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Abstract
Personalization of search results has gained in-
creasing attention in the past few years, also
thanks to the development of Neural Networks-
based approaches for Information Retrieval.
Recent works have proposed to build user mod-
els at query time by leveraging the Attention
mechanism, which allows weighing the con-
tribution of the user-related information w.r.t.
the current query. This approach allows giving
more importance to the user’s interests related
to the current search performed by the user.
In this paper, we discuss some shortcomings
of the Attention mechanism when employed
for personalization and introduce a novel Atten-
tion variant, the Denoising Attention, to solve
them. Denoising Attention adopts a robust nor-
malization scheme and introduces a filtering
mechanism to better discern among the user-
related data those helpful for personalization.
Experimental evaluation shows improvements
in MAP, MRR, and NDCG above 15% w.r.t.
other Attention variants at the state-of-the-art.

1 Introduction

The past few years have witnessed an increasing
interest in Neural models for tackling various tasks
of Information Retrieval (Guo et al., 2020; Kasela
et al., 2024), among which Personalized Search.
Two of the main challenges of Personalized Search
are how and when personalization should take place.
First, not all the data gathered to represent specific
users’ preferences are equally related to each of
the users’ queries, as users usually have multiple
and diverse interests. Second, personalization is
not always beneficial to the retrieval process (Tee-
van et al., 2008) as it could cause the information
need expressed by the user to be misinterpreted
by the system, thus decreasing effectiveness. A re-
cent trend in Personalized Search (Lu et al., 2020;
Zhou et al., 2020b) is query-aware user modeling,
which consists in building a representation of the
user preferences, i.e., the user model, at query time,

based on various sources of user interests and by
giving more importance to those related to the cur-
rent search performed by the user. Since a user is
typically interested in different and even unrelated
topics, a desirable property for defining reliable
personalization models is the ability to discern be-
tween beneficial and noisy user-related information
on a query basis. Previous works in this context re-
lied on the Attention mechanism (Bahdanau et al.,
2015) to weigh the contribution of distinct sources
of user-related information on a query basis. De-
spite the increasing use of the Attention mechanism
in user modeling, there is still a lack of an in-depth
analysis of its effects on personalization, as well as
a comparison with simpler operators in this context.

In this paper, we first describe and analyze the
Attention mechanism when used for query-aware
user modeling, by highlighting some shortcomings
related to its use of the Softmax function (Sec-
tion 3). To overcome these limitations, in Section
4, we propose the Denoising Attention mechanism,
an Attention variant designed to filter out noisy
user-related information and produce a balanced
representation of the user interests w.r.t. the current
search. In Section 5, we introduce the task of Per-
sonalized Results Re-Ranking and the framework
we employed in our experimental evaluation. Then,
we present the research questions we addressed
and describe the experimental setup (Section 6).
Finally, in Section 7, we compare the Denoising
Attention with other Attention variants at the state-
of-the-art, evaluating both their effectiveness and
their robustness. Results clearly show the advan-
tages of Denoising Attention and the importance
of the filtering mechanism it implements. We share
all the code to reproduce the experimental evalua-
tion, and we make available the implementation of
Denoising Attention for future works. 1

1www.github.com/AmenRa/denoising-attention
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2 Related Work

Personalization of search results has received con-
siderable attention from both academia and indus-
try. The definition of user models is the core issue
in Personalized Search. Early user modeling ap-
proaches relied on click-based features (Bennett
et al., 2012; Dou et al., 2007; Teevan et al., 2008,
2011), content-based features (Matthijs and Radlin-
ski, 2011; Teevan et al., 2008), social network
analysis (Carmel et al., 2009), language models
(Tan et al., 2006; Sontag et al., 2012), topic mod-
eling (Harvey et al., 2013; Carman et al., 2010;
Xu et al., 2008), ontologies (Sieg et al., 2007;
Pretschner and Gauch, 1999), and other sources
of user-related information to build user represen-
tations. Researchers have also applied Represen-
tation Learning (Bengio et al., 2013) techniques
to build semantic vector representations of queries,
documents, and user-related information for per-
sonalizing search results (Li et al., 2014; Song et al.,
2014; Zhang et al., 2020; Vu et al., 2017; Braga
et al., 2023).

Several recent works employed on the Attention
mechanism (Bahdanau et al., 2015) to weigh and
aggregate the available user-related information on
a query basis. These models take advantage of the
diverse interests that a user may have to conduct
query-aware personalization. For example, previ-
ous works (Ge et al., 2018; Lu et al., 2020; Yao
et al., 2020b) relied on Attention to build session-
based user models for personalizing subsequent
searches. (Zhou et al., 2020b) employed the At-
tention to enhance a personalization model based
on user re-finding behavior. (Zhong et al., 2020)
leveraged the Attention to weigh user-related terms
for Personalized Query Suggestion. (Jiang et al.,
2020) proposed an attentive Personalized Item Re-
trieval model that estimates the importance of each
item in the user history. Despite the increasing ap-
plication of Attention for user modeling, previous
publications did not present an in-depth analysis
of its behavior and effects on personalization. The
sole exception is represented by the Zero Attention
Model (Ai et al., 2019). This Attention variant was
defined to allow the retrieval model to avoid per-
sonalization when no source of user information
is related to her current search, which is not pos-
sible using the standard Attention formulation, as
we will discuss in Section 3.2. Despite promising
results, successive works (Bi et al., 2020b,a; Jiang
et al., 2020) have shown that the Zero Attention

Model performs inconsistently. In this paper, we
address the lack of in-depth analysis of the Atten-
tion mechanism when applied for personalization
and propose a novel Attention variant to overcome
some limitations highlighted by our study of such
a mechanism.

3 Preliminaries on Query-aware User
Modeling

Users usually have diverse interests in multiple
domains. Not all those preferences are equally rel-
evant to a specific user’s information need. For
example, if a user is looking for a new book to
read, her fashion-related preferences probably do
not matter for personalizing the results of her cur-
rent query. Query-aware User Modeling consists
in building a user model at query time, based on
previously gathered sources of user interest, by giv-
ing more importance to those related to the current
search performed by the user. In the literature, the
definition of a user model with the previous char-
acteristics has been provided by relying on the At-
tention mechanism (Bahdanau et al., 2015), which
allows weighing the contribution of the user-related
data w.r.t. the current search query. In this section,
we first describe the Attention mechanism as it is
usually employed in the context of Personalized
Search. Then, we discuss some of its shortcomings
when used for personalization.

3.1 Attention Mechanism
The Attention mechanism aims at computing a con-
text vector by weighing the available contextual
information w.r.t. a given input. In Personalized
Search, the context vector is interpreted as the
user’s context vector, i.e., the user model; the con-
textual information is intended as the user’s contex-
tual information, i.e. the available user-related in-
formation, and the input is the search query. We as-
sume that the user-related information is extracted
from textual documents. At query time, the Atten-
tion mechanism weighs the vector representations
of these documents w.r.t. the query vector and ag-
gregates them to produce the user model employed
in the personalization process. This mechanism
comprises three steps aiming to build the context
vector: scoring, normalization, and aggregation.

Scoring First of all, an alignment model a is used
to score how well the representations of the user-
related documents match with the input query:

eq,d = a(q,d) (1)
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where, d ∈ Rm and q ∈ Rn are the vector repre-
sentations of a user document and a given query,
respectively, and eq,d ∈ R is the score computed
by the alignment model a : Rm × Rn → R. The
alignment model can be the dot-product, the cosine
similarity, or a parameterized function.

Normalization The second step of the Attention
mechanism consists in the normalization of the
scores computed by the alignment model to gen-
erate a probability distribution of the contextual
information. The normalized scores are commonly
called attention weights. This step is usually ac-
complished by employing the Softmax function:

α(q,d) =
exp(eq,d)∑

d′∈Du
exp(eq,d′)

(2)

where, exp is the exponential function, Du is the
set of all the documents related to the user u, and
α(q,d) ∈ R is the attention weight of d w.r.t. q.

Aggregation The final step consists in the aggre-
gation of the contextual information to produce the
context vector u, which, in our case, represents the
user model. This process is carried out by summing
the user document vector representations weighed
by their corresponding attention weights:

u =
∑

d∈Du

α(q,d) · d (3)

3.2 Attention-based User Modeling
Shortcomings

Although the Attention mechanism allows building
user models at query time, it is affected by some
shortcomings when employed for personalization.
Specifically, these issues are related to the use of
Softmax in the normalization step. Softmax was
proposed as a continuous and differentiable gener-
alization of Arg max (Bridle, 1989) and is primarily
employed in classifiers to compute a probability
distribution over the output classes. Because of the
usage of the exponential function, Softmax tends to
select one among n options. Therefore, Softmax-
based user modeling approaches naturally tend to
skew the user representation towards a single user
document, i.e., the one that best aligns with the
query. Such characteristics are usually not ideal
for personalization as also other user documents
could concur to a more informed and balanced rep-
resentation of the user interests and preferences. A
possible solution could be to constrain the align-
ment model’s output so that the normalization step

cannot produce an overly narrow probability dis-
tribution of the contextual information. However,
if, for example, we constrain the alignment scores
near zero by using the cosine similarity as the align-
ment model, the Softmax normalization will overly
smooth the attention weights, thus causing noisy
information to flow into the user model. Moreover,
the user information source whose alignment score
with the query is negative, indicating very low re-
latedness, would get a positive attention weight.
Lastly, as the Softmax normalizes its input into a
probability distribution, it follows that the attention
weights from Eq. 2 are all positive and sum up to 1.
Even if all the alignment scores were zero or neg-
ative, the attention weights would all be positive
and sum to 1. For example, given the following
vector of alignment scores [0.0, 0.0, 0.0, 0.0], by
applying Eq. 2 for normalization we obtain the
following attention weights [0.25, 0.25, 0.25, 0.25].
The same happens when all the alignment
scores are negative: [−7.0,−3.0,−1.0,−2.0] →
[0.0016, 0.0899, 0.6641, 0.2443]. In the context of
personalization, this means that the user’s con-
text vector will never be zero, causing personal-
ization to be performed even when no source of
user-related information is related to her current
search. In such cases, personalization could hurt
the effectiveness of the search engine instead of
improving it.

4 Denoising Attention Mechanism

As extensively discussed in Section 3.2, the princi-
pal issues of the Attention are related to its normal-
ization step, described in Section 3.1, and specifi-
cally to the use of the Softmax function to produce
the attention weights. To counteract these issues,
we need a mechanism able to avoid overly nar-
rowing or overly smoothing the attention weights,
which can cause the model either to focus only on
a single source of user-related information or to
reduce the diversity of their estimated importance.
Moreover, this mechanism should finely filter out
noisy contextual information, thus preventing it
from flowing into the user model. Finally, it should
zero out the user’s context vector when personaliza-
tion could harm the retrieval process, i.e., when all
the user-related information is noisy or irrelevant
with respect to the current search. In this regard,
we propose the Denoising Attention mechanism.
The Denoising Attention mechanism departs from
the Softmax function by adopting a more straight-
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forward and robust normalization scheme, and it
introduces a filtering mechanism based on ReLU
(Nair and Hinton, 2010) and a threshold value. To
complement those changes, we rely on a cosine
similarity-based alignment model to evaluate the
relatedness of the sources of user-related informa-
tion w.r.t. the current search.

Scoring For an alignment model to act in a com-
plementary way with the changes introduced in
the next paragraph, we need a function a(q,d)
bounded between 0 and 1, as an unbounded func-
tion would make it difficult to control which in-
formation flows into the user model. To compute
the alignment scores eq,d, we then rely on a cosine
similarity-based function bounded in [0, 1]:

eq,d = a(q,d) =
cos(q,d) + 1

2
(4)

Filtering We propose to extend the Attention
mechanism with an information filter. First, we
employ a threshold t to negativize the alignment
scores of the user data loosely related to the query:

shifted_eq,d = eq,d − σ(t) (5)

where σ is the Sigmoid function, which allows us
to constrain t in [0, 1] during training. Second, we
apply ReLU to the shifted alignment scores. What
makes ReLU convenient in the personalization con-
text is its ability to zero out negative values, in our
case, the scores of noisy user-related information:

filter_eq,d = ReLU(shifted_eq,d) (6)

By combining these two operations, we can both
control the information flow from the user data
to the user model and filter out noisy user-related
information that could harm the retrieval process.
To overcome the well-known dying ReLU problem
(Lu et al., 2019; Agarap, 2018) , we sum the user
model to the query representation during training.

Normalization The second major change we pro-
pose to the Attention is to replace Softmax by a
sum based normalization of the alignment scores
into attention weights:

α(q,d) =
filter_eq,d

max
{∑

d′∈Du
filter_eq,d′ , ε

} (7)

where ε is a very low positive value required to
avoid numerical instability.

The proposed filtering mechanism cannot work
correctly with Softmax because the latter is trans-
lationally invariant (adding or removing the same
amount to the input values does not change the out-
puts) and zeroing out negative values does not pre-
vent it from producing positive attention weights,
as discussed in Section 3.2. By ditching Softmax,
our proposal does not suffer from those issues.

Aggregation The aggregation of the user-related
information is performed as in Eq. 3.

Denoising Attention Weights To sum up, we
propose to compute the weights for the user-related
information as follows:

α(q,d) =
ReLU (eq,d − σ(t))∑

d′∈Du
ReLU

(
eq,d′ − σ(t)

) (8)

In contrast with the standard Attention formulation,
Denoising Attention is able to 1) selectively filter
out the noisy contextual information from the user-
related data before aggregating them in the context
vector, and 2) zero out the context vector when
all the sources of user-related information are unre-
lated to her current search. Moreover, the combined
use of our filtering mechanism and normalization
function makes our Attention variant prone to avoid
overly narrow or overly smooth attention weights.
This way, the model preserves the estimated impor-
tance of the user-related information sources, thus
composing a balanced representation of the user
preferences related to the current query while filter-
ing those unrelated. For a sake of comparison, the
alignment scores [0.7, 0.3, 0.1,−0.2] produce the
attention weights [0.3809, 0.2553, 0.2090, 0.1548]
when fed to Eq. 2, whereas they produce the atten-
tion weights [0.75, 0.25, 0.0, 0.0] when fed to Eq.
8 with σ(t) = 0.1.

5 Personalized Results Re-Ranking

In this section, we introduce the task we have con-
sidered for evaluating the proposed user modeling
approach, i.e. Personalized Results Re-Ranking.
Moreover, we describe the personalized re-ranking
framework we employed for comparative evalua-
tion. This framework allowed us to test different
user modeling techniques with ease and isolate
their impact from the other system components.

In Personalized Results Re-Ranking, a retrieval
system (first stage retriever) computes a ranked list
of documents in response to a search query. Then,
a personalization component computes new rele-
vance scores for the initially retrieved documents
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User Representation
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Figure 1: Personalized Results Re-Ranking Framework.
The optional module is required only for query-aware
user modeling.

by leveraging the user-related information. Finally,
the personalized relevance scores are usually com-
bined with those computed by the first stage re-
triever to re-rank the initially retrieved list of docu-
ments. Fig. 1 depicts the Personalized Results Re-
Ranking Framework we relied on for comparing
various user modeling techniques. The framework
comprises two modules that generate the vector
representations of the top-k results retrieved by the
first stage retriever and those of the user-related
documents. Once computed the user-related docu-
ment representations, the user representation mod-
ule aggregates them into the user model. In the
case of query-aware user modeling, an additional
module is employed to produce the query repre-
sentation. Finally, a scoring function computes a
personalized relevance score for each initially re-
trieved result by comparing its representation with
that of the user. These scores are then combined
with the first stage retriever’s scores as follows:

final_score = (1− λ) · a+ λ · b (9)

where, a and b are the relevance scores computed
by the first stage retriever and the personalization
model, respectively, and λ is a parameter that con-
trols the influence of the two on the final score.

Albeit simple, the framework we implement for
personalized re-ranking is functional to compare
a user model based on Denoising Attention with
state-of-the-art alternatives, isolating the user mod-
eling approach’s contribution to the overall system
effectiveness. In the experiments presented in Sec-
tion 7, we relied on TinyBERT (Jiao et al., 2020)
followed by a mean pooling operation to embed

Table 1: Statistics of the employed datasets.

Web Search Dataset

# documents 1 291 695 # users 30 166
# train queries 212 386 avg. query length 3.57± 1.51
# val queries 31 064 avg. relevants 1.15± 0.46
# test queries 36 052 avg. user docs 136.62± 134.17

Academic Search Dataset

# documents 4 201 265 # users 63 738
# train queries 419 004 avg. query length 7.53± 2.64
# validation queries 4 241 avg. relevants 5.33± 5.11
# test queries 24 056 avg. user docs 53.59± 50.94

both the top retrieved documents, the user informa-
tion, and the query.

6 Experimental Setup

The experiments reported in this section aim to
answer the following research questions:

RQ1 Are query-aware Attention-based user models
more effective than static user models?

RQ2 Is Denoising Attention more effective at user
modeling than other Attention variants?

RQ3 Is Denoising Attention more robust, i.e., less
likely to decrease the system’s effectiveness
due to noisy user-related data, than other At-
tention variants?

To answer the research questions RQ1 and RQ2,
we conducted a comparative evaluation of the re-
trieval effectiveness of the personalized re-ranking
pipeline described in Section 5 using several dif-
ferent user models. Then, to answer the research
question RQ3, we compared the number of times
the considered user models decreased the retrieval
effectiveness of our first-stage retriever, BM25.

In the following, we present the datasets we em-
ployed for conducting our evaluations (Section 6.1),
we introduce the baselines we have selected (Sec-
tion 6.2), and we outline the training setup and
evaluation procedure (Section 6.3).

6.1 Datasets

To conduct our experimental evaluations, we relied
on two datasets that account for different search
scenarios. We considered a Web Search dataset
based on the AOL query log (Pass et al., 2006) and
a synthetic dataset built following the procedure
described by (Tabrizi et al., 2018) that simulates
an Academic Search scenario. We describe both
datasets in detail in the following sections.
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6.1.1 Web Search Dataset
The AOL query log is one of the most known large-
scale set of data for the evaluation of session-based
personalization models (Ahmad et al., 2018, 2019;
Yao et al., 2020a; Zhou et al., 2020a; Lu et al., 2020;
Zhou et al., 2021; Yao et al., 2020b, 2022; Deng
et al., 2022).

Retrieving documents and query logs As the
documents are not provided with the query logs,
we relied on aolia-tools (MacAvaney et al., 2022),
which leverage the Internet Archive’s Wayback Ma-
chine service, to retrieve contents similar to those
seen by the users when the logs were collected. We
identified and removed non-English documents by
analyzing them using Google’s CLD v32. We dis-
carded all the queries without related clicks, and
those containing Internet domain references (e.g.,
.com, .org, etc.) or website names and queries
shorter than three characters. For ethical reasons,
we also discarded all the queries containing or
pointing to adult or illegal contents. We removed
non-alphanumeric characters from the queries, ap-
plied a spelling corrector (SymSpell3). To avoid
introducing in the test set ⟨query, user, document⟩
triplets also present in the train set, we kept only
the first appearance of such triplets by comparing
their associated timestamps.

Training / Validation / Test Splits Following
previous works (Sordoni et al., 2015; Ahmad et al.,
2019), we considered the queries formulated in the
first five weeks as a background set. We discarded
all the queries from users with less than 20 associ-
ated queries in this set to ensure having enough data
to conduct personalization. We then temporally
split the remaining weeks’ worth of queries. We
used six weeks for training queries, one week for
validation queries, and one week for test queries.

6.1.2 Academic Search Dataset
Due to the lack of a publicly available Domain-
specific Search dataset for studying personalization,
researchers have recently tackled personalization
in Product Search scenarios relying on synthetic
datasets built upon product reviews from a popular
e-commerce platform (Ai et al., 2017). However,
due to the low number of different queries present
in these datasets, and their low quality (Bassani
and Pasi, 2022), we did not employ them in our

2https://github.com/google/cld3
3https://github.com/wolfgarbe/SymSpell

comparative evaluation. Instead, we followed the
procedure described in (Tabrizi et al., 2018) to build
an Academic Search dataset that allow us to test our
Attention variant in a domain-specific search sce-
nario. In particular, we relied on the ArnetMiner’s
Citation Network Dataset V12 (Tang et al., 2008),
which makes available the metadata of 4 894 081
academic papers.

Query Generation Following the approach de-
scribed by (Tabrizi et al., 2018), we generated user-
query-document triplets as follows: for each aca-
demic paper, we considered its title as a query, the
list of its citations as the documents relevant to that
query, and we assumed that the first author is the
user issuing the query. We applied stop-word re-
moval using the NLTK’s stop-words list and the
Krovetz stemmer, to obtain queries that resemble
real-world ones. Finally, we discarded all the gener-
ated queries whose related users have less than 20
associated documents, i.e., published papers. More
details can be found in (Bassani et al., 2022).

Training / Validation / Test Splits We split the
obtained dataset into training and test sets chrono-
logically, i.e. by using the queries generated from
papers published after 2018 as the test set. We then
randomly split the training set to obtain a training
set and a validation set, using a splitting ratio of
99 : 1. We opted for a chronological training / test
split instead of a random partitioning so that the
dataset is closer to a real scenario, where all the
searches in the test set happen after the searches
in the training set. As we are interested only in
results re-ranking, in both datasets, we discarded
the queries for which BM25 does not retrieve any
relevant document in the top 1000 results and we
retain only the relevant documents present in the
top 1000 results retrieved by BM25.

6.2 Baselines
In this section, we introduce the baselines em-
ployed in our comparative evaluation.
Attention: query-aware user model based on the
standard Attention formulation.
Zero Attention: query-aware user model based on
the Zero Attention strategy (Ai et al., 2019).
Multi-Head Attention: query-aware user model
based on the Multi-Head Attention (Vaswani et al.,
2017) with four Attention heads.
Mean: static user model that computes user repre-
sentations as the arithmetic mean of the user-related
documents’ representations.
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BM25: for reference, we also performed compari-
son with BM25 (Robertson and Walker, 1994), out
first stage retriever.
We trained three variants for both the Attention-
based and the Zero Attention-based user models
by employing different alignment functions. The
first variant employs the scaled-dot product, which
relies on a temperature based softmax, popularized
by the Transformer architecture (Vaswani et al.,
2017). The second one uses the cosine similarity,
similarly to our Denoising Attention. The last one
relies on Additive Attention, a parametrized model
(Bahdanau et al., 2015)

6.3 Setup & Evaluation Metrics

We relied on ElasticSearch for BM25, Hugging-
Face’s Transformers for TinyBERT , and PyTorch
for the implementation of all the neural models. We
optimized BM25’s k1 and b parameters on non-test
data. BM25 scores were computed on the con-
catenation of documents’ title and abstract. The
training was done on an NVidia® RTX 2080 Ti
GPU for 20 epochs using a hinge loss (Gao et al.,
2021), with a margin of 0.1 and AdamW optimizer
with learning rate of 5 × 10−5, and batch size of
32. We train the model with hard negatives sam-
pled from the top results retrieved by BM25 and
in-batch random negatives. During training we
randomly sampled 20 user documents to use for
personalization, while during the evaluation, we
used all the available user documents. After train-
ing, we fine-tuned the λ parameter of Eq. 9 and
the Denoising Attention’s threshold on the valida-
tion set. The re-ranking was done on the top 1000
results retrieved by BM25.

To evaluate the effectiveness of the compared
models, we employed Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR), and Nor-
malized Discounted Cumulative Gain (NDCG).
MRR and NDCG were computed on the top 10
documents retrieved by each model, whereas MAP
was computed on the top 100. Metrics computation
and comparison were conducted using the Python
library ranx (Bassani, 2022; Bassani and Romelli,
2022; Bassani, 2023).

7 Results and Discussion

In this section, we present the results of our compar-
ative evaluation. First, we discuss the retrieval ef-
fectiveness of the personalized re-ranking pipeline
described in Section 5 when considering different

Table 2: Effectiveness of all models. ∗ and † denote sig-
nificant improvements in a Bonferroni corrected Fisher’s
randomization test with p < 0.001 over Mean and over
all the baselines, respectively. Best results are high-
lighted in boldface.

Web Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.245 0.238 0.280 — —

Mean — 0.282 0.276 0.329 0.2 —

Attention
Additive 0.281 0.276 0.328 0.2 —
Cosine 0.287∗ 0.281∗ 0.335∗ 0.2 —
Scaled-Dot 0.290∗ 0.285∗ 0.339∗ 0.2 —

Zero
Attention

Additive 0.277 0.272 0.325 0.2 —
Cosine 0.286∗ 0.281∗ 0.334∗ 0.2 —
Scaled-Dot 0.290∗ 0.285∗ 0.338∗ 0.2 —

Multi-Head Scaled-Dot 0.275 0.269 0.324 0.2 —

Denoising Cosine-based 0.338† 0.336† 0.393† 0.4 0.7

Academic Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.119 0.294 0.171 — —

Mean — 0.146 0.328 0.200 0.6 —

Attention
Additive 0.156∗ 0.340∗ 0.213∗ 0.6 —
Cosine 0.151 0.332 0.206 0.6 —
Scaled-Dot 0.157∗ 0.343∗ 0.214∗ 0.6 —

Zero
Attention

Additive 0.155∗ 0.338 0.211∗ 0.6 —
Cosine 0.150 0.330 0.204 0.6 —
Scaled-Dot 0.156∗ 0.341∗ 0.212∗ 0.6 —

Multi-Head Scaled-Dot 0.152 0.336 0.207 0.6 —

Denoising Cosine-based 0.179† 0.378† 0.241† 0.6 0.6

user modeling techniques. Then, we analyze the
robustness of the compared user models, evaluating
the probability they decrease the system’s effective-
ness in the presence of noisy user-related data. We
remind the reader that the only difference between
the compared personalization models is the tech-
nique used for defining the user model, while the
other system’s components are fixed.

7.1 Retrieval Effectiveness

As reported in Table 2, personalization improved
the retrieval effectiveness of our first stage retriever,
BM25, regardless of the user modeling mechanism
employed, thus confirming the utility of personal-
ization for both the considered datasets. Among the
Attention-based baselines, only those employing
the scaled-dot alignment model significantly im-
proved over Mean on both the considered datasets.
Those relying on the additive and the cosine align-
ment models achieved mixed results, sometimes
even decreasing w.r.t. Mean. Despite the fact that
it was introduced to overcome some of the Atten-
tion shortcomings, the Zero Attention-based user
models generally achieved slightly worse results
than their standard Attention-based counterparts.
In this regard, our findings are consistent with re-
sults from previous works (Bi et al., 2020b,a; Jiang
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et al., 2020). The results obtained by the standard
Attention and the Zero Attention-based user mod-
els with cosine similarity as the alignment model
show that constraining the alignment scores causes
noisy information to leak into the user model, as
discussed in Section 3.2. Finally, the Multi-Head
Attention-based user model’s results are among
the lowest for both datasets. The additional com-
plexity introduced by this approach did not deliver
improvements over the other Attention-based mod-
els while introducing additional overhead. If we
consider only the Attention-based user model with
the scaled-dot alignment model, the obtained re-
sults positively answer our first research question,
RQ1. However, this is not the case for all the other
Attention baselines, which confirms the need for
our investigation on the use of the Attention mech-
anism for query-aware personalization.

When employing the Denoising Attention-based
user model, the results re-ranking pipeline achieved
substantial improvements over all baselines, cor-
roborating our intuitions about the shortcomings of
the standard Attention formulation when it comes
to personalization and the advantages brought by
our proposal. In particular, Denoising Attention im-
proves over the best-performing baseline of about
15% for each metric on both datasets. The obtained
results clearly show the robustness of our proposed
Attention variant to search scenarios with notice-
able structural differences. For Web Search, it is
fundamental to finely select the most promising
user-related data for conducting personalization in
order to improve over simple operations for build-
ing user models, such as averaging over the rep-
resentations of the user-related data. In the case
of Academic Search, user-related information is
very focused and, therefore, it is easier to improve
a user model that averages the representations of
the user-related data. Nonetheless, Denoising At-
tention still exhibits significant advantages over the
other Attention variants. The λ parameter has a
huge impact on the final performances. In order
to remove the contribution of the first stage ranker,
we set the λ parameter to 1.0. In this experiment,
we consider only the queries for which Denois-
ing Attention outputs a non-zero user model and
employs only the scores deriving from the compar-
isons between the user models and the documents
to re-rank the initially retrieved BM25 result lists.
The results are reported in Table 3. In the best case
scenario (Scaled-dot), the Attention-based base-
lines increased over Mean by 11%, 13%, and 11%

in MAP, MRR, and NDCG, respectively, on the
Web Search Dataset, and by 34%, 30%, and 34%
in MAP, MRR, and NDCG, respectively, on the
Academic Search Dataset.

These results, which positively answer our sec-
ond research question, RQ2, highlight the impor-
tance of correctly managing the user-related in-
formation in personalization and the potential of
deepening this research area.

Table 3: Effectiveness of BM25 and those of the user
models when used in isolation. ∗ and † denote signifi-
cant improvements in a Bonferroni corrected Fisher’s
randomization test with p < 0.001 over Mean and over
all the baselines, respectively. Best results are high-
lighted in boldface.

Web Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.240∗ 0.233∗ 0.274∗ — —

Mean — 0.136 0.120 0.157 1.0 —

Attention
Additive 0.136 0.120 0.155 1.0 —
Cosine 0.141∗ 0.125∗ 0.166∗ 1.0 —
Scaled-Dot 0.152∗ 0.137∗ 0.177∗ 1.0 —

Zero
Attention

Additive 0.125 0.108 0.144 1.0 —
Cosine 0.148∗ 0.132∗ 0.169∗ 1.0 —
Scaled-Dot 0.153∗ 0.138∗ 0.177∗ 1.0 —

Multi-Head Scaled-Dot 0.128 0.111 0.148 1.0 —

Denoising Cosine-based 0.264† 0.256† 0.312† 1.0 0.7

Academic Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.120∗ 0.295∗ 0.172∗ — —

Mean — 0.068 0.160 0.094 1.0 —

Attention
Additive 0.090∗ 0.205∗ 0.123∗ 1.0 —
Cosine 0.076∗ 0.172∗ 0.103∗ 1.0 —
Scaled-Dot 0.091∗ 0.208∗ 0.125∗ 1.0 —

Zero
Attention

Additive 0.086∗ 0.195∗ 0.117∗ 1.0 —
Cosine 0.075∗ 0.171∗ 0.103∗ 1.0 —
Scaled-Dot 0.088∗ 0.201∗ 0.120∗ 1.0 —

Multi-Head Scaled-Dot 0.074∗ 0.172∗ 0.101∗ 1.0 —

Denoising Cosine-based 0.143† 0.319† 0.194† 1.0 0.6

7.2 Robustness
As shown in Table 4, to evaluate the robustness
of the considered user models, we considered the
number of times personalization decreased BM25
effectiveness in terms of MAP@100. Quite sur-
prisingly, the Attention-based user models are of-
ten more harmful than Mean, although more ef-
fective in general, as previously reported. Con-
versely, the Denoising Attention-based user model
is substantially less harmful than all the other user
models on both datasets. Compared to the De-
noising Attention-based user model, the best base-
lines on the Web Search Dataset and the Academic
Search Dataset decreased the retrieval effectiveness
of BM25 for 38% and 8% more queries, respec-
tively. The much more significant difference we
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Table 4: Number of times (and ratios) personalization
decreased BM25 effectiveness in terms of MAP@100
(lower is better). Best results are in boldface.

Model Alignment Web Search Dataset Academic Search Dataset

Mean — 10 798 (30%) 6 165 (26%)

Attention
Additive 11 157 (31%) 6 076 (25%)
Cosine 9 877 (27%) 6 580 (27%)
Scaled-Dot 9 426 (26%) 5 954 (25%)

Zero
Attention

Additive 11 508 (32%) 6 201 (26%)
Cosine 10 234 (28%) 6 708 (28%)
Scaled-Dot 9 356 (26%) 6 131 (25%)

Multi-Head Scaled-Dot 12 049 (33%) 6 366 (26%)

Denoising Cosine-based 6 780 (19%) 5 509 (23%)

registered on the Web Search Dataset than the Aca-
demic Search Dataset is due to the different nature
of those datasets. In the former dataset, user-related
data accounts for the many different interests each
user may have. Thus, personalization is likely to
harm the retrieval process if a filtering mechanism
for the user information is not employed. In the
latter dataset, user preferences are limited to fewer
topics. Given the obtained results, we conclude
that the Denoising Attention-based user model is
much more robust than the other considered user
models regardless of the search scenario, positively
answering our research question RQ3.

7.3 Model Analysis

In this section, we evaluate the Denoising
Attention-based user model performances for vari-
ous threshold values.
Figures 2a and 2b show the performances of the
results re-ranking pipeline with the Denoising
Attention-based user model for different thresh-
old values on the considered datasets. The figures
also report the average number of filtered user doc-
uments for each considered threshold value. On
average, the test queries have 181 and 61 asso-
ciate user-related documents in the Web Search
Dataset and the Academic Search Dataset, respec-
tively, while the average number of filtered ones
for the best threshold values are 169 and 35, re-
spectively. The different ratios of average filtered
user-related documents are again due to the distinct
nature of the two search scenarios and datasets.
Our proposed approach is able to adapt to different
search contexts thanks to the threshold parameter
and our filtering mechanism. When the thresh-
old is zero, which corresponds to not filtering any
user-related document in our case, the model ef-
fectiveness is very low for both datasets. When
the threshold is equal to 0.5, which corresponds to

using the cosine similarity with no modification as
our alignment model, the model still does not reach
its full potential. These results highlight again the
need for a filtering mechanism that can be tuned
and modulated.

0 0 0 0 0 22 110 169 180 181
Avg. filtered user documents
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(a) Retrieval effectiveness of the personalized re-ranking
pipeline with Denoising Attention-based user model on

the Web Search Dataset
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(b) Retrieval effectiveness of the personalized re-ranking
pipeline with Denoising Attention-based user model on

the Academic Search Dataset

Figure 2: Threshold analysis.

8 Conclusion

In this work, we have addressed some issues re-
lated to the use of the Attention mechanism for
query-aware user modeling and proposed a novel
user-data aggregation model called Denoising At-
tention, designed to solve the shortcomings of the
standard Attention formulation and, in particular,
filter out noisy user-related information. Experi-
mental evaluation in two different search scenarios,
namely Web Search and Academic Search, shows
the benefits of our proposed approach over other
Attention variants and highlights the potential of
correctly managing the user-related information.
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9 Limitations

Despite the significant improvements brought by
our proposed Denoising Attention mechanism
when in comes to query-aware personalization,
some related problems are worth further study. The
alignment model we employed, may be replaced
by a parameterized function that could leverage
additional information other than the representa-
tions of user-related documents and queries. For
example, the dates associated with those documents
might play a role in personalization, as documents
written or consulted long before the query might
be less relevant to personalization than more re-
cent ones. Furthermore, the fixed value threshold
parameter we employed could be sub-optimal in
many cases. As shown by the difference in the
threshold parameter values for the two considered
datasets, different queries could benefit from more
user-related information or require a finer selection
of the user-related data employed in the personal-
ization process. To conclude, the management of
the user-related information during personalization
is fundamental and far from being a solved issue,
leaving room for further improvements.
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