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Abstract

Referring Expression Generation (REG) is the
task of generating a description that unambigu-
ously identifies a given target in the scene. Dif-
ferent from Image Captioning (IC), REG re-
quires learning fine-grained characteristics of
not only the scene objects but also their sur-
rounding context. Referring expressions are
usually not singular; an object can often be
uniquely referenced in numerous ways, for in-
stance, by color, by location, or by relationship
with other objects. Most prior works, how-
ever, have not explored this ‘aspect-based mul-
tiplicity’ of referring expressions. Hence, in
this work, we focus on the Aspect-Controlled
REG task, which requires generating a referring
expression conditioned on the input aspect(s),
where an aspect captures a style of reference.
By changing the input aspect such as color,
location, action etc., one can generate multi-
ple distinct expressions per target region. To
solve this new task, we first modify BLIP (Li
et al., 2022a) for aligning image-regions and
text-expressions. We achieve this through a
novel approach for feeding the input by draw-
ing a bounding box around the target image-
region and prompting the model to generate
the referring expression. Our base REG model
already beats all prior works in CIDEr score.
To tackle Aspect-Controlled REG, we append
‘aspect tokens’ to the prompt and show that
distinct expressions can be generated by just
changing the prompt. Finally, to prove the high-
quality and diversity of the data generated by
our proposed aspect-controlled REG model, we
also perform data-augmentation-based evalua-
tion on the downstream Referring Expression
Comprehension (REC) task. With just half of
the real data augmented with the generated syn-
thetic data, we achieve performance compara-
ble to training with 100% of real data, using a
SOTA REC model(Kamath et al., 2021).

  
Image Captioning: Two birds on the tree 
Dense Captioning: A white bird 
Referring Expression Generation: Bird on 
the right 
Referring Expression Generation (shape): 
The larger bird. 
 

Image Captioning: People talking and having 
coffee 
Dense Captioning: Man in blue 
Referring Expression Generation: The man 
standing behind a man and woman 
Referring Expression Generation (action): 
The man looking at another man 

Figure 1: IC, DC, REG and aspect-controlled REG tasks

1 Introduction

Referring Expression Generation (REG) is the task
of generating a descriptive caption that uniquely
identifies a given target in the scene. REG is dif-
ferent from IC, which requires generating captions
for the whole image (Li et al., 2022a)(Yu et al.,
2022). REG is also different from the Dense Cap-
tioning (DC), which is aimed at generating detailed
description for each salient region in the image but
the descriptions are not required to uniquely iden-
tify a target (Yin et al., 2019) (Johnson et al., 2016).
An example is shown in Figure 1. IC captures the
high-level summary of the image (“two birds on
the tree”). DC provides a brief description of the
target region (“A white bird”). REG, on the other
hand, generates a reference that allows the target to
be uniquely located (“Bird on the right”).

The study of REG initially resides in the area
of natural language generation (Krahmer and van
Deemter, 2012). However, our formulation of the
REG task diverges from traditional setups. In our
REG task, the models should learn the objects and
their attributes directly from images instead of hav-
ing them readily available as inputs. This shift
demands a deeper integration and understanding of
the visual features.

Before 2020, REG in Vision-Language (VL) do-
main was popular (Mao et al., 2016a; Yu et al.,
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2016a; Liu et al., 2017; Tanaka et al., 2019). Mod-
els could refer to a target using either spatial or
textual features. More recently, REG is often used
as a pretraining task when learning multimodal
representations (Yang et al., 2021; Lu et al., 2022;
Wang et al., 2022). In order to generate unique
object references, the model needs to understand
fine-grained features of not only the object but also
its situated context and ground those features in the
generated expressions. This makes REG a good
pretraining task for unified VL models. REG is
also useful for cheaply generating synthetic train-
ing datasets for downstream tasks such as REC.
This helps reduce the high cost associated with col-
lecting and human-annotating large scale datasets.
This is one of the main motivations of our work.

A distinct feature of referring expressions, which
hasn’t been explored much in prior work, is its
aspect-based multiplicity. In reality, there are al-
most always multiple ways to refer to a target in
the scene. For instance, as shown in Figure 1, the
target bird can be referred by describing its ap-
pearance (“the larger bird”), its location (“bird
on the right”) or its action (“the bird cleaning its
feather”). Similarly, the man in the red box on
the right-side picture can be referred in numerous
ways. Each description captures a unique aspect of
the referring expression. In this paper, we propose
an aspect-controlled REG model that can generate
multiple valid expressions for referring the same
target region. Moreover, the style of the expres-
sions generated is controllable by an aspect (e.g.,
color, location, action etc.) specified as natural
language input. Aspect-Controlled REG has ap-
plications in goal-oriented dialogue systems that
are now-a-days ubiquitous and allow users to com-
plete simple tasks like restaurant reservation, flight
booking, shopping etc. For instance, when a cus-
tomer asks “Can you show me a similar table but
with different color?", the agent should focus on
the color attribute and respond as “What about this
one in brown?", rather than talking about other
aspects like material (“the wooden one"). In addi-
tion, an REG model capable of generating multiple
aspect-controlled expressions has arguably a bet-
ter understanding of this complex task as it has
learned to cover all the unique properties of the ob-
ject and capture the inherent diversity in referring
expressions. This also leads to better utilization of
multiple ground-truth references often available in
standard REG datasets. Finally, this allows gener-
ating richer and more diverse synthetic datasets for

downstream tasks. Our main contributions are:

• We explore the Aspect-Controlled REG task
where an expression needs to be generated
conditional on the provided aspect. By chang-
ing the input aspect, we can generate multiple
expressions for the same target region.

• We modify BLIP (Li et al., 2022a) to
align image-regions and corresponding text-
expressions. We achieve this via a novel ap-
proach of feeding the input: by drawing a
bounding box around the target image-region
and prompting the model to describe the
marked region. Our REG method beats all
prior works in CIDEr score.

• To tackle Aspect-Controlled REG, we append
‘aspect tokens’ to the prompt and show that
by merely changing the prompt, we can fully
control the style of the generated expressions.

• Finally, we showcase the high-quality and
diversity of the synthetic data generated by
our proposed Aspect-Controlled REG model
by evaluating on the downstream task of
REC. With just 50% of real data augmented
with our synthetically generated data, we
achieve performance comparable to training
with 100% of real data using a SOTA REC
model(Kamath et al., 2021).

2 Related Works

2.1 REG and REC
REG has been studied for a long time (Krahmer
and van Deemter, 2012; Deemter et al., 2012; Vi-
ethen and Dale, 2010), initially within the realm
of natural language generation, without involving
computer vision. The problem setting is that, given
an image and a dataset containing all objects within
that image along with their attributes, the model
should generate references in various ways. Later,
with the advent of unified VL models, this problem
evolves into an advanced scenario: the pre-existing
image dataset is no longer available. Instead, the
model should learn the objects and their attributes
directly from the input image, leading to an end-
to-end generation process. This evolution not only
makes the task harder but also demands more so-
phisticated models. Our work delves into this new
REG setup.

Most previous end-to-end REG models in the
literature consist of a visual encoder and text de-
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coder, where the focus is on REG and REC together
(Mao et al., 2016a; Liu et al., 2017; Yu et al., 2017;
Luo and Shakhnarovich, 2017; Liu et al., 2020).
Other works in this area propose region specific
modules after the vision encoder to understand the
higher context between objects (Yu et al., 2016a),
graphical approaches (Kim et al., 2020), reinforce-
ment learning (Tanaka et al., 2019; Panagiaris et al.,
2021) to improve the diversity of generated expres-
sions, and minimization on the semantic distance
between predictions and ground truth (Panagiaris
et al., 2020).

Most recent works do not focus solely on REG,
with a few exceptions e.g., (Sun et al., 2022; Kim
et al., 2021), and instead rely on expression gener-
ation as one of the many tasks in their multi-task
framework, (Lu et al., 2022; Yang et al., 2021;
Wang et al., 2022). REC is a foundational task for
most state-of-the-art unified VL models pretrained
on large datasets, e.g., OFA (Wang et al., 2022),
UNITAB (Yang et al., 2021) and MEDTR (Kamath
et al., 2021).

2.2 CLIP and Contrastive Learning
Contrastive learning enables models to better learn
multi-modal feature alignment by forcing the mod-
els to distinguish similar and different data, all in
a non-supervised setting. It has been a mainstay
in numerous VL models (Wang et al., 2021; Nan
et al., 2021; Chen et al., 2022b,a), with increasing
popularity after its usage in CLIP (Radford et al.,
2021). In later work, BLIP (Li et al., 2022a) and
CoCa (Yu et al., 2022) improve CLIP by apply-
ing a multitask pretraining scheme that minimizes
contrastive loss and captioning loss together; GLIP
(Li et al., 2022b) and (Zhang et al., 2021) align re-
gions with object category words within the image
captions.

2.3 Aspect-Controlled Generation
Controlled generation have been studied in many
domains, e.g., natural language generation (Hu
et al., 2017) and image generation (Karras et al.,
2021). In closely related work for aspect-controlled
image captioning, (Mathews et al., 2018; Guo et al.,
2019) propose models to generate captions of a cer-
tain style such as positive, negative, subjective and
objective; (Chen et al., 2020, 2021) propose so-
lutions to generate captions that contain specific
objects or actions. In these work, the requested
control can be fed through a text encoder and com-
bined with visual features (Mathews et al., 2018;

Guo et al., 2019; Chen et al., 2021); or the request
can be provided as an input graph that contains ob-
jects and relations (Chen et al., 2020). In our work,
we leverage prompts on specific aspects (e.g., color,
action) to achieve this control over the generated
reference, where the model learns how to relate dif-
ferent prompts to various aspects during training.

3 Methodology

To summarize our full method pipeline, we build
upon the BLIP Multimodal Mixture of Encoder-
Decoder (MED) model architecture (Li et al.,
2022a), adapting it for aligning image-regions and
text- expressions describing those regions. We in-
troduce a novel and intuitive approach for feeding
the input; by drawing a bounding box around the
target region in the image and prompting the model
to describe the marked region. To reinforce that the
generated descriptions are unique referring expres-
sions, we introduce a simple technique to craft neg-
ative examples that are utilized during contrastive
learning. Finally, we propose an intuitive yet novel
approach for generating expressions conditioned
on a given aspect (e.g. color, location etc.), by sim-
ply appending the aspect tag to the input prompt.
To effectively evaluate our model, we generate syn-
thetic data for training models for the downstream
task of REC and use the REC performance as the
evaluation metric. This evaluation approach al-
lows handling multiple expressions (with various
aspects) generated per target, by our REG model.

The architecture and training setup of the model
is shown in Figure 2. We follow the general struc-
ture of BLIP(Li et al., 2022a) that consists of uni-
modal image and text encoder, an image-grounded
text encoder and an image-grounded text decoder.
Our additions, here, are the modified image, the
additional prompt input and new loss computations.
The overall system is first pre-trained in a multitask
manner, jointly minimizing region-expression con-
trastive loss, region-expression matching loss and
expression generation loss. Following this, image
encoder and text decoder are fine-tuned only with
the expression generation loss on larger images. In
the following sections, we detail each of these new
components of our proposed system.

3.1 Region-Expression Alignment

As mentioned in Section 2.2, most prior CLIP-
based models have focused on the image-caption
level. (Li et al., 2022b), (Zhang et al., 2021) and
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Figure 2: Pretraining model architecture and training objectives of the proposed REG system. We adapt BLIP
(Li et al., 2022a) that consists of uni-modal image and text encoders, an image-grounded text encoder and an
image-grounded text decoder. The target region is marked with a red bounding box in the original image and
fed to image encoder. The prompt is appended to the decoder input, and fed alongside the visual embedding
from the image encoder to the text decoder to generate the text. Simultaneously, we concatenate the prompt with
the ground-truth expression, and feed the combined tokens to uni-modal and multi-modal text encoders. The
encoders and the decoder are trained with a specific loss for each network: multi-modal text encoder is trained using
image-text matching loss; uni-modal text encoder is trained via contrastive loss; and the multi-modal text decoder
uses a generation loss.

(Zhong et al., 2022) are among a handful of works
that learn alignment between image regions and
text spans. However, their focus is on a single im-
age object and simple expressions. For instance,
matching the image-region containing cat to the
phrase “a photo of cat”. In this work, we allow
alignment of regions with more complex expres-
sions involving surrounding context (e.g. “a cat
next to a dog”) through two simple design choices:

• We draw a red rectangle on the input image
marking the bounding box of the target region.

• We add the prompt "Describe the red box in-
side the image:" prior to generating the target

expression.

As shown in the upper part of Figure 2, the mod-
ified image becomes the input to the image encoder.
During pre-training, the prompt is appended before
the ground-truth expression and fed to the two text
encoders (uni-modal and image-grounded). The
prompt is also used by the decoder to generate ex-
pressions. During inference, only the text decoder
is utilized to generate an expression following the
prompt. The rationale here is to provide a cue to
visual encoder, image-grounded text encoder and
decoder to focus on the target region of the im-
age. At the same time, since the whole scene is fed
as input, the model can also utilize the surround-
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ing context to generate a unique description of the
marked region. These descriptions can involve
other scene objects and relationships to them as
shown in Figure 1. Using text prompt as additional
input provides benefit of controlling the style of
generations as discussed in Section 3.3. A similar
idea has been tried by (Yao et al., 2021), where a
colored mask is laid on the target and aligned with
a color-based text prompt. Adding a color mask,
however, can distort the features of the original im-
age and mislead the generation model. Therefore,
we use a bounding box marker to keep the original
image largely unchanged.

3.2 Hard Negatives Design
A referring expression needs to uniquely and un-
ambiguously identify the target object within the
image. This is a more challenging task as merely
describing the target region may not be sufficient.
For instance, in Figure 3, an expression such as “a
man drinking with a cup” is not sufficient to iden-
tify the person in the center, as there are two men
drinking with a cup in that image. To allow the
model to learn to generate distinct expressions, we
employ a contrastive learning approach. We create
hard region-expression negative pairs which are
utilized in the region-expression matching loss (ex-
plained in Section 3.4) during the pre-training stage.
To create a negative pair, we start with a positive
pair and modify it with one of the following two
strategies: (1) we update the target image-region
to a randomly sampled region outside the original
target in the same image, keeping the target ex-
pression as is; (2) we replace the target expression
with one referring another object in the same scene,
keeping the target image-region unchanged.

This approach is particularly beneficial when
there are multiple objects of the same category in a
scene allowing the model to learn to contrast and
distinguish each object. An example is shown in
Figure 3. The first negative example will allow the
model to understand the scene layout and thereby
generate unique spatial references involving object
locations in the image. The second negative pair
will force the model to learn to understand the
nuanced details of the content of the image regions
so as to generate discriminative references.

3.3 Aspect-Controlled Referring Expression
Generation

It is always possible to refer a target object in a
scene in multiple ways with different referring ex-

 
Positive Pair Negative Pairs 

“The man in the middle.” “The man in the middle.” “The man drinking with a 
white cup.” 

   
 

Figure 3: Hard negatives generation for contrastive
learning. We create negative samples by changing ei-
ther the bounding box or the reference in a positive pair,
keeping the other constant.

pressions capturing different aspects of the target
object and its situated context. Such aspects can
include descriptive properties like color, shape, pat-
tern etc. of the target object, spatial properties such
as the target object’s location in the scene (e.g., in
the middle) and visual relationships like spatial
(e.g. on top of), action (e.g. cutting), comparative
(e.g., larger than) etc. capturing its interaction with
other scene objects. An expression can also cap-
ture a combination of these aspects (e.g., “a man
in white waving a bat” as shown in Figure 4).

In this work, we propose a simple approach to
control the style of generated referring expressions
along these aspect dimensions. This is achieved
by providing the target-aspect(s) as additional in-
put to the model via the prompt. The target-
aspect is added at the end of the default prompt
i.e., “Describe the red box inside the image by
< aspect >”. For instance, as shown in Figure
4, when the target-aspect is specified as color, the
model generates the expression “the man in white”,
while when the aspect is action, the generated ex-
pression is “the man waving a bat”; both expres-
sions uniquely pointing to the hitter in the image.

We consider four salient aspects of referring ex-
pressions in this work; color, shape, location and
action and all their possible combinations. This
was primarily motivated based on the structure of
expressions seen in popular referring expression
datasets. Our approach, however, is extensible to
any number of aspect dimensions. In order to train
the system, we first annotate the aspects reflected in
the training set referring expressions through rule-
based heuristics. We create a dedicated pool of
keywords for each attribute, and employ keyword
searches on expressions to annotate the aspects.
The color pool encompasses all terms related to
colors. The shape pool contains words describing
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the size of objects such as ”big” and “small”. The
location pool contains words denoting locations.
The action pool includes verbs reflecting various
actions.

As we show in Section 4.2, one of the main prac-
tical advantages of the proposed controlled gener-
ation approach is the capability to generate richer
and more diverse synthetic dataset for downstream
tasks such as referring expression comprehension,
reducing the requirement of human-labeled data.
Furthermore, most referring expression datasets
provide multiple ground-truth expressions associ-
ated with the same target image-region. When fed
as independent training examples with image and
target-region being the only input, this can poten-
tially lead to model confusion. In our approach,
however, these examples will be split because dif-
ferent prompts will be associated with different
ground-truth expressions, thereby, easing the train-
ing process.

3.4 Multitask Pretraining

We adapt the multitask training scheme in BLIP(Li
et al., 2022a) and COCA(Yu et al., 2022). Our
model is trained to minimize three losses:

• Region-Expression Contrastive Loss: It is the
middle part of the loss block in Figure 2. This
loss is computed on the outputs of uni-modal
encoders to maximize the alignment between en-
coded image-region and text expression features
of positive pairs while minimizing it for negative
pairs. We use the Image-Text Contrastive (ITC)
loss from (Li et al., 2021).

• Region-Expression Matching Loss: It is the
left part of the loss block in Figure 2. This is the
binary classification loss computed on the output
of image-grounded text encoder.

• Expression Generation Loss: It is the right
part of the loss block in Figure 2. As found
by COCA(Yu et al., 2022), pre-training with cap-
tioning task helps the model learn fine-grained
region-level features. We, therefore, also add the
expression generation task during pre-training.

An important modification in our setup is that
we conduct contrastive learning at two levels; inter-
image and intra-image. For the region-expression
contrastive loss, we create region-expression nega-
tive pairs across different images. For the region-
expression matching loss, negative pairs are created

from the same image as discussed in Section 3.2.
The first task is relatively easier because region fea-
tures from different images usually vary widely. It
allows the uni-modal encoders to train fast, capture
and align higher-level features of the image and
expression (e.g., differentiating a cat from a car).
The second task is harder because features from the
same image will often be similar, e.g., having the
same environment or belonging to the same object
category. This task, therefore, enables the models
to learn more detailed multimodal representations
to distinguish between closely matching inputs.

We use the above three losses for pretraining on
smaller-size images. Then we fine-tune the models
on larger images using only the generation loss.

3.5 REG Evaluation via Data Augmentation
for Referring Expression Comprehension

In order to evaluate the generative models, a com-
mon practice is to compute n-gram overlap met-
rics such as CIDEr(Vedantam et al., 2015). These
metrics measure similarity between predicted and
ground-truth text sequences. However, these only
capture similarity to a single ground-truth expres-
sion and are not well-suited to evaluate the diversity
inherent in our proposed aspect-controlled REG
task. Furthermore, it is not possible to determine
which aspect(s) of the expression is present in the
test set for any given example, without looking at
the labels. Therefore, to show the full potential
of our approach, besides intrinsic evaluation with
the above mentioned automatic metrics, we also
perform extrinsic evaluation on the downstream
task of REC. We first generate synthetic data with
the proposed REG model, then train SOTA REC
models (such as MDETR(Kamath et al., 2021))
using the generated data, and finally evaluate the
REC model w.r.t. accuracy on standard expression
comprehension benchmarks. This approach allows
us to utilize multiple expressions generated by our
REG model and the computed REC accuracy is
comparable with those reported in prior works.

4 Experiments

For intrinsic evaluation, we train and test our model
on RefCOCO (Yu et al., 2016b), RefCOCO+ (Yu
et al., 2016b) and RefCOCOg (Mao et al., 2016b)
separately. We use CIDEr as metric. For extrinsic
evaluation, we train existing REC models on refer-
ences generated by our REG model, and examine
the REC performance on RefCOCO/g/+ test sets
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Figure 4: Decoding process of our aspect-controlled REG model. Any combination of the 4 aspects (color, location,
action, shape) can be utilized to construct the prompt. The target region is marked in the image with a box and
fed to image encoder to get visual embedding. The constructed prompt is fed to the text decoder along with this
embedding to generate the corresponding style of reference. The encoder and decoder are the same as Fig 2.

RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

(Liu et al., 2017) 0.639 0.512 0.704 0.710 1.257
(Yu et al., 2017) 0.742 0.579 0.798 0.804 1.358

(Tanaka et al., 2019) 0.763 0.663 0.812 0.859 1.375
(Liu et al., 2020) 0.645 0.585 0.692 0.802 1.301
(Sun et al., 2022) 0.749 0.722 0.758 0.877 1.333

Ours 1.069 1.039 0.966 1.119 1.527

Table 1: Comparison of our proposed model with SOTA REG models on CIDEr metric. We do not apply any
aspect-control here and use the default prompt.

using Acc@0.5 as the metric. We use our REG
model trained on RefCOCOg and select MSCOCO
images that do not overlap with any of the Ref-
COCO/g/+ datasets to generate the synthetic data
for training comprehension models.

4.1 Intrinsic Evaluation
We use AdamW optimizer. The whole system is
first pre-trained at 1e-5 learning rate. Then, the
image encoder and text decoder are fine-tuned with
1e-6 learning rate. The image size is 224× 224 for
pretraining and 384 × 384 for fine-tuning. Note
that, we use the term ‘default prompt’ to refer to the
prompt - (“Describe the red box inside the image”),
where no aspect is specified.

Table. 1 shows the performance of our expres-
sion generation model in comparison to prior works
on RefCOCO/g/+ test sets. For fair comparison, we
use only the default prompt in this experiment and
generate only one expression per input region. Our
proposed system outperforms all previous works

by a large margin on CIDEr score. Performance
comparison in terms of METEOR (Banerjee and
Lavie, 2005) is also reported in Appendix.

Train Prompt Test Prompt CIDEr

Default Default 1.069
Annotated Default 0.917
Annotated Action 0.898
Annotated Color 0.946
Annotated Location 0.971
Annotated Shape 0.985

All All 1.039

Table 2: Comparison of different prompt selection strate-
gies at training and testing. Experiments are on Ref-
COCOg dataset. ‘Annotated’ means the prompts are
constructed by the rule + BERT classifier. ‘Default’
refers to the prompt “Describe the red box inside the im-
age:", ‘All’ refers to the prompt “Describe the red box
inside the image by color, location, action and shape:".

Next, we apply aspect-controlled prompts. Table
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RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

MDETR 80.89 84.09 70.62 89.58 81.41

Only Syn 76.38 77.49 61.36 82.94 72.88
+10%Real 78.86 81.44 66.17 87.50 78.49
+30%Real 80.43 82.04 68.38 87.89 79.84
+50%Real 80.54 83.08 69.97 88.63 80.33

Table 3: Impact of replacing real training data with synthetic data generated by our Aspect-Controlled REG model
for REC. We use MDETR(Kamath et al., 2021) as the REC model and Acc@50 as the metric. The first row is
MDETR trained on all real data. Only Syn refers to only using synthetic data. +x% refers to additional x% real data.

Default: A woman in a white shirt. 
By color: A woman in a white shirt. 

 

By location: The woman in the middle. 
By action: A woman holding a glass of wine. 
By action and color: A woman in a white shirt 
holding a glass of wine. 
Ground truth: This is a woman holding a 
wineglass and is wearing a white tshirt. / A 
woman in a white blouse holding a glass of 
wine. 

  
Default: The cat on the left. 
By color: A black cat. 

 

By location: The cat on the left. 
By action: Cat looking at another cat. 
By action and color: A black cat looking at 
another cat. 
Ground truth: Shorter cat on left side. / A cat 
whose tail is hiding behind the curtain. 
 

 

Figure 5: Qualitative examples showing the behavior of
prompts with different aspects for REG.

2 shows the results under different prompt setups.
We experiment with 3 main settings: (1) default
prompt at both training and testing, (2) prompt with
annotated aspect(s) at training and a fixed-aspect
prompt during testing, and (3) prompts with all as-
pects (“Describe the red box inside the image by
location, color, shape and action") at both training
and testing. Because the ground-truth expressions
and their aspects are unknown at test time, we ex-
periment with feeding prompts with each aspect,
one at a time. In setting 3, we provide prompts with
all aspects to the model. As shown in the table, set-
ting 1 and 3 have higher CIDEr scores compared to
any experiment under setting 2. This is because, in
these two settings, the training and testing prompts
are consistent, unlike in setting 2 where the fixed
test prompts may not match the training prompts.
For setting 2, we find that changing the aspect in
prompt largely does not affect the score. This is
likely because n-gram overlap metrics like CIDEr
do not capture the nuances in different styles of
generated expressions, reinforcing our strategy to
further evaluate on downstream REC task as ex-
plained in Sec. 3.5. In Fig. 5, we show our model’s
predictions on two examples. In both cases, chang-

ing the aspect(s) leads to corresponding change in
the style of the generated expression. More exam-
ples can be found in Appendix.

Lastly, we conduct a preliminary study on the
faithfulness of our aspect-controlled generation.
We also perform a human evaluation on sampled
data to measure the correctness and naturalness of
the generated references. The results are reported
in the Appendix.

4.2 Extrinsic Evaluation

We select MDETR(Kamath et al., 2021) to evaluate
the quality of the data generated by our REG model.
It is has high REC performance on RefCOCO/g/+
datasets. We use the same setting as provided in its
paper. We select 158,367 annotations from 47,801
MSCOCO images which do not belong to any of
RefCOCO/g/+ datasets to generate our synthetic
data. For each annotation, we randomly sample a
set of aspects (from the four categories) to construct
the prompt and then generate an expression for it.
We first train the model only on synthetic data of
the same size as the training sets, then add real
data.

Table 3 shows the results on the three datasets.
Row 1 reports numbers when MDTER is fine-tuned
on real RefCOCO/g/+ training sets and tested on
corresponding test set. We report these numbers di-
rectly from original paper. In subsequent rows, we
fine-tune MDTER on only synthetic data and syn-
thetic data mixed with varying proportions of real
data from the corresponding training set. Note that,
our synthetic sets neither contain images from the
original RefCOCO/g/+ datasets, nor any human-
written references. As seen in the table, trained
purely on this generated data, MDETR already
achieves performance close to its original reported
value that used 100% human-annotated data. As we
add real data ranging from 10% to 50% to the syn-

2800



thetic dataset, the performance quickly approaches
to that with 100% real data. Consequently, our
proposed REG model can be used to significantly
cut down annotation budget. Lastly, we use up all
real and synthetic data, the performance is further
improved, reported in Appendix.

Our controlled expression generation approach
provides greater benefit for downstream tasks be-
cause it produces a more diverse set of references
compared to traditional beam search method, given
the same amount of data. In Appendix, we compare
our approach with beam searching and the result
shows our method generates expressions of various
styles while beam search generates highly-similar
ones.

Lastly, in Appendix, we conduct the aforemen-
tioned experiments using VL-T5 (Cho et al., 2021),
another joint VL model published in 2021. We
observe similar results as MDETR. We also gener-
ate synthetic data using (Tanaka et al., 2019) and
compare with ours. Our model shows better perfor-
mance. Besides, we include an analysis of compre-
hension errors in the Appendix.

5 Conclusion

We present a model to generate referring expres-
sions for a given object in arbitrary ways, where we
use a prompt to guide our decoder. Our approach,
compared to traditional beam search, provides syn-
thetic data of higher quality as evidenced in its di-
versity and ability to achieve higher accuracy with
the same amount of training data.

6 Limitations

A limitation of our method would be the use of red
box. It may fail in specific images, e.g., images
that already have red boxes inside them (but we
could change this to other box setups). Moreover,
our study only covers 4 aspects, while more aspects
could be included. Till now, there is not a dataset
to test the performance of aspect-controlled gener-
ation directly. In the future, it would be good to
build such a dataset that measures if models can
generate references following the prompts.
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A Appendix

A.1 Experiment Settings
We adapt the same model settings and training set-
tings of BLIP for our generation model. 4 Nividia
V100 GPUs are used. The training time in total
is around 24 hours. For MDETR and VL-T5, we
follow their original settings.

A.2 METEOR for Intrinsic Evaluation
Table 4 compares REG models in terms of ME-
TEOR score on RefCOCOg dataset. Although all
METEOR scores are nearly identical, we believe
that our model demonstrates improvement over oth-
ers. Because CIDEr employs tf-idf weighting for
n-grams. According to (Vedantam et al., 2015),
it correlates more closely with human evaluation
scores in image captioning tasks compared to other
metrics. METEOR, on the other hand, is more
aptly suited for evaluating machine translation.

Models METEOR

(Liu et al., 2017) 0.157
(Yu et al., 2017) 0.153

(Tanaka et al., 2019) 0.164
(Liu et al., 2020) 0.163
(Sun et al., 2022) 0.156

Ours 0.161

Table 4: Comparison of our proposed model with SOTA
REG models on METEOR. We do not apply any aspect-
control here and use the default prompt.

A.3 Ablation Study
To quantify the importance of our design choices,
we perform ablation study on RefCOCOg test set
and report the results in Table 5. First, we directly
utilize vanilla BLIP for REG. Low scores in row
1 clearly indicate that the original design of BLIP
is not suitable for REG. Next, we study the effect
of incorporating different loss functions in 3.4. For
practical reasons, we perform these comparisons
at the pretraining stage. As seen in row 2-4, no-
table increase on CIDEr is gained by adding each
loss. Finally, the last row shows that fine-tuning
our model with generation loss provides further
improvement over the model pretrained with all 3
losses.

Experiment Settings Stage CIDEr

Vanilla BLIP Pretrain 0.584

Gen loss Pretrain 0.946
Gen + Ctr loss Pretrain 0.963

Gen + Ctr + Mtc loss Pretrain 0.999

Gen loss Fine-tune 1.069

Table 5: Ablation study on model design and training
strategies. Experiments are on RefCOCOg dataset. Row
1: Vanila BLIP applied for REG. Row 2-4: Our model
pretrained with various losses (Gen: generation loss,
Ctr: contrastive loss, Mtc: matching loss). Row 5: Our
model fine-tuned on gen loss (Pretrained with all losses).

A.4 REG Faithfulness
We performed a preliminary study on the faithful-
ness of our aspect-control strategy. For RefCOCOg
test set, we generated expressions conditioned on a
single aspect and computed the % of expressions
containing that aspect. The result is included in
Table 6. Note that, an aspect (in isolation) may not
be sufficient to uniquely refer every target region.
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This is, however, not accounted in this analysis as
we run the model on every example. In addition,
sometimes an aspect cannot be used to describe an
object, e.g., the action of a chair, the shape of a ze-
bra. They are likely the reasons for low faithfulness
w.r.t action and shape coupled with the fact that
there are very few ground-truth expressions with
that aspect.

color location action shape

87% 79% 49% 5%

Table 6: Faithfulness of the proposed aspect-control
REG model.

A.5 Human Evaluation on Sampled Data
We ran a third-party human evaluation on 100 gen-
erated samples using the following grading scheme:

1. Correctness. Rate from 0-5. It measures if the
generation is correct/relevant and can iden-
tify the target (uniqueness=1pt, the remaining
4pts are based on the percentage of correctly-
described features);

2. Naturalness. Rate from 0-5. It measures if
the language used is natural, grammatically
correct and without confusing expressions.

We can only compare with (Tanaka et al., 2019)
because it is the only model in Table 1 which is
available online. The average scores are in Table
7. Our model shows better correctness and natural-
ness.

Correctness Naturalness

(Tanaka et al., 2019) 3.04 4
Ours 4.1 4.66

Table 7: Model comparison by correctness and natural-
ness evaluated by human.

A.6 REC Error Analysis
We examine the test errors for the task of REC with
MDETR trained on 100% synthetic data. We col-
lect the error cases and categorize them across the
4 types of references. The statistics is shown in
Table 8. Location based references are the hardest
ones. They account for ∼45% of all errors. This is
expected because resolving a reference by location
requires the model to understand the relationship

between the target and its environment, while for
other types of references, the model mostly needs
to look at the features of the target. In addition,
the proportion of the 4 types of references in our
synthetic data is almost equal as the prompts are
randomly sampled. However, in real data, the dis-
tribution may not be uniform. For instance, in
RefCOCOg training set, there are ∼38.5% ground-
truth references by location but only 6% by shape.
This observation suggests that a better sampling
strategy can be employed such that difficult exam-
ples (e.g. references by location) are generated
more frequently so as to create a better synthetic
training set for downstream tasks. We leave further
investigation in this direction for future work.

Loc Color Action Shape

% of errors 44.53% 36.68% 13.32% 5.86%

Table 8: Error distribution on RefCOCOg test set with
MDETR trained on 100% synthetic data.

A.7 REC with All Data
We use up all our 158,637 synthetic data and real
training data to train MDETR and test its perfor-
mance. As shown in Table 9, by using up all data,
the performance of MDETR exceeds the one using
all real data. Given that our model can generate
synthetic data with low cost, one may expect that in
the future the performance can be further improved
by including more synthetic data from external raw
images.

A.8 Comparison with Beam Searching
We hypothesize that our controlled expression gen-
eration approach will provide greater benefit for
downstream tasks because it produces a more di-
verse set of references compared to traditional
beam search method, given the same amount of
data. To test this hypothesis, we run the following
experiment. Starting with a fixed number of images,
we generate expressions 1) using our generation
model with default prompt and beam search de-
coding with beam size = 3 and 2) using the aspect-
controlled variant of our generation model with 3
randomly sampled prompts utilized during decod-
ing. These two settings lead to the same amount
of synthetic data. With the two datasets, we train
MDETR model and test on RefCOCOg test set.
We run experiments varying the number of images
used for training. The results are shown in Table 10.
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RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

MDETR 80.89 84.09 70.62 89.58 81.41

All 81.50 84.46 71.86 89.85 82.39

Table 9: MDETR trained on all our synthetic data and real data. The first row is MDETR trained on all real data.
All means using up all real and full set of 158,367 synthetic examples from non-overlapping COCO images.

# of Images # of References Beam Approach Aspect Prompt

3,000 25,013 72.68 76.58 (+3.90)
6,000 49,806 74.65 77.61 (+2.96)

12,000 99,876 75.23 76.85 (+1.62)

Table 10: Comparison of synthetic data quality generated with beam search decoding vs aspect-controlled REG.
Using the synthetic data, we train MDTER model for REC and evaluate on the RefCOCOg test set by Acc@50.

RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

Reference 71.2 76.09 59.21 85.89 72.68

Only Syn 67.39 65.12 49.76 72.88 59.92
+10%Real 69.27 73.21 54.65 80.94 68.97
+30%Real 70.07 75.20 57.19 83.24 70.87
+50%Real 71.14 76.02 57.58 84.15 71.89

All 73.22 79.39 62.36 85.93 73.03

Table 11: Impact of replacing real training data with varying amounts of synthetic data generated by our Aspect-
Controlled REG model for the task of REC. We use VL-T5 as the REC model and Acc@50 as the metric. ‘Reference’
is the accuracy reported in the VL-T5 paper. Only Syn refers to model trained purely on synthetic data. +x% refers
to additional x% real training data. All means using up all real and synthetic data. VL-T5 does not report its results
on RefCOCO and RefCOCO+. We compute those numbers ourselves.

Our prompt-controlled generation has obvious ad-
vantage over the beam search decoding, especially
when the number of input images is small. As the
model trained on more images, the gap becomes
narrower.

Figure 6 shows two sets of references; one gen-
erated by beam search and the other by prompt
control. The result from the top three beams are
quite similar to each other. On the other hand, the
results generated by varying prompts are more di-
verse and can refer the target in different ways.

A.9 REC with VL-T5

As mentioned in Sec 4.2, we perform the same
REC experiments on VL-T5. The results are in Ta-
ble 11 and 12. Similar to MDETR, trained purely
on our generated data, it already achieves perfor-
mance close to its original reported value that used
100% real training data. As we add annotated data
ranging from 10% to 50% to the synthetic dataset,

Beam Search Decoding: 

 

a white and black cat laying on a man's lap. 
a white and black cat lying on a man's lap. 
a white and black dog laying on a man's lap. 
Prompt-controlled Generation: 
a black and white cat. 
a cat being held by a man. 
a black and white cat laying on a man's lap. 

 
Beam Search Decoding: 

 

a bottle of wine. 
a bottle of wine 
a bottle of wine with a white label. 
Prompt-controlled Generation: 
a bottle of wine sitting next to a glass of water. 
a bottle of wine. 
a large bottle of white wine. 

Figure 6: Examples of referring expression variations
generated from controlling aspect via prompt vs beam
search decoding (k=3). The control words are randomly
sampled.

2805



By color: A white car. 

 

By location: A white car parked on the side of 
the road. 
By action: A white car driving down the 
street. 
By action and color: A white car driving 
down the street. 
Ground truth: A parked white Ford SUV. 

  
By color: A baby wearing a red and black 
sweater. 
By location: A small child sitting at a table. 

 

By action: A child eating. 
By action and color: A young boy in a red 
and black sweater holding a cup. 
Ground truth: The baby boy wearing a red 
shirt and gray bib. / a baby wearing a red 
sweater. 
 

 

Figure 7: More examples showing the behavior of de-
fault prompt (“Describe the red box inside the image:")
and prompts appended with different aspects like color,
location, action for generating referring expressions.

Beam Search Decoding: 

 

a man in a tan shirt and sunglasses riding on a red 
motorcycle. 
a man in a tan shirt and sunglasses riding on a 
motorcycle. 
a man in a tan shirt and sunglasses riding on a red 
bike. 
Prompt-controlled Generation: 
a man riding a motorcycle. 
a man wearing sunglasses. 
a man riding a motorcycle in front of another man. 

 
Beam Search Decoding: 

 

a small silver car 
a small silver car parked on the side of the road 
a small silver car parked on the side of the street 
Prompt-controlled Generation: 
a small silver car. 
the car in the middle. 
a small silver car driving down the street. 

Figure 8: More examples comparing referring expres-
sions generated using beam search decoding vs by vary-
ing prompt. The ‘aspect tokens’ in the prompt are ran-
domly sampled.

the performance readily approaches the value with
100% real data. Lastly, when using up all data, it
outperforms the original VL-T5 by a large gap.

A.10 Comparison with Other REG Models
for Synthetic Data Generation

We also use another REG model (Tanaka et al.,
2019), to generate synthetic data, and conduct our
extrinsic evaluation on RefCOCO/g/+ datasets. We
only test the accuracy of MDETR where 100%
synthetic data is used for training. The result is
shown in Table 13. Our model outperforms (Tanaka
et al., 2019) by a large gap.

A.11 Aspect Annotation

Table 14 shows statistics on annotated aspects. As
seen from the table, this approach labels majority

of the data leaving only ∼2% as unlabeled. Most
of the unlabeled expressions are brief phrases such
as “A refrigerator".

By color: A white car. 

 

By location: A white car parked on the side of 
the road. 
By action: A white car driving down the 
street. 
By action and color: A white car driving 
down the street. 
Ground truth: A parked white Ford SUV. 

  
By color: A baby wearing a red and black 
sweater. 
By location: A small child sitting at a table. 

 

By action: A child eating. 
By action and color: A young boy in a red 
and black sweater holding a cup. 
Ground truth: The baby boy wearing a red 
shirt and gray bib. / a baby wearing a red 
sweater. 
 

 

Figure 9: More examples showing the behavior of de-
fault prompt (“Describe the red box inside the image:")
and prompts appended with different aspects like color,
location, action for generating referring expressions.

Beam Search Decoding: 

 

a man in a tan shirt and sunglasses riding on a red 
motorcycle. 
a man in a tan shirt and sunglasses riding on a 
motorcycle. 
a man in a tan shirt and sunglasses riding on a red 
bike. 
Prompt-controlled Generation: 
a man riding a motorcycle. 
a man wearing sunglasses. 
a man riding a motorcycle in front of another man. 

 
Beam Search Decoding: 

 

a small silver car 
a small silver car parked on the side of the road 
a small silver car parked on the side of the street 
Prompt-controlled Generation: 
a small silver car. 
the car in the middle. 
a small silver car driving down the street. 

Figure 10: More examples comparing referring expres-
sions generated using beam search decoding vs by vary-
ing prompt. The ‘aspect tokens’ in the prompt are ran-
domly sampled.

A.12 Other Examples
Figure 9 shows two more examples on our aspect-
controlled generation. Figure 10 shows two more
examples that compare the references generated by
beam-searching approach and prompt control.
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# of Images # of References Beam Approach Aspect Prompt

3,000 25,013 66.56 67.20
6,000 49,806 66.50 66.65
12,000 99,876 66.64 67.52

Table 12: Comparison between beam search decoding and prompt-controlled generation in terms of Acc@50 on
RefCOCOg test set for the task of REC using VL-T5 model.

RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

(Tanaka et al., 2019) 69.48 69.73 56.06 71.82 58.53
Our REG 76.38 77.49 61.36 82.94 72.88

Table 13: Performance of MDETR trained on synthetic data generated from (Tanaka et al., 2019) and our REG.

Location Color Action Shape Unlabeled

47,083 35,733 14,187 5,871 1,865
58.48% 44.38% 17.62% 7.29% 2.32%

Table 14: A summary of aspect-class distribution in
training data. Note that a reference can belong to multi-
ple aspect classes.
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