@inproceedings{meyer-buys-2024-systematic,
title = "A Systematic Analysis of Subwords and Cross-Lingual Transfer in Multilingual Translation",
author = "Meyer, Francois and
Buys, Jan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.141",
doi = "10.18653/v1/2024.findings-naacl.141",
pages = "2194--2200",
abstract = "Multilingual modelling can improve machine translation for low-resource languages, partly through shared subword representations. This paper studies the role of subword segmentation in cross-lingual transfer. We systematically compare the efficacy of several subword methods in promoting synergy and preventing interference across different linguistic typologies. Our findings show that subword regularisation boosts synergy in multilingual modelling, whereas BPE more effectively facilitates transfer during cross-lingual fine-tuning. Notably, our results suggest that differences in orthographic word boundary conventions (the morphological granularity of written words) may impede cross-lingual transfer more significantly than linguistic unrelatedness. Our study confirms that decisions around subword modelling can be key to optimising the benefits of multilingual modelling.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meyer-buys-2024-systematic">
<titleInfo>
<title>A Systematic Analysis of Subwords and Cross-Lingual Transfer in Multilingual Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francois</namePart>
<namePart type="family">Meyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Buys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual modelling can improve machine translation for low-resource languages, partly through shared subword representations. This paper studies the role of subword segmentation in cross-lingual transfer. We systematically compare the efficacy of several subword methods in promoting synergy and preventing interference across different linguistic typologies. Our findings show that subword regularisation boosts synergy in multilingual modelling, whereas BPE more effectively facilitates transfer during cross-lingual fine-tuning. Notably, our results suggest that differences in orthographic word boundary conventions (the morphological granularity of written words) may impede cross-lingual transfer more significantly than linguistic unrelatedness. Our study confirms that decisions around subword modelling can be key to optimising the benefits of multilingual modelling.</abstract>
<identifier type="citekey">meyer-buys-2024-systematic</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.141</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.141</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2194</start>
<end>2200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Systematic Analysis of Subwords and Cross-Lingual Transfer in Multilingual Translation
%A Meyer, Francois
%A Buys, Jan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F meyer-buys-2024-systematic
%X Multilingual modelling can improve machine translation for low-resource languages, partly through shared subword representations. This paper studies the role of subword segmentation in cross-lingual transfer. We systematically compare the efficacy of several subword methods in promoting synergy and preventing interference across different linguistic typologies. Our findings show that subword regularisation boosts synergy in multilingual modelling, whereas BPE more effectively facilitates transfer during cross-lingual fine-tuning. Notably, our results suggest that differences in orthographic word boundary conventions (the morphological granularity of written words) may impede cross-lingual transfer more significantly than linguistic unrelatedness. Our study confirms that decisions around subword modelling can be key to optimising the benefits of multilingual modelling.
%R 10.18653/v1/2024.findings-naacl.141
%U https://aclanthology.org/2024.findings-naacl.141
%U https://doi.org/10.18653/v1/2024.findings-naacl.141
%P 2194-2200
Markdown (Informal)
[A Systematic Analysis of Subwords and Cross-Lingual Transfer in Multilingual Translation](https://aclanthology.org/2024.findings-naacl.141) (Meyer & Buys, Findings 2024)
ACL