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Abstract

The pre-trained language model (PLM) has
achieved significant success in the field of
knowledge graph completion (KGC) by effec-
tively modeling entity and relation descriptions.
In recent studies, the research in this field has
been categorized into methods based on word
matching and sentence matching, with the for-
mer significantly lags behind. However, there
is a critical issue in word matching methods,
which is that these methods fail to obtain sat-
isfactory single embedding representations for
entities.To address this issue and enhance en-
tity representation, we propose the Bilateral
Masking with prompt for Knowledge Graph
Completion (BMKGC) approach.Our method-
ology employs prompts to narrow the distance
between the predicted entity and the known
entity. Additionally, the BMKGC model in-
corporates a bi-encoder architecture, enabling
simultaneous predictions at both the head and
tail. Furthermore, we propose a straightfor-
ward technique to augment positive samples,
mitigating the problem of degree bias present
in knowledge graphs and thereby improving the
model’s robustness. Experimental results con-
clusively demonstrate that BMKGC achieves
state-of-the-art performance on the WN18RR
dataset.

1 Introduction

Knowledge graphs (KGs) are graph-structured
knowledge bases, typically consisting of triples,
denoted as (h, r, t), where h represents the head
entity, r represents the relation, and t represents
the tail entity. Prominent examples of KGs in-
clude Freebase , Wikidata(Vrandečić and Krötzsch,
2014), YAGO(Suchanek et al., 2007),Concept-
Net(Speer et al., 2017), and WordNet(Miller, 1992).
KGs find applications in various domains, includ-
ing information retrieval(Xiong et al., 2017), rec-
ommendation systems(Huang et al., 2018), and
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question answering(Sun et al., 2019a). However,
KGs encounter the challenge of incompleteness
as real-world information continuously evolves
Figure1. Hence, the tasks of knowledge graph
completion (KGC)(Galárraga et al., 2017) hold
significant importance. In recent years, to en-
hance KG completion and utilization, significant
research efforts have been devoted to the field of
knowledge embedding (KE), which aims to map
KGs into low-dimensional vector spaces. Existing

Figure 1: Example of multiple facts in a KG.Every en-
tity is associated with a unique name and corresponding
textual descriptions.

knowledge embedding methods fall into two cat-
egories: structure-based methods and description-
based methods. Structure-based methods, such
as TransE(Bordes et al., 2013), RotatE(Sun et al.,
2019b) and TuckER(Balazevic et al., 2019), lever-
age the topological information within the knowl-
edge graph to represent entities and relations.
Description-based methods can be further cate-
gorized into sentence matching and word match-
ing approaches.The methods utilized in this pa-
per draw inspiration from sentence matching tech-
niques while falling under the category of word
matching methods. These methods enrich entity
representations by incorporating descriptive infor-
mation related to entities and relations. They
transform entity-relation pairs and their descrip-
tions into natural language-style sequences and uti-
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lize pre-trained language models (PLM) such as
BERT(Devlin et al., 2019)) to encode them. This
encoding process generates comprehensive repre-
sentations of entities and relations.

The distinction between the two approaches
lies in their treatment of triplets.Sentence match-
ing transforms KGC into a text matching task, as
seen in SimKGC(Wang et al., 2022a), enabling
description-based methods to surpass structure-
based methods for the first time.In contrast, word
matching involves predicting the masked positions
in the input data and matching them with all can-
didate entities. Prior word matching techniques,
like C-LMKE(Wang et al., 2022b), have commonly
employed a specific token, frequently denoted as
’ent_id’, as a replacement for the original entity
while handling candidate entities. As a conse-
quence, the suboptimal representation of candi-
date entities significantly affects the overall per-
formance.Furthermore, they position the descrip-
tion of the known entity immediately following the
entity, inevitably widening the gap between the pre-
dicted entity and the known entity. Consequently,
this introduces additional challenges for the model
in predicting unknown entities.These two factors
have led to a significant disparity between word
matching methods and sentence matching meth-
ods.

In this paper, inspired by SimKGC(Wang et al.,
2022a), we introduce a new fuzzy operation to
handle relations of candidate entities. We achieve
this operation by simultaneously making predic-
tions in both the head and tail encoders. More-
over,we design prompts to narrow the distance
between the known entity and the predicted en-
tity, with the aim of strengthening their associa-
tion. The objective of this fuzzy operation is to
improve the word matching method based on de-
scriptive embedding, resulting in enhanced single
entity embedding representations. Furthermore,
graph-related tasks commonly encounter the issue
of degree bias(Kojaku et al., 2021), where nodes
with lower degrees tend to exhibit weaker represen-
tations and poorer downstream performance.We
take inspiration from SimCSE(Gao et al., 2021)
and utilize the dropout mechanism of pre-trained
language models to acquire additional positive sam-
ples, addressing the degree bias issue in knowledge
graphs. We conduct experiments on three popu-
lar benchmark datasets, including WN18RR and
FB15k-237. According to automated evaluation
metrics MRR and Hits@k (k ∈ {1, 3, 10}), our Bi-

lateral Masking with prompt for Knowledge Graph
Completion (BMKGC) method achieves state-of-
the-art performance on the WN18RR dataset and
competitive results on the FB15k-237 dataset.

2 Related Work

The knowledge graph is composed of triples, de-
noted as (h, r, t), where each triple consists of
a head entity, h ∈ E , connected to a tail entity,
t ∈ E , through a relationship, r ∈ R. Presently,
knowledge graph completion approaches involve
representing entities and relationships as vectors in
a lower-dimensional space, known as knowledge
graph embedding. These knowledge graph embed-
ding are further categorized into structure-based
and description-based embedding.

Structure-Based Knowledge Embedding We
categorize structural-based knowledge embed-
ding into three types. Firstly, the first type
relies on translation-based techniques, such as
TransE(Bordes et al., 2013), TransH(Wang et al.,
2014), and TransR(Lin et al., 2015), which em-
ploy distance-based scoring functions. These
methods generate embeddings for the head entity
(h), relationship (r), and tail entity (t) based on
specific translations, allowing assessment of the
plausibility of triples (h, r, t) using distance scor-
ing functions.Secondly, the ComplEx(Trouillon
et al., 2016) model utilizes factorization and com-
plex embeddings to enhance the representation
of entities and relationships. TuckER(Balazevic
et al., 2019) considers knowledge graph com-
pletion as a 3-D binary tensor decomposition
problem and explores the effectiveness of vari-
ous factorization techniques.Thirdly, knowledge
graph embedding is approached as a deep learn-
ing task, utilizing various neural network archi-
tectures. ConvE(Dettmers et al., 2018) adopts
convolutional neural networks (CNNs) to cap-
ture interactions between entities and relations,
while CompGCN(Vashishth et al., 2020) improves
knowledge graph representations by incorporating
multi-layered information through graph convolu-
tional networks (GCNs)(Schlichtkrull et al., 2018).
Simultaneously, HittER(Chen et al., 2021) and
CoKE(Wang et al., 2019) leverage Transformers to
process information within the knowledge graph.
These models demonstrate innovative methodolo-
gies based on different neural network architectures
aimed at advancing the performance and precision
of knowledge graph completion.
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Description-Based Knowledge Embedding Re-
cent studies have utilized pre-trained language
models (PLM) such as BERT(Devlin et al., 2019)
to improve the completion of knowledge graphs
(KGs) by converting incomplete triples into nat-
ural language inputs. In this paper, we catego-
rize descriptive-based embedding into two types:
sentence matching and word matching. Sentence
matching involves dividing the triple (h, r, t) into
the head entity h, connected by a relationship r,
and the tail entity t. The goal is to determine the
most plausible triple by evaluating the similarity of
the semantic meanings between these two compo-
nents. SimKGC(Wang et al., 2022a) significantly
enhances performance by introducing efficient con-
trastive learning. On the other hand, word match-
ing methods such as MEM-KGC(Choi et al., 2021)
mask the tail entity and consider the head entity and
relationship as context for predicting the masked
entity. C-LMKE(Wang et al., 2022b) utilizes pre-
dictions for unknown tail entities from the input,
together with representations of all entities within
the same batch, to obtain the most probable tail
entity.

Degree Bias The C-LMKE(Wang et al., 2022b)
enhances the representations of long-tail entities
in KGs by incorporating degrees and leveraging
text information, effectively improving the perfor-
mance of PLM on KGs. While KG-Mixup(Shomer
et al., 2023) validates the presence of degree bias in
embedding-based Knowledge Graph Completion
(KGC) and identifies its main factors, it is worth
noting that KG-Mixup only focuses on enhanc-
ing structural-based embedding methods. Conse-
quently, there is a lack of data augmentation tech-
niques for descriptive-based embedding methods
to enhance KG completion performance for long-
tail entities. Our proposed BMKGC model aims to
address this gap.

3 Methods

This section provides a comprehensive introduction
to BMKGC, as depicted in Figure2. Firstly, we
present a concise definition of knowledge graphs
and their relevance to link prediction. Subsequently,
we elucidate the principles and implementation
specifics of our Bidirectional masking technique.
Finally, a succinct overview of degree compensa-
tion is provided.

3.1 Definitions and Notation

A knowledge graph is a directed graph consist-
ing of entities and relationships, denoted as G =
{E , R, T }, where E represents the set of entities,
R denotes the set of relationships, and T stands
for the set of triples, defined as T = {(h, r, t) ⊆
E ×R× E}. BMKGC maximizes the utilization
of descriptive information related to entities and
relationships, denoted as dh, dr, dt for h, r, and t,
respectively. This additional information serves as
input to PLM, enabling them to understand entities
and relationships and acquire their embedding rep-
resentations. Link prediction tasks aim to predict
missing parts of triples within existing knowledge
graphs. Using the widely adopted entity ranking
evaluation protocol, predicting the tail entity (h,r,?)
involves ranking all entities given h and r, and sim-
ilarly, for predicting the head entity (?,r,t). In this
study, we reverse the relationship by transforming
(h, r, t) into (t, r−1, h). This reversal allows us to
solely focus on predicting the tail entity.

3.2 Bidirectional Masking

Knowledge Graph Completion (KGC) tasks ini-
tially aimed to predict missing entities given spe-
cific entities and relationships, similar to Masked
Language Modeling (MLM)(Devlin et al., 2019)
where certain words within input text sequences
are randomly masked, and the model predicts these
masked words. Motivated by MLM, our proposed
BMKGC model adopts a similar approach, employ-
ing a bi-encoder architecture . We initialize two
encoders, named BERThead and BERTtail, with
the same pre-trained language model but operate
independently without parameter sharing.

Given a specific triplet T = (h, r, t) along with
corresponding descriptions dh, dr, and dt, the first
encoder, BERThead, is utilized to predict the miss-
ing tail entity based on the provided head entity
h, its description dh, and relationship r along with
its description dr. To closely align with the triplet
structure, we utilize a prompt format input as fol-
lows:

xbase = [CLS](h, r, [MASK]), dh[SEP ] (1)

Our objective with this prompt is to strengthen the
connection between the predicted entity and the
known entity relationship. Unlike previous meth-
ods that placed [MASK] at the end and interleaved
the description of the head entity within it, result-
ing in the predicted entity being too distant from
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Figure 2: The architecture of BMKGC.We will illustrate the usage of a triplet (Paris, attraction, Eiffel Tower) as an
example. The prompt input is depicted at the bottom of the figure, where the input in BERThead is duplicated k
times to mitigate the inherent bias in the knowledge graph (KG). BERTtail input incorporates [MASK], enabling
the implementation of the proposed bilateral masking technique.

the head entity within the sentence, we place our
prompt in a more coherent position. xbase is then
fed into BERThead, yielding the representation of
the [MASK] token ep as follows:

ep = BERThead(xbase)mask (2)

The second encoder, BERTtail, performs a sim-
ilar operation on candidate tail entities and their
descriptions for entity representation. Similar to
BERThead, we adopt a prompt format and intro-
duce a new relation "is". The input format is as
follows:

xtail = [CLS]([MASK], is, t), dt[SEP ] (3)

This relation "is" signifies an equivalence relation-
ship, allowing BERTtail to predict the tail entity
based on entity t and its description dt, aiming
to obtain a robust single embedding representa-
tion for the tail entity through self-prediction.We
refer to it as a fuzzy operation. xtail is then fed
into BERTtail, generating the representation of
the MASK token as follows:

et = BERTtail(xtail)mask (4)

Finally, we calculate the similarity between ep
and et using cosine similarity. Additionally, to
employ contrastive learning, we utilize an InfoNCE
loss function(Chen et al., 2020), where the LKG

loss is defined as follows:

score = cos(ep, et) =
ep · et

||ep|| ||et||
(5)

LKG = InfoNCE(score, L) (6)

where L represents the true label of the training
dataset. In order to prevent the embeddings ob-
tained from the fuzzy operation from excessively
deviating from the original word meanings, we ap-
ply an Lalign loss to minimize the distance between
et and the original word representation, given by:

LAlign = InfoNCE(cos(et, ew), L) (7)

Here, ew denotes the embedded representation ob-
tained by averaging the original tail entity, and L
is the true label of the training dataset.

3.3 Degree compensation

Based on the research conducted in KG-
Mixup(Shomer et al., 2023), it has been observed
that the performance of the KGC task is influ-
enced by the in-degree of tail entities. Taking
inspiration from Mixup(Zhang et al., 2018), they
generated supplementary positive samples, which
were previously absent from the training dataset,
to augment entities with lower degrees. This ap-
proach effectively mitigated the degree bias issue
in structure-based methods. However, there is cur-
rently a lack of methods to generate similar ad-
ditional positive samples in description-based ap-
proaches.Drawing inspiration from SimCSE(Gao
et al., 2021), a method utilizing the dropout mecha-
nism in BERT to generate similar yet distinct sen-
tences as positive samples, we propose a similar
approach. By incorporating a contrastive learning
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framework, we effectively capture textual represen-
tations, resulting in a significant enhancement of
performance in text matching tasks. In our method,
we calculate the degrees of all entities within the
training dataset, establish a threshold value η and
repeatedly pass the corresponding head entities and
relationships of tail entities with degrees below this
threshold to BERThead k times.

T̃ =

{
Ttrain ∪

{
(h̃, r̃, t)

}k

i=1
dtail < η,

Ttrain else,
(8)

where dtail represents the in-degree of the entity
with t as the tail, (h, r, t) ∈ Ttrain represents the
original training triples, (h̃, r̃, t) is a synthetic sam-
ple, and T̃v,r denotes the new set of triples used
during training.

It is important to note that tail entities are in-
cluded only once, consistent with the KG-Mixup
research. Here, k represents the difference between
the tail entity’s degree and the threshold value η.
These repeated input-output samples are consid-
ered additional positive samples, providing some
mitigation for the issue of degree bias. The loss
term LDeg aligns with the previous KG loss (6).
The final loss of BMKGC is the weighted sum of
the losses from each task. We experimentally de-
termine the weight λ for LAlign as demonstrated
below:

L = LKG + λLAlign + LDeg (9)

4 Experiments

4.1 Experimental Setup

Dataset Ne Nr NTrain NV alid NTest

WN18RR 40943 11 86835 3034 3134
FB15K-237 14541 237 272115 17535 20466

Table 1: Statistics of the datasets.

Datasets Our experiments were conducted on
two datasets, namely WN18RR and FB15k-237.
Both FB15k-237 and WN18RR datasets are knowl-
edge graph datasets utilized for relation predic-
tion tasks. FB15k-237 was extracted from Face-
book’s Freebase data and comprises a compre-
hensive collection of entities and relations. In
contrast, WN18RR is based on the WordNet
knowledge graph, encompassing entities such as
nouns and verbs, and their corresponding rela-
tions. The primary distinctions between these two

datasets lie in their data sources and the quan-
tity of relations. FB15k-237 is derived from the
real-world Freebase knowledge graph, encompass-
ing a wide array of entities and relations. Con-
versely, WN18RR is specifically oriented towards
the domain of natural language processing, en-
compassing more precise and restricted entities
and relations. Additionally, FB15k-237 has un-
dergone a reduction in redundant and inconsis-
tent relations to enhance the overall data quality.
The statistical data is shown in Table1. In our
experiments, the state-of-the-art SimKGC(Wang
et al., 2022a) model is adopted as the baseline.
We compare our method with a set of structure-
based methods, namely TransE(Bordes et al., 2013)
, RotatE(Sun et al., 2019b), ,ConvE(Dettmers
et al., 2018), and CompGCN(Vashishth et al.,
2020). Additionally, we compare our method
with description-based approaches, including KG-
BERT(Yao et al., 2019), MTL-KGC(Kim et al.,
2020), C-LMKE(Wang et al., 2022b),KGLM(Youn
and Tagkopoulos, 2022),LP-BERT(Li et al., 2022)
and StAR(Wang et al., 2021).

Evaluation Metrics The evaluation metrics for
the link prediction task involve adopting an entity
ranking approach based on previous research. For
each tested triple (h, r, t), the prediction of the tail
entity t entails ranking all entities using the pro-
vided head entity h and relationship r. A similar
process is employed for predicting the head en-
tity. Four automatic evaluation metrics are utilized,
namely Mean Reciprocal Rank (MRR) and Hits@k
( k ∈ {1, 3, 10}). MRR represents the average re-
ciprocal rank of all tested triples, while Hits@k
calculates the proportion of correctly ranked enti-
ties within the top k positions. The reported MRR
and Hits@k values are obtained using the filtered
setting(Bordes et al., 2013), which involves the
common practice of excluding other correct enti-
ties (that also form triples in the knowledge graph)
from the list. The measurements are calculated by
averaging in both directions: head entity prediction
and tail entity prediction. In general, a good model
is expected to achieve higher MRR and Hits@k
values, as well as a lower MR.

Hyperparameters To enhance the performance
of pre-trained language models, we employ bert-
base-uncased (English) to initialize our encoder.
During training, we conduct training sessions on
WN18RR and FB15k-237 datasets using a batch
size of 512 on A800 GPU for 50 and 5 epochs,
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Method
WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

structure-based methods

TransE(Bordes et al., 2013) 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1
RotatE(Sun et al., 2019b) 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3
ConvE(Dettmers et al., 2018) 43.0 40.0 44.0 52.0 32.5 23.7 35.6 50.1
CompGCN(Vashishth et al., 2020) 47.9 44.3 49.4 54.6 35.5 26.4 39.0 53.5

description-based methods

KG-BERT(Yao et al., 2019) 21.6 4.1 30.2 52.4 - - - 42.0
MTL-KGC(Kim et al., 2020) 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8
C-LMKE(Wang et al., 2022b) 61.9 52.3 67.1 78.9 30.6 21.8 33.1 48.4
KGLM(Youn and Tagkopoulos, 2022) 46.7 33.0 53.8 74.1 28.9 20.0 31.4 46.8
LP-BERT(Li et al., 2022) 48.2 34.3 56.3 75.2 31.0 22.3 33.6 49.0
StAR(Wang et al., 2021) 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2
SimKGC(Wang et al., 2022a) 66.5 58.6 71.6 80.0 33.5 24.9 36.2 51.0

BMKGC(ours) 66.9 59.0 72.0 80.7 33.2 24.7 36.5 51.4

Table 2: Main results for WN18RR and FB15K-237 datasets. The best result for each metric and each KGE method
is shown in bold.

respectively.In our study, we solely considered the
samples within each batch as negative samples.
The learning rates are set to 9×10−5 and 1×10−5.
Moreover, we initialize the temperature τ to 0.05
and set the margin value to 0.02. In optimizing
our model, we utilize the AdamW optimizer with
linear learning rate decay.The weight λ in the loss
function is assigned a value of 0.5.

4.2 Main Results

We utilized the experimental results from
StAR(Wang et al., 2021) for embedding-based
methods, and we obtained the results of
SimKGC(Wang et al., 2022a) through its corre-
sponding code. The optimal outcomes for other
models were extracted from the experimental data
presented in their respective papers. In Table2,
our proposed BMKGC demonstrated significant ad-
vancements in all metrics for the WN18RR dataset,
reaching a state-of-the-art level. The Hits@10 met-
ric has demonstrated a notable enhancement to
80.7, surpassing the robustness of all prior mod-
els. This improvement can be credited to the uti-
lization of a fuzzy operation that effectively por-
trays entities and acquires superior individual em-
bedding representations. Consequently, it empow-
ers the model to achieve a more comprehensive
comprehension of entities with lengthier names,
thereby augmenting the overall robustness of the
model.Moreover, the Hits@1 metric has also in-
creased to 59.0, indicating enhanced precision.
This improvement can be ascribed to our prompt de-

sign, which leverages the closer proximity between
known entities and predicted entities, resulting in
more accurate predictions made by the model.

When comparing BMKGC to the baseline
SimKGC on the FB15k-237 dataset, it performs
better in Hits@3 and Hits@10 but exhibits a de-
crease in other metrics. However, our performance
in FB15k-237 is better than other description-based
methods.We believe this is primarily attributed to
two factors. Firstly, unlike other datasets, FB15k-
237 contains a lower number of entities (14,541)
and relations (237), resulting in a denser graph
structure with an average degree of approximately
37 for each entity. This suggests the presence of
multiple relationships per entity, which are more
intricate and cannot be simply explained by a sin-
gle word but require the combination of multiple
words. This complexity poses a challenge for the
encoder as it struggles to comprehend and process
such multilayered relationships. Furthermore, (Cao
et al., 2021) remarked that numerous connections
in the FB15k-237 dataset cannot be predicted based
on the available information.

5 Analysis

Prompt In contrast to previous methods that rely
on descriptions, our prompt aims to reduce the dis-
tance between the predicted tail entity, the head
entity, and their relationship. We hypothesize that
this approach strengthens the association between
the entities, thereby improving the model’s ability
to make description-based predictions. To vali-
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w/ prompt
(Paris,Attraction,[MASK])Paris:the enchanting capital of France,known for its rich history...

([MASK],is,Eiffel Tower)Eiffel Tower: an iconic symbol of Paris,stands tall as a testament to architectural...)

w/o prompt
(Paris:the enchanting capital of France,known for its rich history...,Attraction,[MASK])

([MASK],is,Eiffel Tower: an iconic symbol of Paris, stands tall as a testament to architectural...)

w/ pooling
Paris:the enchanting capital of France,known for its rich history...,Attraction,[MASK]

Eiffel Tower: an iconic symbol of Paris, stands tall as a testament to architectural...

w/ token_id
ent_id_i:the enchanting capital of France,known for its rich history...,Attraction,[MASK]

ent_id_j: an iconic symbol of Paris, stands tall as a testament to architectural..

Table 3: Various methods employ distinct input formats.

date this hypothesis, we designed a control groups
with specific inputs (h, dh, r, [MASK]) . Table
3 illustrates the input formats for the prompts we
proposed in the BERThead and BERTtail models
in the first row, while the second row shows the
input format without prompts.Keeping all other pa-
rameters consistent, we conducted experiments on
the WN18RR dataset. In Table4,the results clearly
demonstrate that the performance on each metric
is significantly lower when compared to our pro-
posed prompt. This provides substantial evidence
supporting the effectiveness of BMKGC.Designing
prompts in this manner offers an additional advan-
tage by effectively addressing the max_length con-
straint of the tokenizer. In the absence of prompts,
there would be a necessity to predefine the length
of entity descriptions. However, this approach
presents a risk of potentially excluding the [MASK]
token when the descriptions exceed the maximum
input length defined by the tokenizer. Moreover,
establishing a predetermined description length in
advance is deemed as detrimental to the model’s
performance.

MRR Hits@1 Hits@3 Hits@10
w/ prompt 66.9 59.0 72.0 80.7
w/o prompt 62.3 54.9 66.3 75.9

Table 4: Analysis of prompt on the WN18RR dataset.

Bilateral Masking We have implemented a
novel methodology for representing candidate en-
tities, which distinguishes itself from previous
descriptive-based methods by introducing a fuzzy
operation to manipulate the predicted forms of the
candidate tail entities. Table 3 presents the appli-
cation of average pooling for entities in the third
row, while the last row showcases the substitution
of the original entities with special token_id. In

Method MRR Hits@1 Hits@3 Hits@10
MASK 66.9 59.0 72.0 80.7
Pooling 62.3 53.0 68.0 79.1
token_id 64.7 55.9 70.2 80.3

Table 5: Analysis of approach for handling entities on
the WN18RR dataset. MASK is the bilateral masking
method proposed by us. Pooling is the average pooling
applied to candidate entities. Token_id is used to replace
the original entity name with the entity reference ID

this instance, i and j correspond to the entity id of
Paris and Eiffel Tower, respectively, in the dataset.
Table 5 reveals that our proposed BMKGC method
outperforms the other two approaches across all
metrics, exhibiting particularly substantial enhance-
ments in Hits@1. These findings indisputably es-
tablish the effectiveness of our BMKGC model.
Additionally, we observe that Average Pooling un-
derperforms, suggesting its inability to replicate
the pooling technique employed in sentence-based
matching methods within word-based matching ap-
proaches. This limitation negatively impacts the
representation of words, directly diminishing the
model’s performance.

Degree bias In Figure3, we analyze the perfor-
mance of BMKGC and BMKGC without addi-
tional positive samples on WN18RR. The x-axis
represents the degree of the tail entities that require
completion, which is derived from the training set.
We categorize them into four groups since enti-
ties with a degree exceeding one hundred are not
within the scope of the degree bias problem in our
research. The y-axis represents the mean recipro-
cal rank (MRR) of each group. By conducting a
comparison, it is evident that the inclusion of extra
positive samples enhances the MRR for entities
with lower degrees, corroborating the effectiveness

246



Figure 3: Analysis of using degree compensation dif-
ferent degree groups in terms of MRR on the WN18RR
dataset.

of our proposed method in mitigating the degree
bias issue to some extent.

Alignment loss ration We conducted an inves-
tigation into the potential constraining effect of
alignment loss on the prediction of BERTtail. In
Table6, we employed an annotation scale λ with
values ranging from 0 to 1, including 0, 0.25, 0.5,
0.75, and 1. It was observed that both excessively
small and large values of λ adversely impacted
the model’s prediction accuracy. In the case of a
small λ, the predictions made by BERTtail devi-
ated from the true meaning of the word and exhib-
ited an undue bias towards the expected answer.
Conversely, a large λ value weakened the repre-
sentation of entities. As a result of our analysis,
we selected λ=0.5 as it yielded the best overall
performance.

Loss Ration MRR Hits@1 Hits@10
λ = 0 65.8 57.8 80.3

λ = 0.25 66.4 58.3 80.5
λ = 0.5 66.9 59.0 80.7
λ = 0.75 66.4 58.4 80.1
λ = 1 66.1 57.8 80.3

Table 6: Performance comparison on the WN18RR
dataset across the different loss ratio .

6 Conclusion

This paper proposes BMKGC, a method that ef-
fectively enhances entity representation by pre-
dicting candidate entities during training to obtain

improved single embedding representations. Fur-
thermore, we propose a simple method to increase
positive samples, thus alleviating the issue of de-
gree bias in the knowledge graph. Extensive ex-
perimental results convincingly demonstrate that
our approach achieves state-of-the-art performance.
In future research, we will concentrate on explor-
ing entity-related information within the PLM, re-
ducing the impact of noise generated during pre-
training, and further advancing entity representa-
tion.

Limitations

Our proposed method optimizes the representa-
tion of entities by using bilateral masking and
prompts to enhance the model’s prediction. Fur-
thermore, we introduce dropout as a means to
mitigate the degree bias issue in the knowledge
graph. Our method demonstrates significant per-
formance improvements; however, it comes with
associated costs in terms of time and computational
resources. In the BERThead section, the positions
of [MASK] in the input are stored and later re-
trieved during output processing due to varying en-
tity lengths. Moreover, the inclusion of additional
positive samples slightly increases the computa-
tional resources requirement of our model com-
pared to the one without them. Nonetheless, these
costs are deemed acceptable in practice. Moreover,
our research did not explore hrad negative samples
beyond those within the batch. We consider this
as a potential future research direction, aiming to
delve into more challenging negative samples and
enhance entity representation.
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