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Abstract

The primary objective of sign language transla-
tion (SLT) is to transform sign language videos
into natural sentences. A crucial challenge
in this field is developing signer-independent
SLT systems which requires models to gen-
eralize effectively to signers not encountered
during training. This challenge is exacerbated
by the limited diversity of signers in existing
SLT datasets, which often results in suboptimal
generalization capabilities of current models.
Achieving robustness to unseen signers is essen-
tial for signer-independent SLT. However, most
existing method relies on signer identity labels,
which is often impractical and costly in real-
world applications. To address this issue, we
propose the Signer Diversity-driven Data Aug-
mentation (SDDA) method that can achieve
good generalization without relying on signer
identity labels. SDDA comprises two data aug-
mentation schemes. The first is data augmenta-
tion based on adversarial training, which aims
to utilize the gradients of the model to gener-
ate adversarial examples. The second is data
augmentation based on diffusion model, which
focuses on using the advanced diffusion-based
text guided image editing method to modify
the appearances of the signer in images. The
combination of the two strategies significantly
enriches the diversity of signers in the training
process. Moreover, we introduce a consistency
loss and a discrimination loss to enhance the
learning of signer-independent features. Our
experimental results demonstrate our model sig-
nificantly enhances the performance of SLT in
the signer-independent setting, achieving state-
of-the-art results without relying on signer iden-
tity labels.

1 Introduction

Sign languages are an indispensable communi-
cation medium for individuals who are deaf or

∗ Equal contribution
† Corresponding author

hearing-impaired, utilizing the combination of
handshapes, facial expressions, and body move-
ments to convey information (Sutton-Spence and
Woll, 1999). Converting sign language into spo-
ken language sentences, known as Sign Language
Translation (SLT), is an essential bridge that con-
nects the deaf community with the hearing world
(Camgoz et al., 2018; Yin et al., 2021), thus receiv-
ing increasing attention and leading to significant
advancements by the research community in recent
years (Camgoz et al., 2020a,b; Zhou et al., 2021a,b;
Chen et al., 2022b,c; Zhang et al., 2023; Fu et al.,
2023; Yu et al., 2023).

Despite these progresses, a major hurdle remains
the limited signer diversity within the datasets used
for training SLT models. For example, PHOENIX-
2014T (Camgoz et al., 2018), a widely used dataset
for German Sign Language, includes data from
only nine different signers. This lack of signer
diversity leads to a significant decrease in the per-
formance of SLT models when confronted with
data from unseen signers, a common occurrence in
real-world applications (Jin and Zhao, 2021). The
critical need for SLT systems that can generalize to
unseen signers has led to the emergence of signer-
independent SLT (Jin and Zhao, 2021) as a distinct
and more challenging research focus.

Jin and Zhao (2021) propose a contrastive disen-
tangled meta-learning method (CDM) to improve
the ability of the model to generalize to unseen sign-
ers by disentangling signer-specific features from
the sign language content. However, the effective-
ness of CDM relies heavily on the availability of
signer identity labels. As illustrated in Table 1, the
generalization ability of CDM significantly dimin-
ishes in the absence of signer identity labels. This
reliance limits the practical application of CDM, as
acquiring such detailed signer information is often
impractical and costly in real-world scenarios.

To this end, we propose the Signer Diversity-
driven Data Augmentation (SDDA) method to
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Method
signer 3 signer 4 signer 7 signer 8 Average

B@1 B@4 R B@1 B@4 R B@1 B@4 R B@1 B@4 R B@1 B@4 R

CDM 41.11 16.86 41.70 44.52 19.18 45.29 40.37 15.94 41.29 42.84 17.70 43.30 42.21 17.42 42.90
w/o. id 39.71 15.57 40.49 41.12 17.80 43.30 37.03 14.81 39.71 40.85 16.63 42.70 39.68 16.20 41.55

Table 1: Comparing the translation performance of CDM w/. and w/o. id. id denotes signer identity labels. In the
signer-independent setting, the PHOENIX-2014T (Camgoz et al., 2018) dataset can be divided into 4 situations,
that is, signers 3, 4, 7, and 8 have not been seen, respectively.

improve the generalization of the model to un-
seen signers without relying on signer identity la-
bels. SDDA consists of two main components:
Data Augmentation based on Adversarial Train-
ing (DAAT) and Data Augmentation based on Dif-
fusion Model (DADM). Firstly, DAAT utilizes
the gradients of the model to generate adversarial
examples to enhance the robustness of the model
to changes in the signers. Different from vanilla
adversarial training methods (Goodfellow et al.,
2014; Wang et al., 2022) that perturb the whole
image indiscriminately, we only perturb the sign
language non-critical regions of the image by in-
troducing a keypoint masking. Since gestures and
expressions contain rich information of sign lan-
guage, we regard these parts as critical regions and
other parts as non-critical regions. In this way,
we can improve the model’s robustness to sign-
ers without losing the semantics of the sign lan-
guage. Secondly, motivated by the recent advance-
ments in diffusion-based image generation models,
DADM applies a variety of elaborate prompts to
guide the diffusion-based text-guided image editing
model (Rombach et al., 2022; Meng et al., 2021)
in modifying the appearance of the signer for each
video frame, thereby significantly increasing the
diversity of signers. When combined, DAAT and
DADM provide comprehensive augmentation for
signers. DAAT ensures that the model is robust
to small changes and noise occurring in the signer,
while DADM significantly increases the diversity
of signer appearances that the model is exposed to
during training.

To effectively learn signer-independent repre-
sentations, we introduce a consistency loss and a
discrimination loss into our model training. The
former minimizes the KL divergence between the
output distributions of the original and augmented
samples to ensure that the augmented data does not
deviate semantically from the original data. The lat-
ter trains a discriminator to distinguish the features
from the original and augmented samples, ensur-
ing that the model’s feature extraction is robust to

variations in signer appearance.
We conduct a variety of experiments on the

PHOENIX-2014T (Camgoz et al., 2018) bench-
mark to verify the effectiveness of our model. Ex-
perimental results indicate that SDDA effectively
enhances the performance of SLT in the signer-
independent setting without relying on signer iden-
tity labels, achieving state-of-the-art results.

2 Related Work

2.1 Sign Language Translation.

SLT seeks to convert raw videos into spoken lan-
guage sentences. Camgoz et al. (2018) firstly
introduce an end-to-end neural SLT model that
fuses Convolutional Neural Networks (CNNs) and
the attention-based sequence-to-sequence model.
Their goal is to jointly learn the alignment and
translation processes from sign videos to spoken
language sentences. However, the advancement
of SLT is hampered by data scarcity. To address
this issue, Camgoz et al. (2020b) simultaneously
train SLR and SLT, aiming to regularize the trans-
lation encoder. Camgoz et al. (2020a) and Zhou
et al. (2020) propose a multi-channel transformer
architecture to utilize multiple visual cues in sign
language. Li et al. (2020) introduce a hierarchical
sign video feature learning method, which use a
temporal semantic pyramid network to learn more
discriminative features. Zhou et al. (2021a) de-
sign a data augmentation method that uses gloss
as pivot to generate more visual features from text.
Fu et al. (2023) propose a token-level contrastive
learning framework to improve token representa-
tion effectiveness. Chen et al. (2022b) propose a
multi-modal pretraining approach to cope with the
data scarcity issue for SLT.

The aforementioned works belong to conven-
tional SLT methods, which do not take into ac-
count the model’s generalization ability to unseen
signers. Jin and Zhao (2021) first introduce the
task of signer-independent SLT. They propose a
framework called contrastive disentangled meta-
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learning, which relies heavily on signer identity
to learn signer-independent feature. In contrast to
them, we have designed two data augmentation
methods to enhance the model’s generalization to
unseen signers without relying on signer identity.

2.2 Domain Generalization
Domain generalization (DG) aims to train mod-
els on known domains that can generalize well to
unseen domains. Over the past decades, a vari-
ety of DG algorithms have been proposed. Shao
et al. (2019) propose a multi-adversarial discrimi-
native deep domain generalization framework, aim-
ing to learn a generalized feature space. Dai et al.
(2021) propose the relevance-aware mixture of ex-
perts, which utilize an effective voting-based mix-
ture mechanism. This dynamic approach lever-
ages diverse characteristics from source domains,
thus enhancing the model’s generalization capabili-
ties. Lv et al. (2022) introduce a general structural
causal model, providing a formalized framework
for addressing the challenges within DG.

However, the above methods require domain
labels that are not available in many real-world
scenarios. To solve this problem, Huang et al.
(2020) introduce Representation Self-Challenging,
a technique that discards dominant features acti-
vated iteratively during training, compelling the
network to activate remaining features correlated
with labels. Chen et al. (2022a) present Compound
Domain Generalization via Meta-knowledge EN-
coding (COMEN), a two-step approach that au-
tonomously discovers and models latent domains,
eliminating the need for explicit domain labels. Qu
et al. (2022) leverage hypernetworks, taking vec-
tors as input to generate experts’ weights. This
unique approach enables the sharing of useful meta-
knowledge among experts and facilitate exploration
of experts’ similarities in a low-dimensional vector
space. Vidit et al. (2023) leverage a pre-trained
vision-language model to introduce semantic do-
main concepts via textual prompts, providing an
innovative avenue for domain generalization with-
out explicit domain labels.

Signer-independent SLT can be viewed as a do-
main generalization task, where different signers
with varying appearances are treated as different
domains, and signer identity serves as the domain
label. However, obtaining domain labels, in this
case, signer identity, is often expensive in real-life
scenarios, as recent domain generalization methods
have highlighted. Therefore, we propose a novel
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Figure 1: The overall framework of SDDA. With data
augmentation based on adversarial training and data aug-
mentation based on diffusion model, the original video
transforms to signer-diverse video, which has same sign
language semantics but different signer. Subsequently,
discriminator determines whether the hidden state be-
longs to the original video or the synthetic video.

signer-diversity driven data augmentation for this
task, eliminating the need for relying on signer
identity.

3 Approach

A typical SLT corpus contains video-sentence pairs,
which can be denoted as DSLT = {(x,y)}. Here
x = (x1, · · · , xTx) denotes a sign video with Tx

frames and y =
(
y1, · · · , yTy

)
is the correspond-

ing spoken sentence with Ty token. SLT systems
aim to translate sign video x to the spoken sen-
tence y. The training objective of SLT is the cross-
entropy loss defined as follows:

LSLT = − log pθ(y|x). (1)

where θ is the parameters of model.
In the signer-independent setting, the SLT model

is trained on the signer group g and subsequently
tested on another signer group g′, where g∩g′ = ∅.
However, the limited availability of signers in cur-
rent SLT datasets restricts the ability of the SLT
model to generalize effectively to unseen signers.
To address this limitation, we propose a novel
signer diversity-driven data augmentation method,
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Figure 2: Detailed process of our two data augmentations.

which consists of data augmentation based adver-
sarial training (Secction 3.1) and data augmentation
based on diffusion model (Secction 3.2). The over-
all framework of SDDA is illustrated in Figure 1.

3.1 Data Augmentation Based on Adversarial
Training

To enhance the model’s robustness against varia-
tions in signer identity, we employ an adversar-
ial strategy to generate signer gradient-perturbed
images, as shown in the upper panel of Figure 2.
Given a sign video-sentence pair (x,y), we add a
perturbation δ = [δ1, · · · , δTx ] ∈ RTx×C×H×W to
the sign video x, such that its conditional likelihood
is minimized as follows:

x̃ = x+ δ, (2)

δ = argmin
δ,∥δ∥2≤ϵ

log pθ(y | x+ δ). (3)

Following Goodfellow et al. (2014), the minimiza-
tion of the conditional log likelihood with respect
to δ can be approximated as:

x̃ = x+ ϵg, (4)

where g = ∇xLSLT and ϵ is a scalar controlling the
perturbation magnitude. Considering that both the
face and the hand of the signer contain rich infor-
mation, we add perturbations exclusively to regions

beyond these critical areas. To achieve this, we in-
troduce a keypoint mask matrix M . Consequently,
Eq.(4) is modified as:

x̃ = x+ ϵg ⊙M, (5)

where ⊙ denotes element-wise multiplication, en-
suring that perturbations are applied selectively
based on the mask matrix M . To obtain the key-
point mask matrix, we first employ an off-the-shelf
keypoint estimator (Wang et al., 2020) to generate
keypoint sequences, then set the mask values in
the regions corresponding to the keypoints of the
hands and face to 0 and the others to 1. After ap-
plying the masking operation, the perturbations are
restricted to non-critical regions, maintaining the
semantic integrity of the sign language content in
the perturbed videos.

3.2 Data Augmentation Based on Diffusion
Model

Diffusion models have demonstrated remarkable
ability in generating high-quality, diverse, and cus-
tomized samples that are perceptually similar to
real data (Ramesh et al., 2022; Rombach et al.,
2022). Inspired by this, we propose a data aug-
mentation strategy based on the diffusion model, as
illustrate in the lower part of Figure 2. Leveraging
the strengths of diffusion-based text-guided image
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editing techniques1 (Rombach et al., 2022; Meng
et al., 2021), our method carefully modify each
image in the SLT dataset to expand the diversity of
signers, thus enhancing the model’s generalization
to unseen signers.

Specifically, we first craft a series of prompts
that depict various human facial features, such as
eyes, mouth, and nose. Then, we utilize these de-
scriptive prompts to guide the diffusion model in
modifying the images to yield a variety of signer
appearances. In parallel, we employ the previously
established keypoint mask M to ensure that modifi-
cations are confined to non-critical areas of the sign
video, thereby preserving the semantic integrity of
the sign language information. By applying this
approach, we obtain a new dataset in which the
signer in each video frame feature a unique face.
This not only expands the size of the SLT dataset
but also effectively increases the variety of signers.
We present some augmented examples and their
corresponding prompts in the Appendix A.

3.3 Training Objective
To learn signer-independent features, we introduce
a consistency loss and a discrimination loss to align
the features of the original and augmented videos.
Consistency Loss Since the augmented sample ex-
presses the same semantics as the original sample,
we regularize the output predictions of the orig-
inal and augmented samples by minimizing the
Kullback-Leibler (KL) Divergence between their
output distributions. Given the original sample x
and the augmented sample x̃, the consistency loss
is defined as:

LKL =

Ty∑

t=1

KL(pθ(yt|y<t,x)||pθ(yt|y<t, x̃)) (6)

This loss encourages the model to produce consis-
tent token predictions for both original and syn-
thetic data, thus enabling the model to learn more
robust visual features for the signers.
Discrimination Loss We also introduce a discrimi-
nator to distinguish the augmented samples from
the original samples, which facilitates the model to
learn consistent global contextual representations
for different signers expressing the same sign lan-
guage semantics. For the hidden states h and h̃
of the original and augmented samples output by
the encoder, the discriminator aims to distinguish

1https://huggingface.co/stabilityai/
stable-diffusion-2-1

whether the hidden state is from the original or aug-
mented samples. Thus, the discrimination loss is
defined as:

Ld = log p(1|D(h)) + log p(0|D(h̃)) (7)

where D denotes the discriminator. By incorporat-
ing this discriminator, we ensure that the encoder
representations from original and augmented sam-
ples become indistinguishable during training.

Our discriminator consists of a gradient reversal
layer (Ganin and Lempitsky, 2015), followed by a
mean pooling function, a two-layer feed-forward
network and the softmax operation.

Finally, the overall training objective is:

L = LSLT + αLKL + βLd, (8)

where α, β are hyperparameters which control the
importance of each loss.

4 Experiments

4.1 Dataset and Metrics
Datasets. We assess the performance of our
model on the PHOENIX-2014T benchmark dataset
(Camgoz et al., 2018), which comprises sign
language videos, gloss annotations, and spoken
language translations sourced from the German
Weather Forecast. This dataset is labeled for 9 dif-
ferent signers. To comprehensively evaluate the
effectiveness of our model, we employ four distinct
experimental settings, wherein the data of signers
3, 4, 7, and 8 constitute the test set, while the re-
maining data serve as the training or validation set.
Given the relatively limited data for signers 2, 6,
and 9, we allocate their corresponding data to the
validation set. The detailed statistical results are
listed in Table 7.

Evaluation metrics. To fairly evaluate the effec-
tiveness of our SDDA, we use BLEU-N (Ngrams
ranges from 1 to 4) (Papineni et al., 2002) and
ROUGE-L (Lin and Och, 2004) as the evaluation
metrics. BLEU-N measures precision up to n-
grams, while ROUGE-L calculates the F1 score
based on the longest common sub-sequences be-
tween predictions and ground-truth translations.

4.2 Implementation Details
Both the encoder and decoder of Transformer have
12 layers. The size of the word embedding and the
hidden is 1024. We use 16 attention heads for each
layer. The network parameters are initialized with
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Method
signer 3 signer 4 signer 7 signer 8 Average

B@1 B@4 R B@1 B@4 R B@1 B@4 R B@1 B@4 R B@1 B@4 R

Neural-SLT (Camgoz et al., 2018) 38.70 13.54 39.52 40.35 14.84 41.06 36.30 12.89 38.56 38.02 13.65 39.08 38.34 13.73 39.56
TSPNet (Li et al., 2020) 40.96 15.35 41.17 42.64 17.52 43.85 38.92 14.48 40.27 41.74 15.59 42.21 41.07 15.74 41.88
Joint-SLRT (Camgoz et al., 2020b) 40.66 15.17 41.29 42.39 17.76 43.91 38.62 14.34 39.94 41.70 15.41 42.02 40.84 15.67 41.79
CDM (w/o. id) (Jin and Zhao, 2021) 39.71 15.57 40.49 41.12 17.80 43.30 37.03 14.81 39.71 40.85 16.63 42.70 39.68 16.20 41.55
MMTLB (Chen et al., 2022b) 44.95 19.48 42.62 50.15 25.82 50.07 39.07 16.11 40.67 44.92 20.06 44.64 44.77 20.37 44.50
SDDA (Ours) 46.40 20.89 44.47 52.28 27.77 52.03 41.09 17.16 41.55 46.45 21.43 45.99 46.56 21.81 46.01

Table 2: In comparison to SLT methods in signer-independent setting without signer identity labels, where B@1,
B@4, and R represent BLEU-1, BLEU-4, and ROUGE-L, respectively.

Method
signer 3 signer 4 signer 7 signer 8 Average

B@1 B@4 R B@1 B@4 R B@1 B@4 R B@1 B@4 R B@1 B@4 R

SDDA 46.40 20.89 44.47 52.28 27.77 52.03 41.09 17.16 41.55 46.45 21.43 45.99 46.56 21.81 46.01
w/o. DAAT 45.03 20.16 43.20 50.87 26.72 51.15 40.16 16.50 41.36 46.47 20.60 45.48 45.63 21.00 45.30
w/o. DADM 46.47 20.33 43.86 51.99 26.68 51.16 40.09 16.68 40.59 46.02 20.70 44.86 46.14 21.10 45.12

Table 3: Ablation study of SDDA for singer-independent SLT

Kaiming (He et al., 2015), and a shared weight
matrix is employed for the input and output word
embeddings in the decoder during training. We
adopt the Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999, and Cosine Annealing
learning rate schedule. The visual feature extractor
(Chen et al., 2022b) first performs SLR pre-training
on a dataset without unseen signers. Our model
is trained with batch size 32 and initial learning
rate 1e-5. The dropout rate is 0.3. We set α, β to
1.0, 1e-4. ϵ is 2.0, 3.0, 3.0, 1.0 for signer 3, 4, 7,
8 respectively. SDDA requires to be trained on 1
NVIDIA TITAN RTX GPU with 24 GB memory
for 30 hours.

4.3 Comparison Results

We compare SDDA with several state-of-the-art
SLT methods, Neural-SLT (Camgoz et al., 2018),
TSPNet (Li et al., 2020), Joint-SLRT (Camgoz
et al., 2020b), CDM (Jin and Zhao, 2021), MMTLB
(Chen et al., 2022b), in a signer-independent setting
without using signer identity.

As presented in Table 2, SDDA achieves state-
of-the-art results. Previous methods, which did not
account for generalization to unseen signers, fo-
cused solely on extracting cues specific to signers
in the training set, resulting in lower scores. In com-
parison to previous methods, CDM exhibits limited
performance improvement. This is attributed to
CDM’s primary reliance on signer identity labels
as supervision to enhance the model’s generaliza-
tion to unseen signers. On the other hand, MMTLB,
which is pre-trained on a substantial amount of sign
language-related data, outperforms these methods.
Through signer diversity-driven data augmentation,

we have alleviated data scarcity to a certain extent
and increased the types of signers in the dataset.
By aligning the features of original data and syn-
thetic data, SDDA learns signer-independent fea-
tures. Therefore, the generalization of SDDA has
been further improved.

4.4 Ablation Study

To assess the effectiveness of all contributions, we
conduct a comprehensive evaluation by comparing
SDDA against a series of ablation models with var-
ious settings. As indicated in Table 3, w/o. DAAT
represents the model without data augmentation
based adversarial training and w/o. DADM repre-
sents the model without diffusion model based data
augmentation.

From Table 3, we consistently observe that
SDDA outperforms w/o. DAAT in terms of BLEU
and ROUGE. This improvement can be attributed
to SDDA’s alignment of features between origi-
nal samples and adversarial samples generated by
adversarial training. Through applying gradient
perturbations to sign language non-critical parts
of the image, this augmentation method produces
adversarial examples that preserve the key seman-
tics of sign language and reduce the translation
accuracy of the sign language model. By align-
ing features of original and adversarial samples,
the model improves its robustness to changes in
signers.

Comparing SDDA with w/o. DADM, we ob-
serve that performance is notably poorer in the ab-
sence of diffusion model based data augmentation,
highlighting its effectiveness. By using various
prompts to guide the diffusion model to modify

2187



the image, this method generates a variety of data
from signers. This data nicely simulates real-world
scenarios in which different people perform sign
language. By aligning the features of the origi-
nal images with those of these synthesized images,
SDDA improves generalization to unseen signers.

4.5 Comparison with other data
augmentation methods

To further validate the effectiveness of signer
diversity-driven data augmentation, we compare
it with three prominent data augmentation schemes
(Cubuk et al., 2019, 2020; Müller and Hutter, 2021),
which effectively enhance the accuracy in the task
of image classification. These methods use rein-
forcement learning to combine various data aug-
mentation operations, modifying the color, bright-
ness, contrast, and other properties of the image.
However, as depicted in Table 4, these augmenta-
tion solutions prove ineffective in enhancing the
model’s generalization to unseen signers. This
highlights the limited impact of conventional data
augmentation methods on signer-independent SLT.
In contrast, our data augmentation method focuses
on enhancing the diversity of signers in the dataset,
thereby improving the model’s generalization to
unseen signers.

4.6 Further analysis of data augmentation
based on adversarial training

To further analyze the contribution of each com-
ponent in data augmentation based on adversarial
training, we compared the performance of SDDA
under various settings of this approach. As shown
in Table 5,w/o. keypoint mask represents data
augmentation based on adversarial training without
keypoint mask and w/o. discriminator represents
our model without discriminator. Impulse noise
and Gaussian noise mean utilizing other perturba-
tion, Impulse noise and Gaussian noise, instead of
gradient perturbation during training. Compared
to w/o. keypoint mask, which adds perturbations
to all pixels, SDDA achieves a higher score. This
indicates that applying perturbations to all pixels in
the image does not yield qualified adversarial sam-
ples. Instead, it adversely affects the sign language
information in the image, hindering the effective
improvement of model generalization. When com-
pared with w/o. discriminator, SDDA demon-
strates improved performance. As the discrimina-
tor aims to differentiate the temporal mean-pooling
hidden representation of the original sample from

Method B@1 B@4 R

Auto (Cubuk et al., 2019) 50.49 25.87 50.01
Rand (Cubuk et al., 2020) 50.04 25.28 49.49
Trival (Müller and Hutter, 2021) 49.61 25.55 50.04
Ours 52.28 27.77 52.03

Table 4: Replace signer diversity-driven data augmen-
tation with other data augmentation methods. It can be
observed that the performance of the model has not been
effectively improved. Note that we conduct experiments
based on using signer4 as the unseen signer.

Method B@1 B@4 R

SDDA 52.28 27.77 52.03
w/o. keypoint mask 51.89 26.86 50.82
w/o. discriminator 52.01 27.24 51.38
perturbation → Impulse noise 42.37 25.85 50.55
perturbation → Gaussian noise 51.48 26.43 51.00

Table 5: Further analysis of data augmentation based on
adversarial training. Note that we conduct experiments
based on using signer 4 as the unseen signer.

that of the augmented sample, and the translation
model seeks to fool the discriminator, our model
learns global contextual representations for differ-
ent signers. To fully demonstrate the effectiveness
of gradient perturbation, we replaced it with two
common perturbations (Chantry et al., 2022). In Ta-
ble 5, compared with these alternatives, SDDA ef-
fectively enhances the generalization of the model.
This improvement is attributed to gradient perturba-
tion, which is generated through adversarial train-
ing. Pictures with such perturbations are included
to better simulate scenarios where changes in the
signer result in reduced translation performance.

4.7 Qualitative Analysis
We present the translation quality of SDDA in this
section, showcasing translation samples in Table 6.
Due to space constraints, we exclusively provide
results for CDM (w/o. id) and SDDA, alongside
the ground truth translations serving as references.
Given that the annotations in the PHOENIX-2014T
dataset are in German, the generated sentences and
their English translations are shared. A compari-
son reveals that, owing to the data augmentation
method proposed in this paper, our model performs
well even on unseen signers. When compared with
CDM (w/o. id), our model accurately translates
key information in the reference. As shown in the
third example, our model got the correct transla-
tion: "ändert wenig" (changes little), but CDM
(w/o. id) didn’t. Besides, Comparing the transla-
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Reference am mittwoch und donnerstag bleibt es häufiger trüb örtlich etwas sprühregen stellenweise zeigt sich die sonne.
(Wednesday and Thursday it will often be cloudy, with some drizzle in places and the sun will appear in places.)

CDM (w/o. id) am donnerstag ist es teils wolkig oder neblig trüb teils freundlich.
(Thursday it will be partly cloudy or foggy, partly friendly.)

SDDA am mittwoch und donnerstag verbreitet trübes wetter gebietsweise regnet es etwas teilweise zeigt sich die sonne.
(Wednesday and Thursday will have widespread cloudy weather with scattered rain and occasional sunshine in some areas.)

Reference dann morgen von osten schon wieder trockener.
(then tomorrow it will be drier again from the east.)

CDM (w/o. id) morgen bleibt es meist trocken und trocken.
(Tomorrow it will mostly stay dry and dry.)

SDDA morgen bleibt es im nordosten noch trocken.
(Tomorrow it will still be dry in the northeast.)

Reference daran ändert sich am dienstag in der nordhälfte nur wenig.
(Little will change in the northern half on Tuesday.)

CDM (w/o. id) am dienstag ist es im norden und auch im norden bleibt es recht kühl.
(On Tuesday it will be in the north and it will also remain quite cool in the north.)

SDDA am dienstag ändert sich an diesem wetter im norden wenig.
(On Tuesday there will be little change in this weather in the north.

Reference am alpenrand kann es länger anhaltend regnen.
(It can rain for a long time on the edge of the Alps.)

CDM (w/o. id) in den alpen regnet es gebietsweise kräftig.
(In the Alps it rains heavily in some areas.)

SDDA an den alpen kann es längere zeit regnen.
(It can rain for a long time in the Alps.)

Reference morgen fünf grad im allgäu bis elf an rhein elbe und saale.
(Tomorrow five degrees in the Allgäu until eleven on the Rhine Elbe and Saale.)

CDM (w/o. id) am tag fünf grad am tag fünf grad am niederrhein und fünf grad am niederrhein.
(on the day five degrees on the day five degrees on the Lower Rhine and five degrees on the Lower Rhine.)

SDDA am tag fünf grad im allgäu und fünf grad an rhein und main.
(on the day five degrees in the Allgäu and five degrees on the Rhine and Main.)

Table 6: Qualitative Results of SDDA

tions of the two models, it is obvious that our model
translates the whole sentence more completely and
smoothly. In the first example, CDM (w/o. id)
misleads "mittwoch" (wednesday) but our model’s
translation results include it. Lastly, from these ex-
amples, we can see that our model generates fewer
under-translation sentences.

5 Conclusion

In this work, we propose SDDA, a signer diversity-
driven augmentation for signer-independent SLT.
SDDA comprises two data augmentation methods.
The first is data augmentation based on adversarial
training, which focuses on using the gradient of
the model to generate adversarial samples. The
second is data augmentation based on the diffusion
model, which focuses on using the advanced dif-
fusion based text guide image editing method to
edit the signers in the picture, alleviating the prob-
lem of scarcity of signer diversity. By employing
the two data augmentation methods, each frame in
the sign language video can be transformed into a
signer-diverse image. To learn signer-independent
features, we introduce a consistency loss and a dis-
crimination lass to align the features of the original
and augmented videos. Through our method, the
model learns more robust visual features and con-

sistent global contextual representations for differ-
ent signers, thus improving the generalization abil-
ity of the model to unseen signers. Experimental
results on the benchmark PHOENIX-2014T affirm
the effectiveness of SDDA.

6 Limitation

Our methods involve data augmentation based on
adversarial training and data augmentation based
on the diffusion model. However, our approach
faces three limitations. Firstly, Our method re-
quires a long training time. Due to adversarial train-
ing, the model computes the same sample twice.
Furthermore, the diffusion model’s high computa-
tional complexity results in prolonged data synthe-
sis times. Secondly, we concentrate on designing
prompts to enhance signer diversity but have not
explored how to design prompts that make synthe-
sized pictures closer to real pictures. Future work
will focus on how to efficiently generate realistic
and signer-diverse data. Thirdly, our method does
not take into account how to deal with the dynamic
nature between different signers, such as variations
in performance styles.
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A Augmented examples

Here are some diffusion model based augmented
examples and corresponding prompts shown in Fig
3.

B Augmented examples

We list the statistical results of the signer-
independent settings in Table 7.
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Figure 3: Some diffusion model based augmented examples and corresponding prompts.
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Type
Split 1 Split 2 Split 3 Split 4

Signers Samples Signers Samples Signers Samples Signers Samples

Train 1, 4, 5, 7, 8 7163 1, 3, 5, 7, 8 6639 1, 3, 4, 5, 8 6980 1, 3, 4, 5, 7 6880
Dev 2, 6, 9 411 2, 6, 9 411 2, 6, 9 411 2, 6, 9 411
Test 3 683 4 1207 7 866 8 966

Table 7: The statistical results of the signer-independent settings.
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