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Abstract

There exists a discrepancy between the token-
level objective during training and the overall
sequence-level quality that is expected from
the model. This discrepancy leads to issues
like exposure bias. To align the model with
human expectations, sequence-level objectives
are often used to fine-tune pre-trained mod-
els. In this paper, we introduce a contrastive
preference model that enhances the traditional
Plackett-Luce model by incorporating an indi-
cator function. Building upon this novel pref-
erence model, we propose Contrastive Prefer-
ence Learning (CPL), which uses offline sam-
ples with list-wise preferences to fine-tune a
pre-trained model in Neural Machine Trans-
lation. Our experiments, conducted on three
language pairs, demonstrate that CPL outper-
forms not only the vanilla Transformer model
but also other token-level and sequence-level
baselines. Furthermore, the ablation study
highlights the essential role of the proposed
indicator function in achieving this improve-
ment.

1 Introduction

Neural Machine Translation (NMT) models (Bah-
danau et al., 2014), like many other text genera-
tion tasks, are typically trained using teacher forc-
ing and the token-level Maximum Likelihood Es-
timation (MLE) as the objective function. How-
ever, there exists a discrepancy between this train-
ing approach and the actual goal of a sequence
generation system, which is to improve sequence-
level quality as measured by evaluation metrics
like BLEU, or human evaluation. One issue stem-
ming from this disparity is exposure bias (Bengio
et al., 2015; Ranzato et al., 2016; Wang and Sen-
nrich, 2020; Korakakis and Vlachos, 2022). Wang
and Sennrich (2020) also link this discrepancy to
other issues observed in NMT: hallucination, do-
main shift, and beam search curse (Koehn and

Knowles, 2017). This same discrepancy is the un-
derlying reason behind the topic of alignment in
Large Language Models (LLMs). Aligning LLMs
with human expectations has been recognized as
an important objective for future Artificial General
Intelligence (AGI)1, leading to an active research
area (Wang et al., 2023). Approaches developed
in both domains can be mutually beneficial.

To mitigate this discrepancy, sequence-level ob-
jectives are often used to fine-tune a pre-trained
model (Edunov et al., 2018). There are two lines
of related research: Reinforcement Learning (RL)
with online samples and Supervised Learning with
offline samples.

In the approach using RL with online samples,
samples are refreshed by drawing from the model
at every training step. This approach has been
extensively discussed in NMT. MIXER (Ranzato
et al., 2016) and Minimum Risk Training (MRT)
(Shen et al., 2016) are two prominent implemen-
tations. However, there is still ongoing debate
regarding the stability and effectiveness of these
solutions (Choshen et al., 2020; Kiegeland and
Kreutzer, 2021). In LLMs, the use of Reinforce-
ment Learning with Human Feedback (RLHF)
(Ouyang et al., 2022; Touvron et al., 2023) is com-
mon. The reward function for RL is trained using
offline preference samples labeled by human ex-
perts, but online samples are still used during the
RL phase. Methods utilizing online samples are
significantly slower than offline ones.

The alternative approach is Supervised Learn-
ing with offline samples. These samples are drawn
from the pre-trained model once and then ranked
and used as training data to fine-tune the model
with Supervised Learning. Unlike online sam-
ples, these offline samples are not refreshed dur-
ing training. This method has been explored in

1https://openai.com/blog/
introducing-superalignment
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text summarization through Contrastive Learning
with list-wise ranking (Sun and Li, 2021; Liu
et al., 2022; Zhao et al., 2022). In LLMs, Direct
Preference Optimization (DPO) 2 (Rafailov et al.,
2023) uses a loss function which has been theo-
retically proven equivalent to RL with preference
data. However, their experiments primarily focus
on pair-wise preference rather than list-wise rank-
ing.

Our proposal, Contrastive Preference Learning
(CPL), follows the second approach since it is
more efficient and stable compared to the RL with
online samples. We begin by augmenting the clas-
sic list-wise Plackett-Luce (PL) preference model
(Plackett, 1975; Luce, 1959) with an indicator
function. This indicator function incorporates a
constraint commonly used in contrastive learning
to prevent overfitting. Then, the training objec-
tive is derived by applying the reward function in
DPO to this augmented PL model. Our experi-
ments consider three language pairs and compare
CPL against various baselines. These baselines in-
clude the vanilla Transformer, Contrastive Learn-
ing and DPO with offline list-wise ranking, two on-
line sequence-level methods (MIXER and MRT),
and three token-level methods aimed at mitigating
the exposure bias. The results show that CPL sig-
nificantly outperforms the vanilla Transformer and
achieves the best performance among all methods.
The ablation study shows the crucial role played
by the proposed indicator function.

2 Related Work

2.1 Exposure Bias and Alignment

The discrepancy between the training with teacher
forcing and normal inference is well recognized
in NMT. Exposure bias is often regarded (Bengio
et al., 2015; Ranzato et al., 2016) as a consequence
of this discrepancy. The existence of exposure bias
has been proven by Wu et al. (2018) and Korakakis
and Vlachos (2022) through the measurement of
error accumulation. Wang and Sennrich (2020)
provide indirect evidence for exposure bias with
the experiments showing that MRT as a sequence-
level objective can improve performance. Besides
NMT, Chiang and Chen (2021) and Arora et al.
(2022) quantify exposure bias in text completion.

In LLMs, this discrepancy often leads to a re-
search topic known as alignment, which has been

2https://huggingface.co/docs/trl/main/
en/dpo_trainer

recognized as an important objective for the future
Artificial General Intelligence (AGI). Wang et al.
(2023) provide a comprehensive overview of align-
ment technologies.

2.2 Token-Level Approach
To mitigate the exposure bias, the token-level ap-
proach exposes the model to its predictions be-
sides the ground truth. Scheduled Sampling (SS),
introduced by Bengio et al. (2015), dynamically
draws samples from the model’s predictions and
replaces the ground truth tokens. Mihaylova and
Martins (2019) implement SS to the Transformer
architecture (Vaswani et al., 2017). Additionally,
Liu et al. (2021) propose Confidence-Aware Sched-
uled Sampling (CASS), which improves the per-
formance by selecting samples based on the log
probability of the ground truth token. Further-
more, Goodman et al. (2020) introduce TeaForN,
which utilizes a stack of decoders to update the
model based on multiple prediction steps. There
are some doubts about SS. Huszár (2015) proves
that SS has an improper training objective. Some
experiments (Mihaylova and Martins, 2019; Ko-
rakakis and Vlachos, 2022) show that SS performs
worse than teacher forcing. These methods are im-
plemented as baselines in our experiments.

2.3 Sequence-Level Approach
The sequence-level approach uses a sequence-
level loss function and directly maximizes the total
quality of the generated sequences. There are two
categories of approaches.

One is Reinforcement Learning (RL) with on-
line samples that are dynamically generated from
the model during training. Ranzato et al. (2016)
propose MIXER, which is based on a basic RL al-
gorithm called REINFORCE. MRT (Shen et al.,
2016; Wang and Sennrich, 2020) aims to minimize
the expected discrepancy between the gold refer-
ences and the model predictions. These online
sampling methods need to generate samples token-
by-token during training. According to Edunov
et al. (2018), the online setting is 26 times slower
than the corresponding offline setting. Further-
more, there has been some debate regarding these
methods. Choshen et al. (2020) identify multi-
ple weaknesses of MIXER and MRT, suspecting
that they do not optimize the expected reward.
However, Kiegeland and Kreutzer (2021) have
provided empirical evidence contradicting these
claims. In LLMs, RLHF (Ouyang et al., 2022)
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uses samples ranked by human experts to align the
output of LLMs with human intent. These pref-
erence samples are used to train a reward model,
which is used by RL to fine-tune the LLM. This
method has been widely used in LLMs such as
LLama2 (Touvron et al., 2023).

The other approach is Supervised Learning with
offline samples drawn from the pre-trained model
before fine-tuning. There is a line of research
that uses Contrastive Learning (CL) with list-wise
ranking for the task of text summarization (Sun
and Li, 2021; Liu et al., 2022; Zhao et al., 2022).
In NMT, Edunov et al. (2018) introduce a mar-
gin loss in their comprehensive overview of clas-
sic sequence-level loss functions. This margin loss
is similar to CL. However, they conduct experi-
ments using a Recurrent Neural Network (RNN)
instead of a Transformer. Another example using
offline ranked samples in NMT is Lee et al. (2021).
However, they use the ranking samples to train a
separate reranking model in addition to the trans-
lation model, which incurs additional complexity
and computation. Yang et al. (2019) and Pan et al.
(2021) apply CL to NMT, but they address specific
issues, namely word omission errors and interim
presentation for many-to-many multilingual NMT,
respectively. In LLMs, Rafailov et al. (2023) pro-
posed Direct Preference Optimization (DPO) with
a loss function that is theoretically equivalent to
RL with offline preferences. Their solution and
experiments mainly focus on the case of two pref-
erences, i.e., good or bad. The loss function and
its gradient are illustrated in Appendix A.

3 Preliminaries

3.1 The Plackett-Luce Model

The Plackett-Luce model is a preference model
used to model list-wise ranking data and is widely
used in list-wise Learning-To-Rank (LTR) meth-
ods (Cao et al., 2007; Xia et al., 2008; Ma et al.,
2021) for building the ranking system. Let x be
the input context, which is the source sentence in
the case of NMT. Let y1, ..., yK denote a set of
K samples, and let τ be a permutation that repre-
sents the list-wise ranking of these samples. τ(k)
refers to the k-th sample in the ranking, where a
smaller k indicates a better sample. According to
the Plackett-Luce model, the probability of observ-
ing a specific ordered list can be defined as fol-
lows:

p(τ | y1, ..., yK , x) =

K−1∏

k=1

eS(x,yk)

ΣK
j=ke

S(x,yj)
, (1)

where S(x, yk) is a utility score function. This
function might be implicit in the case of human
evaluation.

3.2 Contrastive Learning Using List-Wise
Ranking

The key component in Contrastive Learning (CL)
is the max function, defined as:

max{0, ρ+ Snegative − Spositive}, (2)

where Snegative and Spositive are scores for nega-
tive and positive samples, ρ is a hyperparameter
for the margin.

The loss function for CL using list-wise ranking
(Liu et al., 2022) is:

LCL
list =

K∑

k=1

K∑

j=k+1

max(0, ρ+log pθ(yj |x)−log pθ(yk |x)),
(3)

where pθ is the conditional probability of a se-
quence, ρ=λ |k−j |, λ is a hyperparameter.

This max function implies that when the score
of the negative sample plus a margin is smaller
than the score of the positive sample, the loss is
zero.

4 Our Approach

4.1 Contrastive Preference Model
When directly using the PL model and maximizing
the probability, the log probability of positive sam-
ples is maximized, while the log probability of neg-
ative samples is minimized. It occurs even when
the positive samples already have higher probabil-
ities than the negative samples, potentially leading
to overfitting and conflicting with the requirements
of other samples. To address this, we propose an
augmented PL model that incorporates an indica-
tor function, referred to as the contrastive prefer-
ence model. The probability of observing a spe-
cific ordered list is defined as follows:

pθ(τ | y1, ..., yK , x) =
K∏

k=1

eS(x,yk)

ΣK
j=kI(yk, yj , x)e

S(x,yj)
, (4)

where the indicator function, which is inspired by
contrastive learning, is defined as:
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I(yk, yj , x) ={
0 if max(0, ρ+ log pθ(yj | x)− log pθ(yk | x)) = 0,

1 otherwise

(5)

and ρ = λ | k − j |, λ is a hyperparameter.
Under this condition, the training objective

shifts from maximizing the separation between the
log probabilities of positive and negative samples
to satisfying the margin requirement. Once the
margin is met, this objective does not push the
samples further apart. Theoretically, this approach
prevents overfitting to samples that already satisfy
the given conditions, allowing for parameter ad-
justments within the model to satisfy the require-
ments of other samples.

4.2 Contrastive Preference Learning
This section introduces Contrastive Preference
Learning (CPL) as a novel approach based on the
contrastive preference model. CPL aims to max-
imize the expected probabilities within the con-
trastive preference model. This optimization goal
can be expressed equivalently as minimizing the
following loss function:

LCPL
list =

− E(x,y1,...,yk)∼D[log
K∏

k=1

eSθ (x, yk)∑K
j=k I(yk, yj , x)e

Sθ(x,yj)
],

(6)

where D represents the training data set, and θ de-
notes the parameters of the model being trained.

One interesting candidate for the utility score
function in Eq. 8 is the reward function derived by
DPO. Their derivations reveal a surprising conclu-
sion: optimizing a preference model with this re-
ward function is theoretically equivalent to RLHF.
This approach allows for bypassing the explicit re-
ward modeling step and eliminates the need for
performing reinforcement learning. The detailed
derivations can be found in their paper (Rafailov
et al., 2023).

The derived reward function is given by:

rθ(x, y) = βlog
pθ(y | x)
pref (y | x) , (7)

where pθ is the probability in the current model
being trained and pref is the probability in the pre-
trained model used to draw offline samples, β is a

hyperparameter used as the weight of the implicit
constraint term of the KL divergence.

By replacing the utility score function with this
reward function, we obtain the loss function for
CPL:

LCPL
list (pθ; pref ) =

− E(x,y1,...,yk)∼D[log
K∏

k=1

erθ(x,yk)∑K
j=k I(yk, yj , x)e

rθ(x,yj)
].

(8)

Since pref is independent of θ, we can compute
the gradient for Eq. 7 as follows:

∇θrθ(x, yk) = β∇θ log pθ(yk | x). (9)

Meanwhile,

erθ(x,yj) = (
pθ(yj | x)
pref (yj | x) )

β . (10)

So, the gradient for the CPL loss function is:

∇LCPL
list (pθ; pref ) =

− E(x,y1,...,yk)∼D

K∑

k=1

[β∇θ log p(yk | x)−

β
∑K

j=k I(yk, yj , x)(
pθ(yj |x)

pref (yj |x) )
β∇θ log p(yj | x)

∑K
j=k I(yk, yj , x)(

pθ(yj |x)
pref (yj |x) )

β
].

(11)

This equation offers insight into how the indica-
tor function influences the training process. For
each sample k in the ranking, its gradient com-
ponent is determined by subtracting a weighted
average of itself and the samples following it in
the ranking from its own gradient. The weight
assigned to each sample is defined by the expo-
nential function of its implicit reward: erθ(x,y) =

( pθ(y|x)
pref (y|x))

β . Without this indicator function, all
negative samples contribute to the loss function,
even if their probabilities are already smaller than
their corresponding positive samples. It can result
in the model overfitting to this specific list of sam-
ples. However, when the indicator function is in-
cluded, these negative samples are excluded from
the loss function, preventing overfitting and leav-
ing space for optimization of other samples.

With some algebra, we can prove that the gradi-
ent of list-wise ranking with K = 2 and without
the indicator function is equivalent to the pair-wise
preference in DPO. This finding confirms the con-
sistency of our derivation with DPO. The deriva-
tion is described in Appendix B.
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4.3 Regularization Term
To prevent the finetuning model from deviating too
much from the pre-trained model, we use a regu-
larization term based on Cross Entropy (CE). We
use the Negative Log-Likelihood (NLL) with La-
bel Smoothing for this term (Edunov et al., 2018):

LCE = −
n∑

i=1

log p(yi|x, y<i)−DKL(f ∥ p(yi|x, y<i)),

(12)

where f = 1
V is uniform prior distribution over all

tokens in the vocabulary with the size of V .
The loss function of CPL with this regulariza-

tion term is

LCPL = αLCPL
list + LCE . (13)

4.4 Relation with DPO
Rafailov et al. (2023) discussed DPO with list-
wise preference. The loss function is:

LDPO
list

(pθ ;pref )=

− E(x,y1,...,yk)∼D[log
K∏

k=1

erθ(x,yk)∑K
j=k e

rθ (x, yj)
].

(14)

Comparing Eq. 14, Eq. 8, and Eq. 13, we can
find that if we remove the indicator function and
the regularization term, CPL is reduced to DPO
with list-wise preference. Our experimental re-
sults show the significance of these two factors in
achieving optimal system performance.

5 Experiments

5.1 Datasets
In our experiments, we use the corpora from
WMT3. Wang and Sennrich (2020) claim that the
methods reducing exposure bias with sequence-
level objectives, such as MRT, can particularly en-
hance the model’s resilience to domain shift. To
evaluate this claim, we conduct Out-Of-Domain
(OOD) tests on De–En and Ru–En language pairs.

For De–En, we use Europarl v7, News-
commentary-v12, and Common Crawl for training
(4.6 million sentences), Newstest2014 for valida-
tion, and Newstest2021 and EMEA4 for in-domain
and OOD testing respectively.

For Fr–En, we use Europarl v7, News-
commentary-v10, and Common Crawl for training

3http://www.statmt.org
4https://opus.nlpl.eu/EMEA.php

(5.4 million sentences), Newstest2013 for valida-
tion, and Newstest2014 for testing.

For Ru–En, we use ParaCrawl v9, News-
commentary-v10, and Common Crawl for train-
ing(13.1 million sentences), Newstest2014 for val-
idation, Newstest2021 for testing. The OOD tests
for Ru–En use the test sets for the Biomedical
Translation Task in WMT225.

These original datasets are first filtered. 350 mil-
lion sentences are randomly selected with the con-
ditions below:

• The length of source and target sentences are
within the range of 5 to 300.

• The disparity between the length of the
source and target sentences does not exceed
five times.

To get the offline preference samples for fine-
tuning, we use the pre-trained model to translate
all training sentences. For each sentence, we gen-
erate eight n-best hypotheses based on their se-
quence probabilities. If all eight hypotheses re-
ceive BLEU scores lower than 15, we remove the
corresponding sentence. The number of sentence
pairs for each language pair is as follows: De–En
2.6 million, Ru–En 2.9 million, Fr–En 2.7 million.

We construct five preferences for each sentence
in the filtered training data. The eight hypotheses
from the pre-trained model are ranked according
to their BLEU scores against the gold reference.
We then choose the hypotheses with even orders
(0, 2, 4, 6) as our list-wise ranked preferences. Be-
sides, the reference sentence is always placed at
the beginning of the list. In total, we generate five
preferences for each sentence.

5.2 Systems
We implement Contrastive Preference Learning
(CPL) described in Section 4.2. We use λ = 0.1
as Liu et al. (2022) and β = 1 as Rafailov et al.
(2023).

We selected the weight α of CPL by monitor-
ing the values of the loss components CE and CPL
during training. We started from α = 1 and found
the value of CE loss increases in training, showing
the deviation. Therefore, we selected an α < 1 for
CPL so that the CE term has a larger weight than
CPL. We settled on α = 0.1 since it worked well
to justify the method.

5https://www.statmt.org/wmt22/
biomedical-translation-task.html
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De–En (In-Domain) De–En (OOD) Ru–En (In-Domain) Ru–En (OOD)
Metrics BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet

Baselines
TX 31.29 49.68 76.60 25.86 41.64 67.95 30.35 49.68 75.07 35.01 51.93 75.06

SS 31.70 50.19 76.83 26.25 42.17 68.33 30.32 49.54 75.07 35.61 52.38 75.17

CASS 31.53 50.15 76.82 26.76 42.07 68.28 30.38 49.81 75.37 35.86 52.17 75.19

TFN 31.54 50.16 77.11 26.40 42.11 68.49 30.67 49.71 75.20 35.92 52.20 75.12

MIXER 31.71 50.15 76.83 26.62 42.23 68.47 30.12 49.65 75.35 35.60 52.19 75.34

MRT 31.37 50.11 77.01 26.40 42.11 68.20 30.32 49.53 75.16 36.37 52.81 75.29

CL 31.50 49.99 76.88 26.16 41.65 68.17 30.50 49.86 75.42 35.89 52.38 75.35

LDPO 0.19 9.25 43.35 0.10 7.05 31.55 0.07 2.14 28.58 0.04 2.38 28.29

Our Proposal
CPL 31.73 50.26 76.84 26.72 42.28 68.52 31.09 50.02 75.40 36.26 52.82 75.35

∆ (-TX) 0.44 0.58 0.24 0.86 0.64 0.57 0.74 0.34 0.33 1.25 0.89 0.29
CPL w/o IF 31.37 50.01 76.73 26.29 41.86 68.32 30.91 50.00 75.19 35.75 52.57 75.43

∆ (-TX) 0.08 0.33 0.13 0.43 0.22 0.37 0.56 0.32 0.12 0.74 0.64 0.37

Table 1: Performance of different methods. The scores of CPL and those better than CPL are highlighted in Bold,
while the scores that are worse than the vanilla Transformer (denoted as TX) are shown in Italic. ∆ denotes the
gain compared to TX.

Fr–En
Metrics BLEU Meteor Comet

TX 35.00 53.01 78.76

SS 35.17 53.17 78.89

CASS 35.25 53.18 78.75

TFN 34.97 52.99 78.85

MIXER 34.70 52.90 78.75

MRT 34.97 53.18 78.84

CL 34.99 52.89 78.71

LDPO 0.07 6.2 39.5

CPL 35.29 53.25 79.02
∆ (-TX) 0.29 0.24 0.26

CPL w/o IF 34.99 52.95 78.81

∆ (-TX) -0.01 -0.06 0.05

Table 2: Performance of different methods for Fr–En.
The denotations are the same as in Figure 1.

To conduct the ablation study, we implemented
a variant of CPL without the indicator function.
This system is denoted as CPL w/o IF.

We implement two methods using list-wise
ranking that have not been explored in NMT to
the best of our knowledge.

• CL is List-wise Contrastive Learning as de-
scribed in Section 3.2. Its loss function in-
cludes the same regularization term as CPL:
LCL = αLCL

list + LCE .

• LDPO is list-wise DPO (Rafailov et al.,
2023), which is defined by Eq. 14 in Sec-
tion 4.4.

We compare our methods to the vanilla Trans-
former model and reimplement five methods intro-
duced in Section 2 for comparison.

• TX is the vanilla Transformer.

• SS (Scheduled Sampling) (Mihaylova and
Martins, 2019): We use Inverse Sigmod De-
cay for scheduling same as Liu et al. (2021).

• CASS (Confidence-Aware Scheduled Sam-
pling) (Liu et al., 2021): We use its best con-
figuration in their paper.

• TFN (Goodman et al., 2020): We use 0.4
as the second decoder’s weight according to
their recommendation.

• MIXER (Ranzato et al., 2016): Our imple-
mentation follows Kiegeland and Kreutzer
(2021).

• MRT (Shen et al., 2016): We use four candi-
dates and do not include the gold reference,
same as Wang and Sennrich (2020).
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(a) The loss on validation set (b) The loss of token-level cross entropy

(c) The loss of DPO (d) The total loss

Figure 1: Investigate the components in the loss function for CPL for De–En for 30 epochs

(a) The loss on validation set (b) The accuracy on validation set

(c) The loss of token-level cross entropy (d) The loss of DPO

Figure 2: Investigate the components in the loss function of DPO only for De–En for 30 epochs
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5.3 Implementation Details
Our implementation is based on the Fairseq toolkit
(Ott et al., 2019) using a typical configuration 6

similar to the original Transformer (Vaswani et al.,
2017). The Transformer Base model with about
60 million parameters is used. Both the dropout
rate and the label smoothing are set to 0.1. We use
the BPE (Sennrich et al., 2015) mode in Sentence-
Piece7 for subwords with 32,000 updates and use
a shared vocabulary for source and target. Decod-
ing is performed using beam search, with a beam
size of five.

The pre-trained model is trained for a minimum
of 20 epochs on the filtered data set described in
Section 5.1, stopping if the validation loss does
not decrease for 20 consecutive epochs. For fine-
tuning, we adopt the same early-stop policy as
Choshen et al. (2020), where the process is termi-
nated if the validation loss does not decrease for
ten consecutive epochs.

The CPL approach uses offline samples. As de-
scribed in Section 2.3, using offline samples is 26
times slower than using online samples, accord-
ing to Edunov et al. (2018). In our experiments,
MIXER using online samples takes 25 minutes to
finish 100 iterations, while the CPL with offline
samples only takes 1.5 minutes, which is 17 times
faster. The training speeds are close for all meth-
ods using offline samples, including list-wise con-
trastive learning and token-level methods such as
SS, CASS, and TFN. For example, CASS takes
one minute and ten seconds to finish 100 iterations,
while the CPL takes 1.5 minutes.

5.4 Evaluation and Results
We evaluate the performance of the methods us-
ing three metrics: BLEU, Meteor, and Comet. For
BLEU, We use SacreBLEU 8 (Post, 2018) 9. Ver-
sion 1.5 of Meteor 10 is used, and for Comet, we
use the wmt22-comet-da model11.

Table 1 illustrates the performance of methods
for De–En and Ru–En.

The vanilla Transformer model is a strong base-
line. For example, the experiments of Mihaylova
and Martins (2019); Goodman et al. (2020) show

6https://github.com/facebookresearch/
fairseq/tree/main/examples/scaling_nmt

7https://github.com/google/
sentencepiece

8https://github.com/mjpost/sacreBLEU
9case.mixed+numrefs.1+smooth.exp+tok.13a+version.2.3.1

10http://www.cs.cmu.edu/~alavie/METEOR/
11https://github.com/Unbabel/COMET

very little gains in their experiments. Wang and
Sennrich (2020) show gains in the out-of-domain
tests but not on the in-domain tests.

Comparatively, CPL outperforms the vanilla
Transformer model in all three metrics for all lan-
guage pairs. It generally achieves the best perfor-
mance when compared to other baselines. Addi-
tionally, the experiments on Out-of-domain tests
show greater improvements than the in-domain
tests. This result aligns with the conclusions of
Wang and Sennrich (2020), suggesting that the ex-
posure bias issue is more pronounced in out-of-
domain scenarios. CPL using a sequence-level ob-
jective can alleviate this issue.

While CL with list-wise ranking also outper-
forms the vanilla Transformer model and demon-
strates its efficacy in improving NMT, its gains are
generally lower than CPL.

DPO with list-wise preference performs poorly
in all tests, scoring below 0.2 in BLEU scores. The
analysis in Section 2.3 illustrates its significant de-
viation from the pre-trained model, even when ap-
plying the highest weight value (5) for the KL di-
vergence term, as mentioned in their study. Ta-
ble 2 shows the performance of different methods
for Fr–En, which gets consistent conclusions with
the previous findings.

6 Analysis

6.1 Loss Components in CPL

Figure 1 shows the components in the loss func-
tion of CPL for De–En during training. Both the
CPL loss component (Figure 1c) and the token-
level cross entropy (Figure 1b) steadily decrease.
These figures demonstrate the effectiveness of the
CPL loss function presented in Section 4.2.

6.2 DPO Alone Deviates from the
Pre-Trained Model

Figure 2 illustrates some information on training
the DPO-only model for De–En. Figure 2a and
Figure 2c demonstrate that the token-level loss on
the validation set and on the train data CPL w/o
IF significantly higher than expected during an ef-
fective training process, as illustrated in Figure 1a
and Figure 1b for the CPL model. Furthermore,
Figure 2b shows a much lower accuracy of around
30 compared to the typical accuracy of 60 or above
achieved during training. These findings indicate
that the DPO model deviates from the pre-trained
model. Additionally, despite using a large weight
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β in the experiment, the implicit KL divergence
term in DPO has no substantial effect.

6.3 Ablation Study
The ablation model CPL w/o IF is a variant of
CPL, differing only in the absence of the indicator
function. The results in Table 1 and Table 2 show
that the improvements achieved by CPL w/o IF
are considerably smaller than those of CPL. This
finding highlights the significance of the indica-
tor function in our proposed contrastive preference
model and contrastive preference learning.

7 Conclusion

Using the sequence-level objective to fine-tune a
pre-trained model is a promising way to align the
model, trained with a token-level objective, with
human expectations for high sequence-level qual-
ity. We augment the classic Plackett-Luce model
with an indicator function. Based on this novel
contrastive preference model, we propose Con-
trastive Preference Learning (CPL), which uses
offline samples with list-wise preference to fine-
tune a pre-trained model. Our experiments on
three language pairs demonstrate that CPL out-
performs the vanilla Transformer model and other
token-level and sequence-level baselines. The pro-
posed indicator function applies a constraint used
in contrastive learning to prevent overfitting. Its
crucial role is demonstrated in our ablation study.

Limitations

One limitation of this study is the influence of
batch size on performance. Increasing the batch
size has the potential to improve contrastive learn-
ing (Chen et al.). However, due to the limited
memory capacity of our GPUs, we used a maxi-
mum batch size of 6000 tokens. Therefore, the
impact of larger batch sizes was not extensively in-
vestigated in this study.
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A DPO for Pair-Wise Preference

The loss function of DPO for pair-wise preference
is as follows:

LDPO(pθ; pref ) = −E(x,yw,yl)∼D

[logσ(β log
pθ(yw | x)
pref (yw | x) − β log

pθ(yl | x)
pref (yl | x)

)],

where yw and yl are positive samples (win) and
negative samples (lose) in preferences.

Its gradient with respect to the parameters θ is

∇θLDPO(pθ; pref ) = −βE(x,yw,yl)∼D[σ(rθ(x, yl)

− rθ(x, yw))[∇θlogp(yw | x)−∇θlogp(yl | x)]],
(15)

where,

σ(x) =
1

1 + e−x
, rθ(x, y) = βlog

pθ(y | x)
pref (y | x) . (16)

The weight term σ(rθ(x, yl)−rθ(x, yw)) can be
reformulated as

1

1 + z−β
,

z =

pθ(yl|x)
pref (yl|x)
pθyw|x

pref (yw|x)
=

pθ(yl | x)
pθ(yw | x) · pref (yw | x)

pref (yl | x)
.

(17)

This shows that the weight term in the gradient
of PDO is determined by the relative change in
sequence probability between the positive sample
yw and the negative sample yl in both the cur-
rent model and the pre-trained model. Behind
the DPO’s objective, they use the Bradley-Terry
model, which calculates the probability of prefer-
ence with a reward function:

p(y1 ≻ y2 | x) = er(x,y1)

er(x,y1) + er(x,y2)

= σ(r(x, y2)− r(x, y1))

(18)
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B Gradience of CPL with List-Wise
Ranking Reduced to DPO with
Pair-Wise Preference

A list-wise ranking with only two samples is re-
duced to a pair-wise preference. The following
derivation proves that the gradient of a special
CPL (Eq. 11) with K = 2 and without the indi-
cator function is equivalent to the pair-wise DPO
in Eq. 15:

∇LDPO(pθ; pref ) = −E(x,y1,y2)∼D

2∑

k=1

[β∇θ log p(yk | x)−
β
∑2

j=k(
pθ(yj |x)

pref (yj |x) )
β∇θ log pθ(yj | x)

∑2
j=k(

pθ(yj |x)
pref (yj |x) )

β
]

= −E(x,y1,y2)∼D[β∇θ log pθ(y1 | x) + β∇θ log pθ(y2 | x)−
β
∑2

j=1(
pθ(yj |x)

pref (yj |x) )
β∇θ log pθ(yj | x)

∑2
j=1(

pθ(yj |x)
pref (yj |x) )

β
]− β∇θ log pθ(y2 | x)]

= −E(x,y1,y2)∼D[β∇θ log pθ(y1 | x)−
β( pθ(y1|x)

pref (y1|x) )
β∇θ log pθ(y1 | x) + β( pθ(y2|x)

pref (y2|x) )
β∇θ log pθ(y2 | x)

( pθ(y1|x)
pref (y1|x) )

β + ( pθ(y2|x)
pref (y2|x) )

β
]

= −E(x,y1,y2)∼Dβ[
( pθ(y2|x)
pref (y2|x) )

β(∇θ log pθ(y1 | x)−∇θ log pθ(y2 | x))
( pθ(y1|x)
pref (y1|x) )

β + ( pθ(y2|x)
pref (y2|x) )

β
]

= −βE(x,y1,y2)∼D[
∇θ log pθ(y1 | x)−∇θ log pθ(y2 | x)

1 +
(

pθ(y1|x)

pref (y1|x)
)β

(
pθ(y2|x)

pref (y2|x)
)β

] = −βE(x,y1,y2)∼D[
∇θ log pθ(y1 | x)−∇θ log pθ(y2 | x)

1 + e

log

(
pθ(y1|x)

pref (y1|x)
)β

(
pθ(y2|x)

pref (y2|x)
)β

]

= −βE(x,y1,y2)∼D[
∇θ log pθ(y1 | x)−∇θ log pθ(y2 | x)

1 + e
−(β log

pθ(y2|x)

pref (y2|x)
−β log

pθ(y1|x)

pref (y1|x)
)
]

= −βE(x,y1,y2)∼D[σ(rθ(x, y2)− rθ(x, y1))[∇θlogpθ(y1 | x)−∇θlogpθ(y2 | x)]].
(19)
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