@inproceedings{hengst-etal-2024-conformal,
title = "Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition",
author = "Hengst, Floris and
Wolter, Ralf and
Altmeyer, Patrick and
Kaygan, Arda",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.156",
doi = "10.18653/v1/2024.findings-naacl.156",
pages = "2412--2432",
abstract = "We present Conformal Intent Classification and Clarification (CICC), a framework for fast and accurate intent classification for task-oriented dialogue systems. The framework turns heuristic uncertainty scores of any intent classifier into a clarification question that is guaranteed to contain the true intent at a pre-defined confidence level.By disambiguating between a small number of likely intents, the user query can be resolved quickly and accurately. Additionally, we propose to augment the framework for out-of-scope detection.In a comparative evaluation using seven intent recognition datasets we find that CICC generates small clarification questions and is capable of out-of-scope detection.CICC can help practitioners and researchers substantially in improving the user experience of dialogue agents with specific clarification questions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hengst-etal-2024-conformal">
<titleInfo>
<title>Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Floris</namePart>
<namePart type="family">Hengst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralf</namePart>
<namePart type="family">Wolter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Altmeyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arda</namePart>
<namePart type="family">Kaygan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Conformal Intent Classification and Clarification (CICC), a framework for fast and accurate intent classification for task-oriented dialogue systems. The framework turns heuristic uncertainty scores of any intent classifier into a clarification question that is guaranteed to contain the true intent at a pre-defined confidence level.By disambiguating between a small number of likely intents, the user query can be resolved quickly and accurately. Additionally, we propose to augment the framework for out-of-scope detection.In a comparative evaluation using seven intent recognition datasets we find that CICC generates small clarification questions and is capable of out-of-scope detection.CICC can help practitioners and researchers substantially in improving the user experience of dialogue agents with specific clarification questions.</abstract>
<identifier type="citekey">hengst-etal-2024-conformal</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.156</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.156</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2412</start>
<end>2432</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition
%A Hengst, Floris
%A Wolter, Ralf
%A Altmeyer, Patrick
%A Kaygan, Arda
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F hengst-etal-2024-conformal
%X We present Conformal Intent Classification and Clarification (CICC), a framework for fast and accurate intent classification for task-oriented dialogue systems. The framework turns heuristic uncertainty scores of any intent classifier into a clarification question that is guaranteed to contain the true intent at a pre-defined confidence level.By disambiguating between a small number of likely intents, the user query can be resolved quickly and accurately. Additionally, we propose to augment the framework for out-of-scope detection.In a comparative evaluation using seven intent recognition datasets we find that CICC generates small clarification questions and is capable of out-of-scope detection.CICC can help practitioners and researchers substantially in improving the user experience of dialogue agents with specific clarification questions.
%R 10.18653/v1/2024.findings-naacl.156
%U https://aclanthology.org/2024.findings-naacl.156
%U https://doi.org/10.18653/v1/2024.findings-naacl.156
%P 2412-2432
Markdown (Informal)
[Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition](https://aclanthology.org/2024.findings-naacl.156) (Hengst et al., Findings 2024)
ACL