduced
under the same conditions, while other results are from
(Yang et al., 2023).

rectly learn the sentiment information under differ-
ent cultural differences, so as to enhance the fine-
grained metric of multi-classification accuracy.

As a recently developed MSA method based on
contrastive learning, ConFEDE exhibits superior
overall performance among the baselines. Given
its prominence, ConFEDE serves as the primary
baseline for comparison with CLGSI. A combined
analysis of Tables 1 and 2 reveals that CLGSI out-
performs ConFEDE in terms of Acc-2 across all
datasets. On the large dataset MOSEI and the
small dataset MOSI, ConFEDE achieves Acc-7
of 52.99% and 41.98% respectively, showing a
difference of 11.01%. On the other hand, CLGSI
achieves Acc-7 of 54.56% and 47.96% respectively,
showing a difference of 6.6%. This finding indi-
cates that compared to ConFEDE, CLGSI demon-

strates stronger generalization ability. On the SIMS
dataset, CLGSI slightly underperforms ConFEDE.
This is because ConFEDE utilizes additional uni-
modal labels provided in the dataset to pretrain
unimodal encoders, leading to improved perfor-
mance on the Chinese dataset. However, without
additional unimodal labels in MOSI/MOSEI, Con-
FEDE performs worse than CLGSI overall. This
indicates that ConFEDE relies on unimodal labels
and pre-training. In contrast, CLGSI achieves com-
petitive results on all three datasets without the
need for additional pre-training.

4.4 Ablation Study
To evaluate the effectiveness of CLGSI’s contribu-
tion, we conducted ablation studies on MOSI and
SIMS. Specifically, for MOSI, we reported Acc-2
(excluding zero) and Acc-7, while for SIMS, we
reported Acc-2 and Acc-5.

4.4.1 Effectiveness of the contrastive learning
guided by sentiment intensity

To discuss the effect of the contrastive learning
guided by sentiment intensity, we show the ablation
result in Table 3, where “w/o CL” denoting the
absence of the contrastive learning method, and
“w/o Weight” indicating the utilization of sentiment
labels to guide the selection of positive and negative
sample pairs, without the incorporation of weights.

From the experimental results, we observe that
the contrastive learning guided by sentiment in-
tensity yields significant improvements for both
MOSI and SIMS. However, the performance on
MOSI is slightly degraded in the “w/o Weight”
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case. This can be attributed to the fact that MOSI
includes more fine-grained sentiment intensity la-
bels compared to SIMS. Consequently, without
the incorporation of weights, contrastive learning
may struggle to capture fine-grained information,
thereby affecting the overall model performance.
The proposed contrastive learning guided by senti-
ment intensity, which integrates sentiment intensity
guidance-based weights, has yielded significant im-
provements in Acc-2 and Acc-7/Acc-5 for both
MOSI and SIMS datasets. This highlights the ef-
fectiveness of the contrastive learning guided by
sentiment intensity in enhancing the performance
of the model.

Model
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
w/o CL 83.08 45.63 77.9 43.76
w/o Weight 82.77 44.75 79.21 44.2
CLGSI 86.43 47.96 81.18 45.95

Table 3: The ablation study results of the contrastive
learning guided by sentiment intensity.

4.4.2 Effectiveness of GLFK

To demonstrate the efficacy of GLFK in CLGSI,
we conducted a comparative analysis with the tra-
ditional “Add” and “Concatenate”. This means that
Vc, Tc and Ac are directly added or concatenated
into a one-dimensional vector and output as a com-
mon feature. Additionally, we devised two variants
of GLFK for further evaluation. The first variant,
GK, omits the local and fine components present
in GLFK, while the second variant, referred to as
LFK, excludes the global component. The results
of our ablation studies (Table 4) reveal that the
performance of the “Add” and “Concatenate” is
inferior compared to GLFK. This can be attributed
to their limited capacity for deeper and more com-
prehensive information interaction. On the coarse-
grained metric (Acc-2), GK outperforms LFK by
leveraging overall cognition of information. Con-
versely, LFK surpasses GK on the fine-grained met-
rics of Acc-7 and Acc-5, as it effectively captures
detailed information. These findings underscore
the importance of considering both global and de-
tailed information in order to improve performance.
GLFK facilitates complete information interaction
across multiple modalities, enabling comprehen-
sive and detailed information to be extracted for
improved performance.

Model
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
Add 83.23 45.34 79.65 43.33
Concatenate 82.32 43.29 79.43 43.11
GK 82.77 45.04 79.87 43.76
LFK 82.32 47.96 79.43 45.3
CLGSI 86.43 47.96 81.18 45.95

Table 4: The ablation study results of GLFK.

4.4.3 Effectiveness of combination of common
and specific features

In this subsection, we aim to evaluate the effec-
tiveness of joint learning of common and specific
features, the results of which are presented in Table
5. Specifically, “w/o Con” denotes the elimination
of the common feature extraction module, while
“w/o Spe” signifies the exclusion of the specific
feature extraction module.

It can be seen from the results that the model’s
performance is inferior when exclusively utiliz-
ing specific or common features compared to joint
learning. In the case of “w/o Con”, the fusion of
information between modalities solely relies on the
final MLP. This shallow fusion approach leads to
a certain level of performance degradation. In the
case of “w/o Spe”, the model struggles to acquire
effective common features for particularly complex
sample scenarios, thereby negatively impacting per-
formance. Nevertheless, when both common and
specific features are jointly learned, we observe
improved performance attributed to the comple-
mentarity between common and specific features.

Model
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
w/o Spe 84.6 39.36 78.34 44.86
w/o Con 83.38 43.59 78.56 44.2
CLGSI 86.43 47.96 81.18 45.95

Table 5: The ablation study results of the combination
of common and specific features.

5 Conclusion

In this paper, we propose CLGSI, a novel MSA
method. Firstly, CLGSI uses the contrastive learn-
ing guided by sentiment intensity to project differ-
ent modalities into the same representation space.
Then, by mimicking human cognitive process,
GLFK is used to extract the common features be-

2106



tween different modalities’ representations. At the
same time, the output of each modal encoder was
processed separately by MLP to extract the spe-
cific features of each modality. Finally, the joint
learning of common and specific features was used
to predict the sentiment intensity. We validate our
model on both English and Chinese datasets, and
the competitive results prove the good generaliza-
tion performance and effectiveness of our model.

6 Limitation

While our model has shown impressive perfor-
mance on MSA tasks, it is important to acknowl-
edge the limitations that it faces. One notable
limitation is that the proposed contrastive learn-
ing guide by sentiment intensity, cannot be directly
applied to multimodal emotion recognition (MER)
tasks. This is because the sample labels in MER
tasks are different emotions (e.g., happy, angry, ex-
cited, etc.), and the sentiment intensity differences
between them cannot be easily calculated. As a
result, for MER tasks, we need to design an ex-
ternal mechanism that can transform the emotion
labels and calculate their corresponding sentiment
intensity differences. Moreover, the usability of
the proposed contrastive learning guide by senti-
ment intensity on large language models (LLM)
still needs to be further explored. Our future work
will aim to explore and develop effective mecha-
nisms to address this limitation.
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A Dateset

Table 6 shows the statistics of these datasets.
MOSI: The MOSI dataset is a popular dataset

with three modalities (i.e. text, video, and au-
dio). It was collected from 93 YouTube videos in
which a speaker expressed an opinion on the film.
MOSI contains 2199 speech video clips. Each seg-
ment is assigned a sentiment score ranging from -3
(strongly negative) to +3 (strongly positive).

MOSEI: The MOSEI dataset is a larger ver-
sion of MOSI and contains 22856 annotated video
clips over 250 different topics. As in MOSI, the
sentiment score for each segment ranges from -3
(strongly negative) to +3 (strongly positive).

SIMS: The SIMS dataset is a Chinese multi-
modal dataset containing 2281 refined video clips.
Each sample has a multimodal label and three uni-
modal labels with sentiment scores ranging from
-1 (strongly negative) to +1 (strongly positive).

Dataset Train Valid Test Total
MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856
SIMS 1368 456 457 2281

Table 6: The statistics of MOSI, MOSEI and SIMS.

B Baselines

LF-DNN: Late fusion DNN (LF-DNN) simply con-
catenates unimodal features extracted from uni-
modal features for sentiment inference (Yu et al.,
2020)

MFN: Memory Fusion Network (MFN) (Zadeh
et al., 2018a), which first learns view-specific inter-
actions via LSTM, then learns cross-view interac-
tions via attention network, and finally summarizes
time via multi-view gated memory. The outputs of
the MFN are concatenated as the final representa-
tion.

LMF: Low-Rank Multimodal Fusion (LMF)
method (Liu et al., 2018) utilizes low-rank tensors
to perform multimodal fusion efficiently.

TFN: The Tensor Fusion Network (TFN) (Zadeh
et al., 2017) consists of 1) a modal embedding sub-
network to enrich the encoding of unimodal fea-
tures as input and output after the neural network,

2) a tensor fusion layer to model unimodal, bi-
modal, and trimodal interactions using outer prod-
ucts, and 3) a sentiment inference subnetwork to
perform sentiment inference.

MulT: The Multimodal Transformer (MulT)
(Tsai et al., 2019) leverages directional pairwise
cross-modal attention to learn the interactions be-
tween multimodal sequences and potentially adapt
the flow from one modality to another.

MISA: MISA (Hazarika et al., 2020) is a
multimodal framework that learns a modality-
invariant and modality-specific representation for
each modality. The learning process is optimized
by including a combination of similarity loss, or-
thogonality loss, reconstruction loss, and task pre-
diction loss.

MAG-BERT: Multimodal Adaptation Gates for
Bert (MAG-BERT) (Rahman et al., 2020) are de-
veloped by applying multimodal adaptation gates
at different layers of the BERT backbone.

HyCon: Hybrid Contrastive Learning for Tri-
modal Representations (HyCon) (Mai et al., 2022)
is developed based on the contrastive learning
method. It focuses on inter-sample and inter-class
relationships, and reduce the modality gap.

Self-MM: Self-MM (Yu et al., 2021) first utilizes
a self-supervised label generation module to obtain
unimodal labels, and then jointly learns multimodal
and unimodal representations based on multimodal
labels and the generated unimodal labels.

ConFEDE: ConFEDE (Yang et al., 2023) is also
a contrastive learning based framework. It per-
forms contrastive representation learning and con-
trastive feature decomposition jointly to improve
the representation of multimodal information. It
decomposes each of the three modalities of video
samples, including text, video frame and audio,
into similarity features and dissimilarity features,
and selects positive and negative sample pairs to
learn with text as the center.

C Experimental Settings

Here, we briefly present the detailed setup of our
experiments. All experiments were performed on
a single NVIDIA RTX 4090 GPU. The trainable
parameters of all implementations of CLGSI are
under 120M. The training mode is full training,
without additional pre-training. For Chinese text
encoding, we use “bert-base-chinese”1, and for En-

1https://huggingface.co/bert-base-chinese
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Para MOSI MOSEI SIMS
Batch-size 64 128 64
Bert lr 5e-5 5e-5 5e-5
Visual Encoder lr 5e-3 5e-4 5e-4
Audio Encoder lr 1e-3 5e-4 5e-4
Others lr 1e-2 25e-4 5e-4
dc 64 128 64
ds 64 128 64

Table 7: Hyper-parameters of CLGSI for the multimodal
sentiment analysis.

glish encoding, we use “bert-base-uncased”2. The
number of layers of video Transformer encoder and
audio Transformer encoder is 2. The optimizer is
AdamW and the learning rate policy is warmup.
Some of the key hyperparameters are shown in the
table 7.

D GLFK VS Transformer

In previous MSA methods, the Transformer archi-
tecture has often been employed as a multimodal
fusion strategy. Consequently, we proceeded to
compare GLFK directly with the Transformer. For
this comparison, we substituted the GLFK in the
CLGSI with a standard Transformer encoder, uti-
lizing 8 heads within the Self-Attention. Table 8
presents the performance of the Transformer as a
fusion layer across varying numbers of layers. It
is observable that the Transformer demonstrates
commendable Acc-5 and Acc-7 scores with 6 lay-
ers, yet it still falls short of matching the perfor-
mance of GLFK. Despite the Transformer’s Self-
Attention mechanism adeptly facilitating interac-
tions between modalities and extracting rich, fine-
grained information, it shows a relative inadequacy
in integrating comprehensive information across
different modalities, as evidenced by its perfor-
mance in Acc-2. In contrast, GLFK’s focus on both
global and detailed characteristics enables CLGSI
to achieve superior performance.

2https://huggingface.co/bert-base-uncased

Transformer layer nums
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
2 83.99 45.34 78.77 40.26
4 85.67 45.19 78.56 40.04
6 83.54 45.63 78.99 44.64
8 83.08 40.82 79.87 42.45

CLGSI 86.43 47.96 81.18 45.95

Table 8: Performance of Transformer with different
layer nums and comparison with CLGSI.

2110


