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Abstract

Argument mining, dealing with the classifica-
tion of text based on inference and information,
denotes a challenging analytical task in the rich
context of Twitter (now X), a key platform for
online discourse and exchange. Thereby, Twit-
ter offers a diverse repository of short messages
bearing on both of these elements. For text
classification, transformer approaches, particu-
larly BERT, offer state-of-the-art solutions. Our
study delves into optimizing the embeddings
of the understudied BERTweet transformer for
argument mining on Twitter and broader gener-
alization across topics. We explore the impact
of pre-classification fine-tuning by aligning
similar manifestations of inference and infor-
mation while contrasting dissimilar instances.
Using the TACO dataset, our approach aug-
ments tweets for optimizing BERTweet in a
Siamese network, strongly improving classifi-
cation and cross-topic generalization compared
to standard methods. Overall, we contribute the
transformer WRAPresentations and classifier
WRAP, scoring 86.62% F1 for inference detec-
tion, 86.30% for information recognition, and
75.29% across four combinations of these ele-
ments, to enhance inference and information-
driven argument mining on Twitter.

1 Introduction

Twitter (now X) is a global hub for opinions, news,
and information and serves as a primary data source
for research, which had already recognized the
value of its user-generated content prior to its tran-
sition to X (Kwak et al., 2010; Boyd et al., 2010).

Argument mining describes the process of clas-
sifying texts by assessing their written content in
terms of information and inference elements to
identify arguments (Palau and Moens, 2009; Peld-
szus and Stede, 2013; Lawrence and Reed, 2019).

In the intersection of traditional machine learn-
ing and natural language processing, pre-trained
transformers like BERT (Devlin et al., 2019) and its

specialized variants, such as BERTweet (Nguyen
et al., 2020), have set state-of-the-art classification
standards (Houlsby et al., 2019; Sun et al., 2019).
During fine-tuning, transformers create universal
text representations providing contextual features
for a soft-max classifier, meaning additional layers
on top of the pre-trained model that are jointly op-
timized for downstream tasks (Devlin et al., 2019).

Thereby, the field of argument mining has also
witnessed the benefits of transformer models like
BERT for cross-topic classification (Bhatti et al.,
2021; Thorn Jakobsen et al., 2021) and argument
similarity (Reimers and Gurevych, 2019; Reimers
et al., 2019; Thakur et al., 2021).

Besides the common methods of adjusting the in-
task performance through parameter tweaks (Lan
et al., 2019; You et al., 2019) or incorporating aug-
mentations (Feng et al., 2021; Thakur et al., 2021),
multi-task learning is recommended as an addi-
tional fine-tuning strategy (Sun et al., 2019; Stab
et al., 2018). Thereby, multi-task learning denotes
a prior phase of fine-tuning representations on aux-
iliary tasks such as clustering or semantic similarity
before proceeding to the actual classification step
and is argued to effectively reduce a model’s sen-
sitivity to spurious correlations (Liu et al., 2019;
Tu et al., 2020), which in turn is key to cross-topic
argument mining (Thorn Jakobsen et al., 2021).

We believe that acquiring robust and meaning-
ful representations, in the sense of perceiving the
constituent elements of arguments, prior to classifi-
cation is particularly useful for the nuanced task of
argument mining when applied to diverse topics.

Generalizability in terms of cross-topic classifi-
cation is crucial for practical argument mining in
realistic scenarios, both in general research (Dax-
enberger et al., 2017; Stab et al., 2018) and specifi-
cally on Twitter (Schaefer and Stede, 2021), neces-
sitating models to focus on argument components
while avoiding reliance on spurious correlations
like topic words (Thorn Jakobsen et al., 2021).
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In this paper, we pioneer the optimization of the
understudied transformer BERTweet for argument
mining on Twitter. Thereby, we refine its represen-
tations of tweets within the embedding space by
specializing BERTweet to better encode inference
and information across diverse topics.

Utilizing the TACO dataset (Feger and Dietze,
2024), offering the first strong baseline evaluations
of BERTweet for argument mining on Twitter, we
optimize the model’s representation layers in a
multi-task approach by accentuating the contrast
between inference and information while centering
similar manifestations before the actual classifica-
tion step, for which we assume proximity to imply
shared class signals (van Engelen and Hoos, 2020).

We achieve this by configuring a Siamese
BERTweet network using SBERT (Reimers and
Gurevych, 2019). Applying contrastive loss (Had-
sell et al., 2006) and text augmentation tech-
niques (Wei and Zou, 2019), this network teaches
BERTweet to cluster tweet embeddings according
to their respective roles in argument mining, that
is, to generally encode the presence or absence of
both inference and information in those represen-
tations used for classification. Hence, we aim for
classifications driven by the argument constituting
elements, steering clear of spurious correlations.

Utilizing BERTweet’s enhanced embeddings, it
excels in both closed and cross-topic argument
mining on Twitter, outperforming several standard
methods (Schaefer and Stede, 2021) in this domain.

Towards inference and information-driven argu-
ment mining on Twitter, we contribute:1

• A pre-classification fine-tuning approach for
BERTweet, enhancing its capacity to repre-
sent information and inference for closed and
cross-topic argument mining on Twitter.

• An augmentation strategy to reduce spurious
entity and topic signals while increasing sen-
tence variability in tweets.

• WRAPresentations2, an enhanced BERTweet
embedding model driven by inference and in-
formation, obtained through contrastive opti-
mization on augmented TACO tweets.

• WRAP3, our tweet argument classifier leverag-
ing WRAPresentations for argument mining
across diverse topics on Twitter.

1github.com/TomatenMarc/TACO-Fiesta
2huggingface.co/TomatenMarc/WRAPresentations
3huggingface.co/TomatenMarc/WRAP

2 Twitter Arguments from Conversations

Our primary dataset4, TACO (Feger and Dietze,
2024), encompasses 1,734 tweets from 200 en-
tire conversations spanning six topics: #Abortion
(25.9%), #Brexit (29.0%), #GOT (11.0%), #LOTR-
ROP (12.1%), #SquidGame (12.7%), and #Twit-
terTakeover (9.3%). So far, it stands as the sole
publicly available labeled tweet dataset tailored for
inference and information extraction, strategically
addressing reply-patterns inherent to their emerg-
ing conversational contexts during annotation.

Annotations were conducted by six experts ac-
cording to the Cambridge Dictionary definitions,
differentiating inference as a guess that you make
or an opinion that you form based on the infor-
mation that you have and information as facts or
details about a person, company, product, etc. With
a robust agreement of 0.718 Krippendorff’s α, four
classes emerged of these elements: Reason (infer-
ence and information), Statement (inference with-
out information), Notification (information without
inference), and None (neither element).

Table 1 details the class distribution of TACO.

Reason Statement Notification None
581 (33.50%) 284 (16.38%) 500 (28.84%) 369 (21.28%)

Table 1: The class distribution of tweets in TACO.

On TACO, Vanilla BERTweet serves as the best
performing baseline, excelling with 74.45% F1 for
Reason, 56.66% F1 for Statement, 78.30% F1 for
Notification, and 80.56% F1 for None after fine-
tuning on these classes (Feger and Dietze, 2024).

3 Inference and Information-Driven
Representations for Mining Arguments

In text classification, transformers like BERTweet
use the final hidden state of the first token

[
CLS

]

as the sequence representation. Classification in-
volves a soft-max classifier added as an extension
after the final representation layer, determining the
label assignment for a tweet t by evaluating the
probability of each possible label y as:

p(y|h) = softmax(Ŵh) (1)

where, Ŵ signifies the task-specific weights
of the classification head, and h represents the
final representation of t obtained with the trans-
former. Achieved through pooling an entire se-
quence representation via

[
CLS

]
, h is expressed as

4github.com/TomatenMarc/TACO
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GW (t) = h, where the transformer is considered
an independent function GW (t) with its distinct
weights W , taking t as input. For the specific clas-
sification task, both Ŵ and W are jointly fine-tuned
by maximizing the log-probability of the correct
label, where h implicitly undergoes optimization.

For optimizing class assignments on TACO, we
emphasize the impact of specializing h for encod-
ing inference and information before classification.

Hence, we consider the pre-classification special-
ization of an embedding h as a contrastive problem
of semantic similarity, where tweets with similar
expressions of the text dimensions inference and in-
formation are brought closer together, while those
lacking in similarity are positioned farther apart.

3.1 Embedding Inference and Information
We measure the semantic similarity between two
tweet representations, denoted as h1 and h2, using
cosine distance:

D(h1, h2) = 1− cos(h1, h2) ∈ [0, 2] (2)

a standard metric (Mikolov et al., 2013; Kim, 2014;
Tai et al., 2015; Chen and He, 2020) for assessing
text vector similarity. D(h1, h2) reflects complete
equivalence at 0, orthogonality at 1, and absolute
dissimilarity at 2. Mainly defined by the cosine
similarity cos(h1, h2) ∈ [−1, 1], where −1 rep-
resents complete dissimilarity, 1 indicates equiva-
lence, and values closer to 0 suggest orthogonality,
this distance is length-independent and primarily
influenced by the angle between two embeddings.

Building on this circumstance, we assume that
the actual representation h of a tweet can be nor-
malized and lies on the n-sphere:

S(n) = {h ∈ Rn+1 : ∥h∥ = 1} (3)

Transferred to the Cartesian nature of arguments
h = ⟨information, inference⟩, we consider
their representations to live on the unit sphere
h ∈ S(1) (Wang and Isola, 2020; Khosla et al.,
2020; Chen and He, 2020). In h, 1 signifies full
presence, and −1 implies total absence of a com-
ponent. Consequently, an ideal class center on
the unit sphere heads towards the pole ⟨1, 1⟩ for
Reason, ⟨−1, 1⟩ for Statement, ⟨1,−1⟩ for Noti-
fication, and ⟨−1,−1⟩ for None. A breakdown
of this is shown in the upper part of Figure 1, ac-
knowledging the realistic expectation that the ac-
tual embeddings may differ from the ideals while
the objective is to get them closer to them.

3.2 Contrastive Siamese Network

BERTweet

Pooling

pull

push

Pooling

BERTweet

Figure 1: Visualization of the employed Siamese
BERTweet architecture, with parameterized co-
sine distance DW (h1, h2) and contrastive loss
L(DW , h1, h2, Y,m). Atop this architecture, the Carte-
sian embedding space for an argument representation
h = ⟨information, inference⟩ is presented as target.

To address semantic similarity, a prevalent strat-
egy involves enhancing representations through
learning a metric (Chopra et al., 2005; Xing et al.,
2002; Hadsell et al., 2006). Precisely, metric learn-
ing entails the implicit acquisition of a metric
DW (h1, h2) parameterized by the weights W of
the representation model GW (Chopra et al., 2005).

We seek to find W such that the target metric:

DW (t1, t2) = 1− cos(GW (t1), GW (t2)) (4)

is smaller if t1, t2 are semantically similar, and
higher if not.

By utilizing the identical embedding function
GW (t) (BERTweet) with shared weights W to
learn the metric, our architecture is referred to as
a Siamese network (Bromley et al., 1993; Chopra
et al., 2005). Similar and dissimilar tweet pairs are
provided as input to this network. To update the
weights and optimize the network’s performance, a
loss function is applied on top of this architecture.

To attain the goal of increasing the differenti-
ation between similar and dissimilar pairs, it is
suggested to employ the contrastive loss (Chopra
et al., 2005; Hadsell et al., 2006):
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L(DW ,h1, h2, Y,m) =

(Y )
1

2
DW (h1, h2)

2+ (5)

(1− Y )
1

2
{max(0,m−DW (h1, h2))}2

where, h1, h2 are two representations
(GW (ti) = hi) of different tweets t1, t2 to
be optimized given DW (h1, h2) as metric. Y de-
notes the binary label indicating if t1, t2 are similar
(Y = 1) or contrasting (Y = 0). Furthermore, a
margin value m > 0 is introduced as the minimal
distance between two contrasting tweets.

When establishing m, our objective was to
set DW (h1, h2) in a way that maximizes con-
trast between dissimilar pairs while avoiding over-
estimation of their true distance. Focusing on
DW (h1, h2) ∈ [0, 1], representing positive simi-
larity, we selected m = 0.5. This choice intuitively
represents the minimum threshold for high similar-
ity, yielding optimal results in our study.

With m = 0.5 we ensure that even if a represen-
tation closely matches an ideal center but is labeled
as dissimilar, the optimized representation pushes
60◦ away and into an adjacent quadrant.

3.3 Augmentation of TACO
In the initial phase of processing TACO data, we
generated a unique copy for each tweet through
augmentation, denoted as A-TACO. Employing
EDA (Easy Data Augmentation) techniques (Wei
and Zou, 2019) of (1) synonym replacement, ran-
dom (2) insertion, (3) swap, and (4) deletion, this
procedure segregates our total ground truth into
A-TACO, for optimization the embedding space of
BERTweet prior to classification, and TACO, des-
ignated for fine-tuning and evaluating classifiers.

Maintaining independence between optimization
and evaluation data is crucial to avoid further spuri-
ous correlations (Thorn Jakobsen et al., 2021) and
ensure that the data includes essential class signals,
thus enabling broad generalization across varying
sentence structures and cross-topic evaluations.

Following technique (1), we utilized spaCy5 to
automatically identify as many entities and pre-
selected keywords related to the six topics in the
TACO dataset as possible. Subsequently, we re-
placed these words with the

[
MASK

]
token, a

placeholder commonly used by BERT-like models,
including BERTweet, for predicting missing words.

5spacy.io

Particularly, we utilized BERTweet as a fill-mask
model to generate new tokens for those masked in
the input sequence (Kumar et al., 2020).

In order to increase the variability of word choice
and sentence structure while minimizing seman-
tic changes, the techniques (2-4) were applied to
10-90% of all words. Optimal coherence, with
an average cosine distance of ∼ 0.08 between the[
CLS

]
tokens of tweets and augmentations, is seen

at a replacement rate of 10%, maintaining seman-
tic consistency with entity and topic words being
almost entirely changed or removed. Again, step
(1) was applied to avoid reintroducing topic words.
Refer to Table 2 for an augmentation example.6

TACO
Elon Musk ready with ’Plan B’ if Twitter rejects his
offer Read @USER Story | HTTPURL #ElonMusk
#ElonMuskTwitter #TwitterTakeover HTTPURL

A-TACO
Wenger ready with ’Plan B’ as Wenger rejects his
offer - HTTPURL via @USER

Table 2: An augmented Notification reminiscent of a
general blog comment after replacing entities (Elon
Musk and Twitter are changed to Wenger), deleting
topic or entity references, including hashtags, and re-
wording the tweet while retaining its original substance.

4 Experimental Setup

This section outlines the protocols used for eval-
uating and optimizing BERTweet’s embedding
space with A-TACO and follow-up classification
on TACO. We select macro F1 scores7 for eval-
uation in response to the imbalanced distribution
across TACO’s four classes, guaranteeing an equi-
table analysis and underscoring a model’s adept-
ness at managing heterogeneous data distributions.
In our subsequent classification analysis, we also
present the micro F1 scores7 for each tweet class.
Beyond this, we consider Recall to account for the
generalizability of a model to unknown topics after
fine-tuning in the pre-classification phase.

4.1 Models
In our approach, it is important to differentiate be-
tween the pre-classification fine-tuning for special-
izing embeddings and their subsequent fine-tuning
tailored for mining arguments on TACO. In this
context, we compare different ablations of our fine-
tuning pipeline for embeddings before and upon
classification, comparing their prediction strength
with various common baseline models.

6For more examples, see: README.md
7Precision and Recall for experiments are in the repository.
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For both tasks, we utilize the Vanilla BERTweet
model8, with 12 transformer blocks and 12 self-
attention heads processing sequences of up to 128
tokens, consistent with the best performing model
reported for TACO (Feger and Dietze, 2024).

The first embedding model derived from Vanilla
BERTweet, enhanced as described in Section 3
by applying contrastive loss within the Siamese
network utilizing A-TACO to improve the co-
sine distance DW (t1, t2) for similar or dissimi-
lar tweets, is referred to as WRAPresentations.
For comparison, we introduce a second deriva-
tive, Augmented BERTweet, which undergoes pre-
classification fine-tuning using the same tweets of
A-TACO as WRAPresentations but directly opti-
mizes p(y|h) with standard cross-entropy loss.

Both these strategies aim to improve the repre-
sentation GW (t) = h of any tweet t used for sub-
sequent classification p(y|h) on TACO by incorpo-
rating augmented tweets of A-TACO and adjusting
the internal weights W in different ways to better
encode argument components for each model GW .

For classification on TACO, we utilize TF-IDF
representations, where word frequency is widely
recognized as a feature in strong baselines for argu-
ment mining on Twitter, which are Support Vector
Machine (SVM) (Addawood and Bashir, 2016), Lo-
gistic Regression (LR) (Bosc et al., 2016; Dusmanu
et al., 2017), and Random Forest (RF) (Dusmanu
et al., 2017). These models go beyond consider-
ing individual words by incorporating tweet-related
features like emoji, URL, and hashtag frequencies.
Despite this, their potential for cross-topic general-
izability remains unexplored.

For each classifier, we evaluate the average class
length for classification to examine linguistic fea-
ture acquisition.

4.2 Pre-Classification Fine-Tuning

To enhance BERTweet’s embeddings, we chose
TACO’s golden tweets with flawless annotation
agreement, accounting for 70.3% of all tweets, with
class distribution remaining largely consistent.

For the final evaluation, we employed the origi-
nal golden tweets for #Abortion but augmentations
of golden tweets for the remaining five topics dur-
ing fine-tuning. #Abortion was deemed as holdout
topic due to its highest dissimilarity when com-
pared to the remaining topics, posing a greater clas-
sification challenge (Thorn Jakobsen et al., 2021).

8huggingface.co/vinai/bertweet-base

This provided initial insights into cross-topic gen-
eralization and the efficacy of fine-tuning with aug-
mentations and predicting given real tweets. Pairs
were formed for all tweet combinations, denoting
tweets of the same class as similar Y = 1 and those
of different classes as dissimilar Y = 0, yielding
more dissimilar than similar pairs.

For the final validation set, 86,142 pairs were
generated. The optimization data, divided into fine-
tuning and test sets with a stratified 60/40 ratio,
yielded 307,470 and 136,530 candidate pairs, re-
spectively. To ensure a balance between similar
and dissimilar pairs, we chose the largest possible
set such that both similar and dissimilar pairs are
equally represented (Bromley et al., 1993; Chopra
et al., 2005) while maintaining all tweets of the
respective splits.

In total, 162,064 pairs were obtained for fine-
tuning, 71,812 for testing, and 53,560 for final vali-
dation of the enhanced BERTweet representations
prior to classification.

For all transformer models, we performed fine-
tuning over 5 epochs using an A100 GPU with 40
GB of memory, a batch size of 32, and a learning
rate of 4e−5, which proved to be optimal for all
models. The Siamese BERTweet network is im-
plemented using SBERT (Reimers and Gurevych,
2019) as depicted in the lower part of Figure 1.

Additionally, we applied different fine-tuning
strategies for WRAPresentations using both[
CLS

]
pooling, later used for classification, and[

MEAN
]

pooling, recommended for better sen-
tence embeddings (Reimers and Gurevych, 2019).

4.3 Argument Mining on TACO
We evaluate the practicality of BERTweet’s special-
ized embeddings on TACO, given the three argu-
ment mining tasks of (1) inference detection, (2)
information recognition, and (3) classification of
all four tweet classes, with a concurrent aim for
cross-topic generalization.

For task (3), we trained a feed-forward neural
network with two linear layers on top of each em-
bedding model, undergoing 5 additional fine-tuning
epochs with the best performing parameters hav-
ing a learning rate of 4e−5 and batch size of 8,
corresponding to the best model and parameters re-
ported for TACO (Feger and Dietze, 2024). Again,
we used a single A100 GPU with 40 GB of mem-
ory. Thereby, the results for tasks (1) and (2) are
aggregations specific to class elements of task (3)
predictions, focusing on inference or information.
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Extending our ablation strategy, classifiers were
evaluated in two different setups to investigate the
general effects of fine-tuning embeddings prior to
classification and their subsequent adaptability to
actual class signals (Peters et al., 2019).

In the first setup (Frozen), freezing embeddings
allowed us to assess the benefits attributable to pre-
classification fine-tuning. In the second setup (Dy-
namic), embeddings underwent further fine-tuning
during classification head optimization, where we
assessed their adaptability to task-specific learning.
Success in both setups signifies a model’s ability to
represent argument components prior to classifica-
tion and to adapt these fine-tuned representations to
the specific classes of inferences and information.

We employed a 6-fold shuffled cross-validation,
maintaining consistent splits for all classifiers
across the six topics of TACO, to establish an
upper-bound (Thorn Jakobsen et al., 2021). This
closed-topic validation was then compared with
cross-topic validation, where each of the six topics
served as a unique testing set, and the remaining
five topics were utilized for fine-tuning (Bosc et al.,
2016; Daxenberger et al., 2017; Stab et al., 2018).
Lower performance is expected in cross-topic vali-
dation, as classifiers are exposed to unseen topics.

5 Results

In this section, each model is investigated with re-
spect to the actual tweets of TACO. First, we assess
the embeddings of each transformation model in
terms of their baseline notion of argument compo-
nents and in terms of the four tweet classes, focus-
ing on the structural differences of their represen-
tations. Second, we evaluate the different models
in both closed and cross-topic classifications to de-
termine their applicability to, and generalizability
across, topics.

5.1 Results: Pre-Classification Fine-Tuning

Model P R F1
Vanilla BERTweet-

[
CLS

]
50.00 100.00 66.67

Augmented BERTweet-
[
CLS

]
65.69 86.66 74.73

WRAPresentations-
[
CLS

]
66.00 84.32 74.04

WRAPresentations-
[
MEAN

]
63.05 88.91 73.78

Table 3: Evaluation of within-class similarity and
between-class separability of all transformer models us-
ing

[
CLS

]
tokens as used during classification. These

models were fine-tuned with A-TACO and evaluated on
the TACO holdout topic #Abortion. Suffixes indicate
pooling methods for optimizing the embedding spaces.

After pre-classification fine-tuning to enhance
semantic similarity, we evaluate the optimized em-
bedding models for classifying tweet pairs as simi-
lar or dissimilar given DW (t1, t2).

All fine-tuning strategies outperformed Vanilla
BERTweet in terms of F1, compare Table 3.

We excluded WRAPresentations with
[
CLS

]

pooling for follow-up classification due to the ab-
sence of discernible benefits in F1 compared to
Augmented BERTweet and WRAPresentations us-
ing

[
MEAN

]
pooling for pre-classification fine-

tuning, each showing higher Recall scores.
Hence, we will refer to WRAPresentations-[

MEAN
]

as WRAPresentations.
In comparing Augmented BERTweet and

WRAPresentations, both models show similar over-
all performance in terms of F1, but diverge in their
emphasis on Precision and Recall. The results sug-
gest that contrastive fine-tuning of representations
is not inherently superior to directly optimizing
p(y|h) with augmented tweets. However, this strat-
egy enhances Recall, with further distinctions ex-
pected in downstream task evaluations.

Nonetheless, we assume that the enhanced Re-
call at this stage is already a first indicator for later
generalizations of classifications across topics. Ad-
ditionally, we confirmed the effectiveness of pre-
classification fine-tuning with A-TACO when ap-
plied to real tweets from an unseen topic.

Furthermore, we visually explored BERTweet’s
embedding space before and after fine-tuning, uti-
lizing

[
CLS

]
representations of all original tweets

in TACO, as depicted in Figure 2(a).
Applying t-SNE for dimensional reduction

(van der Maaten and Hinton, 2008; Jawahar et al.,
2019), comparing Vanilla BERTweet with WRAP-
resentations showed enhanced class quadrant den-
sity, compare Figure 2(a), suggesting an improve-
ment of class semantics given inference and infor-
mation for a majority of tweets. Similar patterns,
albeit at smaller numbers, are observed for Aug-
mented BERTweet, see Figure 2(b).

Numerically, WRAPresentations improved
tweet order by 38% for Reason, 37% for Statement,
and 41% for Notification over Vanilla BERTweet.
Despite a -2% decrease in the None class quadrant,
None remains predominant, refer to Figure 2(b).

Augmented BERTweet closely matches WRAP-
resentations in representing tweets, excelling by 6%
for None but lagging behind by -6% for Reason,
-12% for Statement and -13% for Notification.
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(a) t-SNE embeddings of tweet class
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tokens before and after fine-tuning given inference and information.

Reason
Statement

NotificationNone
0

20
40
60
80

100

39% 42%

12%
7%

71%

18%
9%

2%

77%

14%
8%

1%

Reason
Vanilla BERTweet
Augmented BERTweet
WRAPresentations

Reason
Statement

NotificationNone

30% 27%

14%

29%27%

52%

3%

18%
23%

64%

4%
8%

Statement

Reason
Statement

NotificationNone

23%
28%

24% 25%

13%
6%

52%

29%

11%
6%

65%

17%

Notification

Reason
Statement

NotificationNone

4% 6%
12%

78%

5% 8% 5%

82%

4%
9% 11%

76%

None

(b) Distribution of classes within the projected quadrants of the expected ⟨information, inference⟩ space.

Figure 2: Investigation on the impact of BERTweet’s fine-tuning for the transfer of class semantics onto the expected
⟨information, inference⟩ space in terms of the

[
CLS

]
tokens for tweet classification. Considering the classes,

(a) highlights the tightening of tweet embeddings towards their respective ideal class poles. Considering the
distribution of tweets, (b) emphasizes that each expected quadrant corresponds to the anticipated majority class.

Inference Information Multi-Class
Model Frozen Dynamic Frozen Dynamic Frozen Dynamic

Closed-Topic (6-fold) Validation
Length 62.34 71.47 38.26
RF + TF-IDF 76.12 80.56 55.65
Vanilla BERTweet 73.12 84.54 66.49 83.55 42.87 71.05
Augmented BERTweet 84.49 86.68 79.22 84.57 67.07 73.80
WRAPresentations 86.88 86.62 81.54 86.30 71.07 75.29

Cross-Topic (6-fold) Validation
Length 61.99 71.55 38.17
RF + TF-IDF 73.93 80.16 53.29
Vanilla BERTweet 70.28 83.15 66.15 82.22 39.00 68.12
Augmented BERTweet 84.20 84.25 79.38 83.31 66.41 69.99
WRAPresentations 86.83 86.27 81.54 84.90 70.93 73.54

Table 4: Macro F1 scores of each classifier for inference and information detection, and all four classes.
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Reason Statement Notification None
Model Frozen Dynamic Frozen Dynamic Frozen Dynamic Frozen Dynamic

Closed-Topic (6-fold) Validation
Length 61.68 20.19 14.47 56.72
RF + TF-IDF 69.35 17.30 63.35 72.62
Vanilla BERTweet 66.05 74.98 00.00 53.99 43.80 77.62 61.63 77.62
Augmented BERTweet 74.50 76.82 49.53 58.37 70.95 80.28 73.29 79.71
WRAPresentations 77.34 78.14 58.66 60.96 72.61 79.36 75.67 82.72

Cross-Topic (6-fold) Validation
Length 61.78 19.32 14.49 57.09
RF + TF-IDF 68.61 13.33 62.75 68.46
Vanilla BERTweet 63.57 73.15 00.00 47.40 35.79 74.92 56.64 77.01
Augmented BERTweet 75.18 75.10 46.34 51.74 71.61 75.71 72.50 77.42
WRAPresentations 77.13 77.05 57.62 58.33 73.05 78.45 75.91 80.33

Table 5: Micro F1 scores for classifiers identifying the four classes in inference and information detection.

5.2 Results: Classification and Generalization

For simplicity, we present the outcomes of the RF
classifier as best performing baseline and the aver-
age class length as minimal-performance indicator.

When turning to the closed-topic validation,
WRAPresentations outperforms all classifiers ex-
cept task (1), where dynamic embeddings in Aug-
mented BERTweet exhibit performance nearly
equivalent, as demonstrated in the upper half of
Table 4. Quantitatively, WRAPresentations yields
86.88% F1 for task (1), 81.54% F1 for task (2),
and 71.07% F1 for task (3) when frozen. Dynami-
cally optimizing embeddings, WRAPresentations
achieves 86.62% F1 for task (1), 86.30% F1 for
task (2), and 75.29% F1 for task (3).

Shifting our attention to the more demanding
task of cross-topic validation, assessing a classi-
fier’s ability to generalize to unseen topics, WRAP-
resentations demonstrates superior performance
over all evaluations, thereby achieving 86.83% F1
for task (1), 81.54% F1 for task (2), and 70.93%
F1 for task (3) when frozen. With dynamically ad-
justed embeddings, it achieves 86.27% F1 for task
(1), 84.90% F1 for task (2), and 73.54% F1 for task
(3), compare lower half of Table 4.

Further, WRAPresentations clearly improved
performance for Statement, the least common and
most difficult class to predict when comparing the
remaining classifiers. Thereby, all other classi-
fiers perform below or slightly above chance agree-
ment for closed-topic validation and generaliza-
tion across topics for this class, where Vanilla
BERTweet even achieved 00.00% F1 when frozen,
showcasing the necessity for adjusting classifiers
and embeddings to specific classes, see Table 5.

6 Discussion

WRAPresentations consistently outperforms all
models, except for a marginal -0.06% F1 decrease
compared to Augmented BERTweet with dynamic
representations for task (1) of closed-topic evalua-
tion, while totally excelling across topics.

Augmented BERTweet performs stronger in de-
tecting instances without inference, as demon-
strated by the substantial 9.33% F1 increase for
the Notification class with dynamic embeddings,
see upper half of Table 5. Considering that tasks
(1) and (2) are aggregations derived from the re-
sults of task (3), WRAPresentations enhances the
overall performance of task (3) for achieving the
best results, prioritizing an improvement in task (2)
while incurring a slight decrease in task (1).

This effect emerges as further refinements for
additional classification improvements can partially
overwrite the enriched representations of inference
and information in tweets, exposing unconsidered
class signals during optimization of the head.

However, examining WRAPresentations’ frozen
states, superior in closed and cross-topic validation,
underscores the advantages of our pre-classification
fine-tuning focused on semantic similarity in tweets
for enhanced classification strength, see Table 4, 5.

Supported by these cross-validated results, it
appears that WRAPresentations can establish ro-
bust inference and information-driven representa-
tions for tweet classification, owing to our multi-
task approach for systematically contrasting the
argument-constituting elements in its embedding
space, demonstrating adaptability and generaliz-
ability for all three argument mining tasks on Twit-
ter, including the difficult Statement identification.
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7 Conclusion and Ongoing Work

Our pre-classification multi-task fine-tuning ap-
proach considerably improves the specification of
embeddings of BERTweet to encode diverse mani-
festations of inference and information, especially
supporting the classification of tweets in TACO.

Enhanced by contrastive learning of semantic
similarity, BERTweet’s optimized embeddings ex-
cel a diverse range of argument mining approaches
for Twitter, showcasing superior adaptability to
class signals and cross-topic generalization.

In this regard, we can successfully contribute
WRAPresentations, a contrastively optimized em-
bedding model, and the advanced classification
model WRAP for inference and information-driven
argument mining across diverse topics on Twitter.

We also provide grounds for assuming that the
augmentation of tweets constitutes a valuable asset
within this domain of research.

Given our successful pre-classification fine-
tuning with augmented tweets showing strong im-
pact towards original tweets, we pose the two
broader questions for argument mining regarding:
(1) the necessity of using tweets for detecting
arguments on Twitter, requiring investigation of
whether tweet-like instances from other domains
alone are sufficient, and (2) whether WRAPresen-
tations or our contrastive learning approach can be
transferred to build strong classifiers for domains
other than Twitter.

Limitations

For our work, we report the following limitations:
The field of argument mining on Twitter is sub-

ject to Twitter’s strict data regulations, which allow
only the publication of tweet identifiers but not their
text. The costly Twitter API, offering only 1,500
free queries per month, complicates research repro-
ducibility and risks data loss from deleted tweets
when fetched by their identifiers. For this study,
we used the TACO dataset from our previous study,
which gave us full access to the data. Access to the
source dataset can be granted on request for non-
harmful research purposes, subject to appropriate
and mandatory data protection agreements.
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