@inproceedings{yang-etal-2024-identifying,
title = "Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts",
author = "Yang, Chenghao and
Chakrabarty, Tuhin and
Hochstatter, Karli and
Slavin, Melissa and
El-Bassel, Nabila and
Muresan, Smaranda",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.161",
doi = "10.18653/v1/2024.findings-naacl.161",
pages = "2507--2521",
abstract = "In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids making it a national public health emergency (USDHHS, 2017). Medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors. We present a moderate size corpus of 2500 opioid-related posts from various subreddits labeled with six different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2024-identifying">
<titleInfo>
<title>Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenghao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tuhin</namePart>
<namePart type="family">Chakrabarty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karli</namePart>
<namePart type="family">Hochstatter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Melissa</namePart>
<namePart type="family">Slavin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nabila</namePart>
<namePart type="family">El-Bassel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids making it a national public health emergency (USDHHS, 2017). Medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors. We present a moderate size corpus of 2500 opioid-related posts from various subreddits labeled with six different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum.</abstract>
<identifier type="citekey">yang-etal-2024-identifying</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.161</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.161</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2507</start>
<end>2521</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts
%A Yang, Chenghao
%A Chakrabarty, Tuhin
%A Hochstatter, Karli
%A Slavin, Melissa
%A El-Bassel, Nabila
%A Muresan, Smaranda
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F yang-etal-2024-identifying
%X In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids making it a national public health emergency (USDHHS, 2017). Medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors. We present a moderate size corpus of 2500 opioid-related posts from various subreddits labeled with six different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum.
%R 10.18653/v1/2024.findings-naacl.161
%U https://aclanthology.org/2024.findings-naacl.161
%U https://doi.org/10.18653/v1/2024.findings-naacl.161
%P 2507-2521
Markdown (Informal)
[Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts](https://aclanthology.org/2024.findings-naacl.161) (Yang et al., Findings 2024)
ACL