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Abstract

We study the ability of neural and hybrid mod-
els to generalize logical reasoning patterns. We
created a series of tests for analyzing various
aspects of generalization in the context of lan-
guage and reasoning, focusing on composition-
ality and recursiveness. We used them to study
the syllogistic logic in hybrid models, where
the network assists in premise selection. We an-
alyzed feed-forward, recurrent, convolutional,
and transformer architectures. Our experiments
demonstrate that even though the models can
capture elementary aspects of the meaning of
logical terms, they learn to generalize logical
reasoning only to a limited degree.

1 Introduction

Despite the enormous successes of models based
on deep learning, we still need to know more about
how and what these models learn. The question
of fundamental importance is to what extent they
can ‘grasp’ the rules (or – more generally – the
structure) governing involved data and tasks. It
can be phrased as the problem of generalization,
i.e., the ability to perform on data unseen during
training.

Language structure is well understood from sev-
eral perspectives: grammar, semantics, or rules of
reasoning have been extensively studied and suc-
cessfully formalized. However, even in this area,
despite the available theoretical background, the
methodology for studying generalization is still
not well developed. The need for a systematic ap-
proach to this problem is indicated by a recent sur-
vey (Hupkes et al., 2023) of generalization research
in NLP.

So far, the study of neural models for tasks re-
lated to logic and reasoning is rather limited. An
early attempt is Bowman et al. (2015), where net-
works learn logical relations, such as entailment,
between pairs of sentences in a simple artificial
language. More recent work Ontanon et al. (2022)
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X1 = [Aab,Abc,Abd,Aef,Edf,Ofe,Eae]
Y1 = [ 1 0 1 1 1 0 ]

c)
X2 = [Aab,Abc,Abd,Aef,Edf,Ofe,Eab]
Y2 = [ 0 0 0 0 0 0 ]

Figure 1: a) Example of a simple knowledge base
KB = {Aab,Abc,Abd,Aef,Edf,Ofe} b) Exam-
ple of input X1 and label Y1 to build the inference
{Aab,Abd,Aef,Edf} ⊢ Eae. The input always con-
tains the whole knowledge base KB and a hypothesis H
at the end. Formulas are encoded as 1-hot vectors; the
label is a binary vector indicating the premises needed
to derive H , if it is valid, or the 0-vector, otherwise. c)
Example of input X2 and label Y2 for invalid hypothesis
Eab.

involves models that determine whether a given in-
ference can be proved from a given set of premises
by providing the list of inference rules as an output.
In Clark et al. (2021), models learn to reason with
prescribed rules, while in Schlegel et al. (2022), the
authors consider models deciding whether a given
set of sentences is consistent. It is worth mention-
ing that investigating reasoning has a sound linguis-
tic motivation. To take a straightforward example,
it is hard to argue that a model grasps the meaning
of quantifier "all" if it is not able to perform rea-
sonings of the form: "All a are b" and "All b are c"
implies "All a are c."

In this paper, we focus on logical reasoning in
the syllogistic fragment of the natural language.
The syllogistic logic has nice properties, e.g.,
soundness and completeness. Notably, the logic is
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non-trivial but still sufficiently elementary to play
the role of a benchmark for models of reasoning.

We investigate the generalization of inference
patterns in the training data and the following task.
The network, presented with a knowledge base
KB (i.e., a set of premises) and a hypothesis H
selects the premises required to construct a proof
of H from KB (if it exists); see Figure 1 for an
illustrative example. Thus, one can think of our
models as hybrid models: by selecting premises,
the network assists the prover that is supposed to
construct a proof. The paper can also be described
as a study of reasoning in the presence of multiple
premises, a research line rarely explored in deep
learning.

We are mainly interested in two aspects of gen-
eralization: recursiveness (elements can be itera-
tively combined) and compositionality (structures
are determined by their constituents). It is worth
emphasizing that they are frequently conflated even
though conceptually different. There are fully re-
cursive systems that are not compositional, the best-
known example being Tarski’s interpretation of
first-order logic; see Janssen and Partee (1997) for
a detailed discussion and more examples. There
are also fully compositional structures with lim-
ited recursiveness, e.g., Boolean operations on a
finite family of sets are compositional but can be
combined only in a finite number of ways.

In the context of reasoning, we will say that a
model processes inferences in a recursive manner if
it is capable of applying inference patterns learned
during training to more complex instances. Going
back to the previous example, if the model knows
that “All a are b” and "All b are c" implies “All
a are c,” it should also be able to conclude from
the extra piece of information “All c are d” that
“All a are d.” Compositionality means the converse
situation: provided that the model knows how to
apply an inference pattern to complex instances, it
should be able to do so for simpler ones. In other
words, the derivation of “All a are d” from “All a
are b,” “All b are c,” and “All c are d,” should be
accompanied by the derivation of “All a are c.”

In the study, we employed different types of ar-
chitectures, Multilayer Perceptron, Recurrent Neu-
ral Networks, Convolutional Neural Networks, and
Transformers, to compare their performance and
capabilities for generalization on artificially gener-
ated syllogistic corpora. On the surface of things,
the models manage to learn the assigned task al-
most perfectly (see Table 3); in particular, the gen-

eralization gap, which is a standard measure of gen-
eralization, is very low. However, the experiments
designed to verify recursive and compositional gen-
eralization reveal that neural networks—and the
hybrid models they comprise—poorly generalize,
regardless of architecture. In particular, this sheds
light on the purported superiority of the transformer
architecture. On the positive side, some evidence
for recursive generalization can be observed.

Last but not least, one of our primary goals is to
contribute to developing a methodology for inves-
tigating generalization in the context of recursive-
ness and compositionality. The approach proposed
in this paper can be exploited in other settings,
either directly related to reasoning, e.g., other frag-
ments of language and inference systems, or not,
e.g., sequence-to-sequence models studied in Hup-
kes et al. (2019) and Lake and Baroni (2023).

2 Syllogistic Logic

Pratt-Hartmann Pratt-Hartmann (2004) defines a
fragment of a natural language as a subset of that
language with an uncontroversial translation into
a formal language that reconstructs logical entail-
ment. The syllogistic fragment, first introduced
and studied by Aristotle, is the simplest non-trivial
language fragment. Aristotle considered only syllo-
gisms consisting of two premises and a conclusion.
A well-known example is “If all men are mortal
and all Greeks are men, then all Greeks are mor-
tal.” However, classical syllogistic can be easily
extended to inferences involving more than two
premises, see, e.g., Łukasiewicz (1951); Smiley
(1973). In our setting, only general names with non-
empty denotations are allowed. Thus, “Socrates is
a man” is not a syllogistic formula for us, while
“Every unicorn is an animal” implies “Some uni-
corn is an animal”.

2.1 Language

The syllogistic comprises the formulas Aab (“Ev-
ery a is b”), Eab (“No a is b”), Iab (“Some a is
b”), and Oab (“Some a is not b”). The former
two are called universal formulas since the trans-
lation to the first order logic is ∀x.[A(x) → B(x)]
and ∀x.[A(x) → ¬B(x)], respectively. And the
latter two are existential formulas represented as
∃x.[A(x)∧B(x)] and ∃x.[A(x)∧¬B(x)], respec-
tively. Note that translations of Aab and Oab are
contradictory, and so are Iab and Eae. Moreover,
existential formulas are symmetric, i.e., Iab and
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Iba have equivalent translations, and so do Eab
and Eba.

We define a language as follows: let V =
(Q, C) be a vocabulary of quantifier symbols
Q = {A,E, I,O} and constant symbols C =
{a, b, c, . . .}. Formulas are built as Axy, Exy,
Ixy, or Oxy, where x, y ∈ C, x ̸= y. In particular,
Aaa is not a formula.

There is no negation in our language; however,
we denote the “contradiction” of a formula F by
F , i.e., Aab = Oab, Oab = Aab, Iab = Eab, and
Eab = Iab.

An A-chain, denoted as Aa − b, represents ei-
ther the formula Aab or the sequence of two or
more formulas Aac1, Ac1c2, . . . , Acn−1cn, Acnb
(for n ≥ 1). Finally, a knowledge base is a finite
set of formulas or premises.

2.2 Types of syllogistic inferences

In this paper, we follow Smiley (1973). However,
we do not delve into details; in particular, we do not
specify the proof system because it does not matter
in our framework. The aforementioned translation
of syllogistic formulas into first-order logic allows
for interpreting formulas by interpreting constants
as non-empty unary predicates. This is sufficient
to define the notions of consistency and inference.
A set F of formulas is consistent if there is an
interpretation of constants that makes all formulas
in F true. A formula F is a conclusion from a set
of premises F if F ∪{F} is inconsistent. We write
F ⊢ F for the inference formed by premises F
and conclusion F . Given a knowledge base KB, a
hypothesis H is valid if KB ⊢ H , otherwise H is
invalid.

In the paper, we are interested in minimal
inferences, i.e., inferences F ⊢ F such that
F ′ ̸⊢ F for any proper subset F ′ ⊂ F . For
example, {Abc,Abd} ⊢ Icd is minimal, while
{Aab,Abc,Abd} ⊢ Icd is not because Aab is not
needed to infer the conclusion. Minimal inferences
correspond to antilogisms, i.e., minimal inconsis-
tent sets of syllogistic formulas.

Theorem 1 (Smiley (1973)). Every antilogism is of
the following form {Aa− b,Oab}, {Aa− b, Aa−
c, Ebc}, or {Aa− b, Ac− d, Iac (or Ica), Ebd}.

Theorem 2 (Smiley (1973)). Let F be a formula
and F be a set of formulas. F ∪ {F} is an antilo-
gism if and only if F ⊢ F , and F ⊢ F is minimal.

All minimal syllogistic inference types can be
easily recovered from the above theorems. The fi-

(1) {Aa− b, Ac− d,Oad} ⊢ Obc
(2) {Aa− b} ⊢ Aab
(3) {Aa− b, Ac− d,Aa− e, Ede} ⊢ Obc
(4) {Aa− b, Aa− c} ⊢ Ibc
(5) {Aa− b, Ac− d,Ae− f, Iae, Edf} ⊢ Obc
(6) {Aa− b, Ac− d,Ebd} ⊢ Eac
(7) {Aa− b, Ac− d, Iac} ⊢ Ibd

Table 1: List of all types of syllogistic inferences
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Figure 2: Diagrams illustrating examples of types of
syllogistic inferences (dashed lines represent conclu-
sions) a) Type (1) {Aa − b, Ac − d,Oad} ⊢ Obc b)
Type (6) {Aa − b, Ac − d,Ebd} ⊢ Eac c) Type (5)
{Aa− b, Ac− d,Ae− f, Iae, Edf} ⊢ Obc

nal list is presented in Table 1 (see A.1 for more de-
tails). To cover all syllogisms, symmetric formulas
need to be used interchangeably, e.g., Ixy = Iyx;
formulas of the form Aaa are disregarded.

To give the reader a better idea of what syllo-
gistic inferences look like, we present in Figure 2
diagrams illustrating some of them.

We say that an inference F ⊢ F can be decom-
posed into inferences F1 ⊢ F1, F2 ∪ {F1} ⊢ F ,
if F = F1∪̇F2, i.e., the premises can be split
into two disjoint subsets F1 and F2 so that F1

forms premises of the first inference, and F2, to-
gether with the conclusion F1 from F1, forms the
premises of the second one. The main observation
here is that every inference can be decomposed into
an inference with all A-chains of length 1 and an
inference of type 2 (see Table 1). Other decompo-
sitions, discussed in 4.2, are also possible for some
inference types.
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3 Synthetic Data and Neural Models

In order to avoid problems related to the choice of
premises needed to infer a given hypothesis, we
used only non-redundant knowledge bases, i.e.,
knowledge bases such that for every valid hypothe-
sis, there is a unique minimal set of premises that
proves it.

We represent a knowledge base as a graph where
vertices are constants and edges denote quantifiers
(see Figure 1a). All A-formulas are a set of m dis-
joint trees T1, . . . , Tm (or a forest). Each tree is
a directed graph Ti = (V,E) such that there is at
most one path between any two vertices. We cre-
ated synthetic consistent non-redundant knowledge
bases KB for training and testing the neural models
using the following general algorithm:

1. Randomly generate a forest where each ver-
tice corresponds to a constant and every di-
rected path between two vertices corresponds
to an A-chain.

2. For every pair of (different) trees (Ti, Tj):

Add one E-formula and one I-formula be-
tween Ti and Tj .

3. For each tree Ti:

Add O-formulas within Ti.

We randomly add formulas (steps 2. and 3.) such
that there is no redundancy and the set KB remains
consistent.

For every experiment we generated a con-
sistent non-redundant knowledge base KB =
{P1, . . . Pn} of n premises. We trained neural mod-
els using a multi-label approach and supervised
learning techniques. Each element of the dataset
consists of an input X associated with a label Y .
The input vector X encodes the knowledge base
KB and a hypothesis H . For a valid H , the label Y
is a binary vector of size n that tags all the neces-
sary premises to derive H by assigning 1 to every
Yi if KB \ {Pi} ̸⊢ H and 0, otherwise. For invalid
H , Y is the zero vector.

We stratify the training/test split by types of in-
ferences, for every valid type we train 75% and
test on the remaining 25%. For invalid hypotheses,
we only train 20%, since they make up more than
80% of the data (see Table 2 for distribution of hy-
potheses). In some experiments, the stratification
somewhat differs (i.e., when we remove an infer-
ence type from the training data), but, in general,
we stick to the above stratification principles.

We used one-hot encodings to produce input vec-
tors. Each constant and quantifier are represented
as a one-hot vector of dimension d (where d is the
size of the vocabulary). We also tested word em-
beddings to encode knowledge bases, but one-hot
encodings give better performance (see A.2).

4 Experiments and Results

The data and scripts to run these experiments are
available online1. We randomly generated 5 consis-
tent knowledge bases. Each of them consists of 4
trees, 66 constants, and 78 formulas. We made sure
that no valid hypothesis gave rise to the same label
in two different knowledge bases. In the following
experiments, we trained 4 different architectures
of neural models: Multilayer Perceptron (MLP),
Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), and Transformers (TRA)
(as a matter of fact, we also considered some vari-
ants of these architectures, e.g., LSTM or GRU, but
the results were very similar). We employed grid-
search techniques to optimize the configurations
for overall performance. The detailed description
of optimization procedures and final specifications
can be found in A.3. We trained each knowledge
base for 3 runs.

Being part of a hybrid model, networks are sup-
posed to provide premises for the prover. Therefore,
beside the standard measure of accuracy (correct
label), we consider another one: an output is cor-
rect if it involves all the necessary premises, i.e.,
it is a correct but not necessarily minimal (NNM)
inference.

4.1 Overall Performance

In the first experiment, we checked the overall ac-
curacy of the models for the split described in 3.
The results are shown in Table 3 (more details in
A.4). Clearly, the numbers are high enough to ex-
clude a large generalization gap (see, e.g., Hoffer
et al. (2017)), i.e., a substantial difference in per-
formance on the training and on the test data (see
A.5 for exact values). A large generalization gap
would indicate that the model excessively memo-
rizes (overfits) training data. However, as the next
experiments show, the generalization gap is not a
good measure of compositional and recursive gen-
eralization.

We also verified how the models generalize ba-
sic non-compositional and non-recursive features

1https://github.com/manuel-vg/syllogistic-logic
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Type 1 2 3 4 5 6 7 Valid Invalid All
# Inf. 124 334 519 1026 157 245 622 3027 14133 17160

Table 2: Data distribution of the 5 knowledge bases used for training (mean # of inferences by type and validity)

Model Inf. Best Mean SD NNM

MLP
Val. 93.9 83.2 13.1 88.9
Inv. 97.1 94.2 2.5 –
All 96.6 93.5 3.1 –

RNN
Val. 95.9 93.5 1.3 95.3
Inv. 98.3 97.7 0.5 –
All 98.0 97.4 0.4 –

CNN
Val. 94.3 92.0 1.3 94.4
Inv. 97.3 96.7 0.3 –
All 96.9 96.4 0.2 –

TRA
Val. 96.6 93.6 2.9 95.7
Inv. 97.8 96.3 1.3 –
All 97.7 96.1 1.3 –

Table 3: Overall accuracy: best, mean, standard devia-
tion (SD), mean accuracy for not-necessarily-minimal
correct inferences (NNM), for valid (Val.), invalid (Inv.),
and all hypotheses, respectively (see 4.1)

of the syllogistic logic: Principle of Contradiction
(either H or H is invalid), non-empty denotations
of constants (if Aab is valid, then Iab is valid), as
well as the symmetry of formulas Iab and Eab.
The level of generalization is very high (see A.7).
It suggests that the models learned at least elemen-
tary aspects of the meaning of involved terms (see
Discussion).

4.2 Compositionality
Unseen Short Lengths. We define the length of
inference as the total length of all A-chains, i.e.,
the number of A-formulas among the premises. To
perform the unseen lengths experiments, for the
training data, we removed inferences either with
short or with long lengths, the length depending
on inference type (this is because maximal lengths
µ(t) represented in the knowledge base depend
on inference type t). Then we test only on the
eliminated inferences.

In this experiment, we removed inferences of
length 5 and less. Accuracies calculated for ev-
ery unseen length separately are shown in Figure
3 (the left plot). A sharp and consistent drop in
performance can be observed, depending on how
far the tested length is from the lengths present in
the training data.

We interpret these results as a clear sign of a lack

of compositionality. The models are able to per-
form well on the longer inferences without being
able to perform on shorter ones, even though the
latter form parts of the former. To take a simple
inference of type 2 as an example, if the model
is able to conclude from Aab, Abc, Acd that Aad
but not that Aac, it means that this inference is not
compositional.

Removing an inference type. For this experi-
ment, we proceeded to split the training/test dataset
in a way similar to that described in 3, the only dif-
ference being that an entire type of inference is re-
moved from the training dataset. We then checked
the performance by testing on each type separately.
Table 4 presents the results (mean accuracy) of tests
on the removed type, which are most relevant from
our perspective.

The first observation is that the categorization of
the data based on inference types is not spurious.
The models are essentially incapable of finding in-
ferences of types that are not present in the training
data. On the other hand, these results confirm our
conclusion from the experiment on short unseen
lengths: the models do not use compositional infer-
ences.

Compositional inferences presuppose recogniz-
ing the inferential structures of its parts. It has been
noted in 2.2 that an inference of every type can
be decomposed into two inferences, one of which
is of type 2. There are other possible decomposi-
tions. For example, an inference of type 5 requires
knowledge that Iea and Aa − b imply Ieb, i.e.,
it can be decomposed into two inferences, one of
which is of type 7. There are similar relationships
between type 5 and type 6, or type 3 and types 6
and 7. Therefore removing a type from the training
data would not completely annihilate performance
on this type for a model that processes inferences
in a compositional manner.

The only exception is type 3, on which all the
architectures exhibit non-zero performance after
removing it from the training data. However, this
can be explained by the models’ grasping the non-
empty denotations of constants (i.e., that Aab im-
plies Iab). With the aid of this generalization, type
3 can be derived from type 5. Indeed, after remov-
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Model 1 2 3 4 5 6 7
MLP 0.0 0.0 7.1 0.1 0.0 0.0 0.0
RNN 0.0 0.0 18.5 0.6 0.0 0.0 0.0
CNN 0.0 0.0 7.0 0.3 0.0 0.0 0.0
TRA 0.0 0.0 13.2 2.5 0.1 0.0 0.0

Table 4: Mean accuracy for testing on a type that was removed from the training data

Figure 3: Performance on unseen lengths for short in-
ferences (left) and long inferences (right). The models
are trained on inferences of length more than 5 (left) or
less than µ(t) − 4 (right), where µ(t) is the maximal
length for type t. Then they are tested on the lengths
removed from training. The plots show accuracies for
each removed length separately.

Figure 4: Unseen lengths for short inferences (left) and
long inferences (right) without type 2 for test.

ing additional type 5, the performance of type 3
drops to zero.

4.3 Recursiveness

Unseen Long Lengths. This experiment is simi-
lar to the experiment on unseen short lengths but
with the longest inferences removed from the train-
ing data. The results for inferences of length more
than µ(t)− 5 removed (i.e., the 5 longest lengths
for each type), and accuracies calculated for ev-
ery unseen length separately are shown in Figure 3.
Again, we can see a very clear drop in performance,
depending on the distance of the length from the
lengths seen in training. It means that the mod-
els are not able to perform inferences much longer
than those used for training. As a matter of fact,

Figure 5: Performance on unseen lengths for short infer-
ences (left) and long inferences (right), except for type
2. The experiments are as in Figure 4, but with all the
lengths for type 2 inferences used in training (see 4.3
for details).

for inferences longer only by 1, the accuracy is still
high.

Clearly, every inference type has a recursive
structure: longer inferences can be constructed
from shorter ones by extending the involved A-
chains. This kind of recursiveness, consisting of
the iterative application of a rule, is termed in Hup-
kes et al. (2019) as productivity. Thus, we can
interpret the results of this experiment as a sign
of a lack of productivity. On the other hand, the
results, when only inferences of maximal length
are removed, indicate that some local extrapolation
takes place.

Unseen Lengths except for type 2. In these two
experiments, we removed from the training data
either the shortest or the longest inferences, except
for inferences of type 2. These are selected without
any restrictions on the length (but not included in
the test data). The results are presented in Figure 5.

The performance drops, but the change is smaller
as compared to the experiments on unseen lengths
described above and in 4.2 (see Figure 4 for com-
parison). This is particularly evident for TRAs,
e.g., for short unseen lengths 1,2,3, the difference
is 16.6, 18.4 and 15.2, respectively. For long un-
seen lengths, the corresponding values are 5, 14.4
and 18.7. Interestingly, RNNs and CNNs do not
seem to considerably benefit from extra training
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Model Best Mean SD
MLP 0.0 0.0 0.0
RNN 0.0 0.0 0.0
CNN 0.0 0.0 0.0
TRA 0.0 0.0 0.0

Table 5: Unseen combinations of premises

data. A more detailed discussion of the general
performance of the architectures will be carried out
in a separate section.

We interpret these results as a sign of some ca-
pabilities of the models to combine inferences, i.e.,
as evidence for some level of recursiveness. As
it was pointed out in the introduction, composi-
tionality and recursiveness are distinct categories
of language and language processing, so our find-
ings from this and the previous section, indicating
a lack of compositionality and some presence of
recursiveness, are not contradictory.

Unseen combinations of premises. In this ex-
periment, we select a set ∆ of formulas forming
an A-chain from the knowledge base, remove from
the training data inferences F ⊢ F such that

|F ∩ ∆| > 1,

and test on the removed inferences. In other words,
during training, the models do not see inferences
that combine two or more premises from ∆. This
aspect of generalization is termed systematicity in
Hupkes et al. (2019).

For n ∈ {2, 4, 6, 8}, we randomly selected an A-
chain ∆ of length n, and performed the experiment.
The results presented in Table 5 (mean for all values
of n) are rather extreme: all architectures exhibited
zero accuracy. Apparently, in order for the models
to be able to employ a combination of premises in
an inference, the premises need to be seen together
in some inference during training. It is true even of
the simplest inferences like {Aab,Abc} ⊢ Aac.

4.4 Testing on a new knowledge base

In the last experiments, we went beyond the general
framework of the study. We substantially increased
the distance between the training and the test data,
employing a new knowledge base for testing. We
selected 3 bases with no overlapping labels for a
given hypothesis and repeated the experiment 6
times for every combination of the base used for
training and for testing.

Model Inf. Best Mean SD

MLP
Val. 0.1 0.0 0.0
Inv. 67.5 63.3 2.3
All 55.2 51.8 1.9

RNN
Val. 0.0 0.0 0.0
Inv. 30.1 11.2 6.6
All 24.5 9.2 5.4

CNN
Val. 0.0 0.0 0.0
Inv. 100.0 95.3 6.6
All 81.7 78.0 5.4

TRA
Val. 0.0 0.0 0.0
Inv. 83.1 81.9 0.7
All 67.9 67.1 0.6

Table 6: Overall accuracy for tests on new knowledge
bases

The results in Table 6 show that in this setting,
the models generalize poorly. In particular, the
accuracy on valid hypotheses is always zero. A
more detailed analysis of the results reveals (see
A.6) that some architectures learn to ignore the
knowledge base part of the input and, regardless of
the test data, produce labels that correspond to the
base used for training. This is true of TRAs, and,
to a lesser extent, of CNNs and MLPs. However,
RNNs do not memorize in this way.

On the other hand, CNNs exhibit almost perfect
performance (mean: 95.3%) on invalid hypotheses,
and this behavior cannot be explained by memo-
rization: 16% (i.e., around 2300) of the hypotheses
that are invalid in the new knowledge base are valid
in the old one (see Table 7). The task of deciding
if a hypothesis H is invalid for a knowledge base
KB amounts to deciding if the set KB ∪ {H} is
consistent. Thus, CNNs learned to recognize con-
sistency of sets of syllogistic formulas far beyond
the training setup. All other architectures obtained
zero accuracy on this task.

Finally, we tested the generalization of basic fea-
tures of the syllogistic logic as in 4.1. The results
show almost perfect performance for CNNs and
TRAs (see A.7 for details). Interestingly, RNNs ex-
hibit a low level of generalization of the Principle
of Contradiction.

4.5 Comparison of architectures
TRAs do not substantially outperform other archi-
tectures. This stands in contrast to presuppositions
(see, e.g., Smolensky et al. (2022)) that it is trans-
formers’ ability to process data in a compositional
manner that explains their successes in real-world
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applications. They do perform better on tests re-
lated to recursiveness but are below average on our
compositionality tests. More importantly, we never
see qualitative superiority, e.g., tasks on which only
TRAs attain non-zero performance.

RNNs struggle when tested on a new knowledge
base. It is the only architecture that does not gen-
eralize the Principle of Contradiction. Moreover,
RNNs’ limited memorization indicates that they
process data differently. CNNs’ almost perfect per-
formance on invalid hypotheses hints that they may
have some interesting distinctive features deserving
of further studies.

MLPs, unsurprisingly, lag behind, but they are
not so much worse. Thus, if understood as a bench-
mark architecture, their performance indicates that
in terms of capabilities for compositional and recur-
sive aspects of language processing, all the known
deep-learning designs are basically on par – at least
when employing standard training regimes.

5 Discussion

The paper’s main contributions are two-fold:
methodological and experimental.

Studies of logical reasoning in neural networks
usually consider much simpler toy logic examples,
often not even fully recursive, than the experimen-
tal setup offered in this paper, cf. Bowman et al.
(2015). On the other hand, articles focusing on var-
ious aspects of generalizations, like composition-
ality, systematicity, or recursiveness, often adopt
empirical frameworks less straightforwardly linked
to reasoning and semantics, cf. Hupkes et al. (2019)
or Lake and Baroni (2023). Moreover, many pa-
pers do not distinguish between recursiveness and
compositionality. For example, in Lake and Ba-
roni (2023), a sequence-to-sequence model’s per-
formance on unseen combinations of functions is
tested (see Fig. 2 in the paper); however, it is not
verified whether the model can correctly process
corresponding sub-combinations, which is a nec-
essary condition for compositionality. Similarly,
in Clark et al. (2021), the authors investigate the
generalization of certain rule-based reasonings to
patterns longer than those seen in training (see Ta-
ble 1). But they do not take into consideration their
internal structure, either.

The current paper proposes solving these prob-
lems by a systematic study of reasoning in a natu-
ral language fragment Pratt-Hartmann (2004). Our
experiments show that even though the neural net-

work models can grasp some elementary aspects of
syllogistic reasoning, they cannot learn the logic’s
fully recursive and compositional nature. They
manifest various aspects of the meaning of in-
volved terms, e.g., the Principle of Contradiction,
non-emptiness of denotations, or the symmetry of
quantifiers. They also exhibit some ability to com-
bine inferences into more complex ones, which
agrees with findings, e.g., from Lake and Baroni
(2023). At the same time, they do not assimilate
the recursive structure of inferences, so high perfor-
mance on shorter inferences of a given type does
not translate to high performance on longer ones
(see Schlegel et al. (2022) for similar results for
the task of recognizing consistency of a set of for-
mulas). Moreover, the networks do not pass the
compositionality test: they appear to apprehend
complex inferences without apprehending the con-
stituent subinferences. From the semantical per-
spective, this shows that the models do not under-
stand the meanings of syllogistic formulas because,
ultimately, it is their meanings that determine the
structure of syllogistic inferences.
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5.2 Limitations
The syllogistic form is only a small fragment of
the natural language, so our findings are not con-
clusive with regard to aspects of logical reasoning
that are not present in syllogistic logic. Moreover,
the choice of encodings and the synthetic data con-
structed for the sake of experiments conducted in
the study further increase the distance of our set-up
from natural language reasoning.

Another limitation is related to the training
regimes employed. Other methods of training neu-
ral networks may allow for a higher level of com-
positional and recursive generalization.
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Model Inf. % Best Mean SD

MLP
Val. 16 0.8 0.4 0.2
Inv. 84 80.0 75.4 2.6

RNN
Val. 16 0.2 0.0 0.0
Inv. 84 35.7 13.4 7.8

CNN
Val. 16 100.0 88.7 11.5
Inv. 84 100.0 96.6 6.1

TRA
Val. 16 1.6 0.8 0.3
Inv. 84 98.4 97.5 0.6

Table 7: Split accuracy for tests on invalid hypotheses
in a new knowledge base (KB): 16% (appr. 2500) of
hypotheses that are invalid in the new KB were valid in
the KB used for training.
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A Appendix

A.1 Construction of inferences

We derived all possible syllogisms from Theorems
1 and 2 as follows: for each antilogism of the form
F ∪ F , we consider all possible values that F can
have to construct a valid syllogism of the form
F ⊢ F . Table 18 summarizes this process for ev-
ery form of antilogism described in Theorem 1.
Note that from the third form, i.e., {Aa− b, Ac−
d, Iac, Ebd} and {Aa− b, Ac− d, Ica,Ebd}, we
only describe the former, since the latter is equiva-
lent but with swapping variables. After renaming
variables and removing equivalent syllogisms, the
list from Table 18 boils down to 7 types of valid
inferences presented in Table 1.

A.2 Types of encodings

We experimented with one-hot and word embed-
dings to encode syllogistic formulas. We picked the
former because it achieves higher accuracy within
our framework. To see a comparison between one-
hot encoding and word embeddings, we trained a
single knowledge base using both techniques, we
then tested the overall accuracy for valid hypothe-
ses. The results for each architecture are shown
in Figure 8. There is a significant difference in
MLPs and TRAs. RNNs did a much better work
and CNNs seem to be able to handle both types of
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Model Enc. Best Mean SD

MLP
1-hot 82.8 82.4 0.3
emb. 65.5 54.9 9.5

RNN
1-hot 86.2 85.6 0.6
emb. 74.9 74.4 0.4

CNN
1-hot 86.0 85.4 0.8
emb. 84.4 83.4 0.7

TRA
1-hot 93.7 91.9 2.1
emb. 65.6 61.0 5.5

Table 8: Comparison between 1-hot encodings and word
embeddings using a single knowledge base and the same
configuration for each architecture (accuracy for valid
hypotheses)

encoding quite well. For word embeddings, increas-
ing the number of heads in the TRA architecture
also increases the accuracy. But still, they cannot
outperform one-hot representations.

A.3 Neural models specification

We built our models using the TensorFlow library
and Python as a programming language. The gradi-
ent descent method we used is the Adam optimiza-
tion algorithm (for MLP, CNN, and TRA) and its
variant Adamax (for RNN) with a learning rate of
0.001. The number of epochs performed is 350
for transformers and 250 for the rest, and the batch
size for all architectures is 20. The configuration of
layers used for each model is detailed in Table 9.

We performed our experiments using a GPU-
A100. The time for training a model varies for
each architecture and each experiment. A single
run, on average, for MLPs, CNNs, and TRAs takes
between 10 and 20 minutes, whereas for RNNs, it
takes around 60 minutes.

The number of neurons, layers, and other essen-
tial hyperparameters were optimized using grid-
searching techniques. Our aim was achieve an op-
timal performance for the overall accuracy test, in
particular for valid inferences. We obtained above
90% of correct predictions for valid and invalid
inferences using mostly default parameters and
keeping the models with simple and general spec-
ifications as much as possible. Nevertheless, we
experimented with increasing the number of layers
and units or tweaking other parameters such as the
learning rate, however without seeing any signif-
icant improvements. In particular, adding more
layers to RNNs led to the vanishing gradient prob-
lem. For CNNs, we also tried different configura-
tions regarding the number of filters, and the sizes

of kernels and poolings. Finally, for transform-
ers, we set up an encoder-only model by mainly
changing the number of attention layers and atten-
tion heads. We chose this type of model since our
approach can be seen as a text classification task.
However, for completeness, we also experimented
with encoder-decoder and decoder-only transform-
ers with unsuccessful results.

We also experimented with LSTM and GRU re-
current models. However, the performance was not
superior to RNNs, so we decided to stick with the
latter. Last but not least, we tried fine-tuning tech-
niques and trained our data on pre-trained models
Devlin et al. (2018) but with no success. This type
of encoding could not take apart the hypothesis
from the knowledge base and the dense vectors the
model produced were extremely similar to each
other. As a result, there was no learning at all. We
solved this problem by encoding the knowledge
base and the hypothesis independently, but even
then, the models were not able to outperform the
other architectures.

A.4 Overall accuracy by types of inference

We present the detailed results from the experiment
described in 4.1. Tables 10, 11, 12, and 13 show the
overall performance results by types of inference
for MLPs, RNNs, CNNs, and TRAs, respectively.
The NNM column is the mean percentage of the
model’s output when taking into account all cor-
rect predictions, i.e., correct inferences that are not
necessarily minimal. Moreover, in the last column,
we present the average Hamming distance (HD)
between the correct NNM predictions and the la-
bels (the correct answer), i.e., the average number
of premises that are not needed. Note that for all
architectures, this value is smaller than 2, which
means that models (on average) do not select too
many unneeded premises whenever they get the
needed ones.

A.5 Generalization gap

We test on the training data for all architectures to
check the generalization gap, i.e., the difference in
performance on training versus test data. It can be
seen from Table 14 that in this sense the models
generalize very well (compare it with Table 3).

A.6 Permutation test

For this test, we train a model on a knowledge
base KB1, and test it on a new knowledge base
KB2. However, we count an output as correct if
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Model Layers
MLP 1 Dense layer with 2500 units and tanh activation
RNN 2 SimpleRNN layers with 250 units and tanh activation

CNN
1 Conv1D layer with 512 filters, a kernel of size 5, and relu activation
1 MaxPooling1D layer with a pool size of 3

TRA

1 Embedding layer (to learn the positions of constants and quantifiers)
1 Encoder self-attention layer:

1 MultiHeadAttention layer with 2 heads
1 Feed-forward network (3 hidden Dense layers with 32 units and relu activation)

1 Dense layer with 250 units and tanh activation

Table 9: Layers used in all architectures

Inf. Best Mean SD NNM HD
1 80.6 46.8 17.9 55.5 1.2
2 92.0 80.9 13.2 83.3 1.1
3 99.2 89.6 8.1 92.9 1.0
4 93.0 78.9 15.9 88.7 1.1
5 100.0 95.0 8.3 96.8 1.0
6 100.0 89.5 11.2 90.0 1.0
7 99.4 88.1 15.4 93.4 1.0

Val. 93.9 83.2 13.1 88.9 1.1
Inv. 97.1 94.2 2.5 – –
All 96.6 93.5 3.1 – –

Table 10: Overall accuracy for MLP

Inf. Best Mean SD NNM HD
1 77.8 58.6 9.7 60.7 1.0
2 96.5 92.1 3.6 92.8 1.2
3 99.3 96.6 1.8 96.9 1.0
4 96.1 92.0 2.2 96.1 1.1
5 100.0 99.5 1.2 99.5 0.0
6 100.0 97.7 2.0 97.7 0.0
7 99.4 97.9 1.1 98.9 1.0

Val. 95.9 93.5 1.3 95.3 1.1
Inv. 98.3 97.7 0.5 – –
All 98.0 97.4 0.4 – –

Table 11: Overall accuracy for RNN

Inf. Best Mean SD NNM HD
1 78.4 58.3 11.3 64.3 1.7
2 96.6 92.5 2.5 93.1 1.2
3 96.4 92.3 3.4 92.5 1.0
4 93.0 90.6 1.4 96.2 1.1
5 100.0 97.9 2.9 98.4 1.0
6 100.0 93.3 5.8 93.3 0.0
7 100.0 98.3 1.3 99.0 1.0

Val. 94.3 92.0 1.3 94.4 1.2
Inv. 97.3 96.7 0.3 – –
All 96.9 96.4 0.2 – –

Table 12: Overall accuracy for CNN

Inf. Best Mean SD NNM HD
1 74.1 62.8 8.4 72.1 1.4
2 96.5 90.8 3.6 92.9 1.0
3 96.4 92.6 2.8 94.8 1.3
4 99.6 96.1 3.7 97.9 1.0
5 100.0 94.3 5.2 97.0 1.0
6 100.0 98.6 2.3 99.3 1.0
7 98.8 96.0 3.1 97.5 1.0

Val. 96.6 93.6 2.9 95.7 1.1
Inv. 97.8 96.3 1.3 – –
All 97.7 96.1 1.3 – –

Table 13: Overall accuracy for TRA
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Model Inf. Best Mean SD

MLP
Val. 98.9 90.5 10.1
Inv. 99.6 98.4 1.3
All 99.3 95.2 4.6

RNN
Val. 99.5 99.0 0.3
Inv. 99.9 99.7 0.1
All 99.6 99.4 0.1

CNN
Val. 99.4 98.8 0.3
Inv. 99.8 99.7 0.1
All 99.6 99.3 0.1

TRA
Val. 99.4 97.8 2.1
Inv. 99.9 99.3 0.8
All 99.6 98.7 1.2

Table 14: Test on the same data used for training

Model Inf. Best Mean SD

MLP
Val. 66.2 61.0 3.7
Inv. 77.4 72.7 2.7
All 75.1 70.6 2.9

RNN
Val. 14.3 4.3 3.1
Inv. 30.6 11.4 6.7
All 27.6 10.1 6.0

CNN
Val. 73.2 68.4 8.2
Inv. 84.3 81.0 5.0
All 82.2 78.7 5.6

TRA
Val. 98.3 97.4 0.6
Inv. 98.0 97.4 0.5
All 98.0 97.4 0.4

Table 15: Permutation test on new knowledge bases

it is correct for KB1. High performance on this
test indicates that the model memorized the train-
ing base KB1, and ignores the part of the input
corresponding to KB2.

We selected 3 knowledge bases and performed 6
tests, i.e., trained models were tested on the other
2 knowledge bases. Table 15 shows the accura-
cies calculated in the way described above. TRAs
memorize the training base almost perfectly, while
RNNs do not memorize in this way.

A.7 Principle of Contradiction, non-emptiness
of denotations, symmetry

For these tests, we search the output for the
following pairs of hypotheses: (1) {H,H};
(2) {Aab, Iab}; (3) {Iab, Iba} and {Eab,Eba}.
Then we calculate the percentage of pairs that
confirm (1) Principle of Contradiction (2) Non-
emptyness of denotations (i.e., Aab implies Iab),
and (3) symmetry of formulas Iab, Eab. The re-

Model Pair Highest Mean SD

MLP
(1) 94.8 92.9 1.1
(2) 100.0 100.0 0.1
(3) 93.6 92.3 0.7

RNN
(1) 75.7 59.8 5.6
(2) 100.0 100.0 0.0
(3) 98.3 94.2 1.9

CNN
(1) 100.0 99.3 1.5
(2) 100.0 99.7 0.4
(3) 100.0 98.5 1.4

TRA
(1) 99.9 99.7 0.2
(2) 100.0 99.8 0.2
(3) 99.8 99.6 0.2

Table 16: Pairs on new KBs. (1) valid/invalid {H,H},
(2) valid/valid {Aab, Iab}, (3) valid/valid {Iab, Iba},
{Eab,Eba}

Model Pair Highest Mean SD

MLP
(1) 99.8 99.4 0.3
(2) 100.0 99.9 0.1
(3) 98.5 97.6 0.8

RNN
(1) 99.9 99.9 0.0
(2) 100.0 100.0 0.0
(3) 99.7 99.2 0.2

CNN
(1) 99.7 99.7 0.1
(2) 100.0 100.0 0.0
(3) 99.1 98.9 0.2

TRA
(1) 100.0 99.8 0.2
(2) 100.0 99.7 0.1
(3) 99.8 99.4 0.5

Table 17: Pairs on test data. (1) valid/invalid {H,H},
(2) valid/valid {Aab, Iab}, (3) valid/valid {Iab, Iba},
{Eab,Eba}

sults are shown in Table 16 for tests on a new knowl-
edge base, and Table 17 for tests on the same knowl-
edge base (i.e., its own test dataset). Apparently,
RNNs poorly generalize Principle of Contradiction
on a new knowledge base.
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F ∪ {F} F F ⊢ F

{Aa− b,Oab}

Aab {Oab} ⊢ Oab
Aax1 {Ax1 − b,Oab} ⊢ Oax1
Axixi+1

(1) {Aa− xi, Axi+1 − b,Oab} ⊢ Oxixi+1

Axmb {Aa− xm, Oab} ⊢ Oxmb
Oab {Aa− b} ⊢ Aab

{Aa− b, Aa− c, Ebc}

Aab {Aa− c, Ebc} ⊢ Oab
Aac {Aa− b, Ebc} ⊢ Oac
Aax1 {Ax1 − b, Aa− c, Ebc} ⊢ Oax1
Aay1 {Aa− b, Ay1 − c, Ebc} ⊢ Oay1
Axixi+1

(1) {Aa− xi, Axi+1 − b, Aa− c, Ebc} ⊢ Oxixi+1

Ayiyi+1
(2) {Aa− b, Aa− yi, Ayi+1 − c, Ebc} ⊢ Oyiyi+1

Axmb {Aa− xm, Aa− c, Ebc} ⊢ Oxmb
Aync {Aa− b, Aa− yn, Ebc} ⊢ Oync
Ebc {Aa− b, Aa− c} ⊢ Ibc

{Aa− b, Ac− d, Iac, Ebd}

Aab {Ac− d, Iac, Ebd} ⊢ Oab
Acd {Aa− b, Iac, Ebd} ⊢ Ocd
Aax1 {Ax1 − b, Ac− d, Iac, Ebd} ⊢ Oax1
Acy1 {Aa− b, Ay1 − d, Iac, Ebd} ⊢ Ocy1
Axixi+1

(1) {Aa− xi, Axi+1 − b, Ac− d, Iac, Ebd} ⊢ Oxixi+1

Ayiyi+1
(2) {Aa− b, Ac− yi, Ayi+1 − d, Iac, Ebd} ⊢ Oyiyi+1

Axmb {Aa− xm, Ac− d, Iac, Ebd} ⊢ Oxmb
Aynd {Aa− b, Ac− yn, Iac, Ebd} ⊢ Oynd
Iac {Aa− b, Ac− d,Ebd} ⊢ Eac
Ebd {Aa− b, Ac− d, Iac} ⊢ Ibd

(1)∀i.1 ≤ i < m (2)∀i.1 ≤ i < n

Table 18: Construction of inferences
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