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Abstract

With the widespread use of language mod-
els (LMs) in NLP tasks, researchers have
discovered the potential of Chain-of-thought
(CoT) to assist LMs in accomplishing com-
plex reasoning tasks by generating intermedi-
ate steps. However, human thought processes
are often non-linear, rather than simply se-
quential chains of thoughts. Therefore, we
propose Graph-of-Thought (GoT) reasoning,
which models human thought processes not
only as a chain but also as a graph. By repre-
senting thought units as nodes and connections
between them as edges, our approach captures
the non-sequential nature of human thinking
and allows for a more realistic modeling of
thought processes. GoT adopts a two-stage
framework with an additional GoT encoder
for thought graph representation and fuses the
graph representation with the original input
representation through a gated fusion mech-
anism. We evaluate GoT’s performance on a
text-only reasoning task (AQUA-RAT) and a
multimodal reasoning task (ScienceQA). Our
model achieves significant improvement over
the strong CoT baseline on the AQUA-RAT test
set and boosts accuracy from 85.19% to 87.59%
using the T5-base model over the state-of-the-
art Multimodal-CoT (Zhang et al., 2023) on the
ScienceQA test set. Our code is publicly avail-
able at https://github.com/Zoeyyao27/Graph-
of-Thought

1 Introduction

In the field of human cognition, it has long been rec-
ognized that the human thought process is far more
complex and non-linear than could be captured by
a simple, sequential chain of thoughts (Barsalou,
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1999). Human thinking is often characterized by
its ability to make sudden leaps and connections
between seemingly unrelated ideas, which can lead
to novel insights and solutions. This non-linear,
jumping thought process is a hallmark of human
creativity, reasoning, and problem-solving abilities.
However, it also poses a significant challenge for
cognitive modeling and understanding.

Recently, Large Language Models (LLMs) have
been advancing at an unprecedented pace. With
the emergence of breakthroughs such as GPT-
3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2022), and GPT-4 (OpenAI, 2023), the field of
natural language processing has entered a new
era of possibilities. Recent studies (Wei et al.,
2022a; Wang et al., 2022; Zhang et al., 2022) have
shown that the reasoning ability of LLMs can be
unlocked by Chain-of-Thought (CoT) prompting.
CoT prompting involves a series of intermediate
natural language rationales that lead to the final
answer. In addition, Zhang et al. (2023) have in-
troduced Multimodal-CoT, which combines both
language and visual modalities to help surpass the
limitations of textual information. More detailed
related works can be found in Appendix A.

Previous works on Chain-of-Thought (CoT)
prompting, which have been limited to textual and
visual information, often represented the human
reasoning process as sequential thought chains.
This approach overlooks the modeling of humans’
jumping thought process and neglects to incorpo-
rate the complex structural information of reason-
ing thoughts into the model. Concurrent work
Tree-of-thoughts (ToT) (Yao et al., 2023) divides
thoughts into thought units and models them as a
tree-like search process.

Nevertheless, human cognition transcends this
tree structure, exhibiting intricate graph-like for-
mations. Our perspective diverges further as we
believe that the human intellect is capable of craft-
ing elaborate thought graphs founded upon linear
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Figure 1: An example of GoT reasoning. Vision features are optional and are only required in multimodal reasoning.

thoughts. Therefore, we aim to enable the concur-
rent assimilation of linear and nonlinear cognitive
processes, surpassing the mere generation of seg-
mented thought units. To address the above limi-
tation, different from ToT, we propose the Graph-
of-Thought (GoT), a novel approach to modeling
human thought processes not only as a chain but
also as a graph. Our method is based on the assump-
tion that the human mind works by connecting and
recombining ideas in a non-sequential, graph fash-
ion, rather than following a strict sequential chain.
By representing thought units as nodes and connec-
tions between thoughts as edges, GoT captures the
rich, non-sequential nature of human thinking and
allows for a more realistic and logical modeling of
reasoning processes.

An example of GoT reasoning is shown in Fig-
ure 1. Inspired by Multimodal-CoT (Zhang et al.,
2023), we have adopted a two-stage reasoning
framework. It first generates rationales and then
generates the final answer based on the predicted ra-
tionales. In addition to text features, graph features
of GoT are integrated during the rationale genera-
tion and answer inference. Specifically, GoT is first
constructed with an Extract-Cluster-Coreference
(ECC) process, which simulates the deductive pro-
cess in human reasoning. We have used T5 (Raffel
et al., 2020a) pre-trained language model as our
backbone model. GoT is encoded with a graph
attention network and then fused with the original
representation via a gated fusion network.

Furthermore, we have also presented a multi-
modal GoT, which integrates not only text features

and GoT features but also visual features. For our
experiments, we have used both FLAN-Alpaca
1 (T5)-base and FLAN-Alpaca (T5)-large as our
backbone models.

We implement GoT as a two-stage framework
and fine-tuning language models and integrating
text, thought graph, and vision features for a more
realistic and accurate reasoning process. GoT
demonstrates exceptional performance on both text-
only AQUA-RAT (Ling et al., 2017) and multi-
modal ScienceQA (Lu et al., 2022) benchmarks,
surpassing the accuracy of online system Chat-
GPT (OpenAI, 2023) by 9.28%, strong baseline
Multimodal-CoT (Zhang et al., 2023) by 2.40%,
and even exceeding human performance, establish-
ing a new state-of-the-art on ScienceQA test set
with far fewer parameters.

2 Graph-of-Thought

The overview of our proposed GoT can be seen
in Figure 2. Inspired by Multimodal-CoT (Zhang
et al., 2023), GoT also adopts a two-stage frame-
work. (1) Rationale generation stage: In the first
stage, the model generates rationales based on the
input text (including question, context, and choices)
the vision features, and the generated thought graph
corresponding to the input text. For multi-modal
tasks (Zhang et al., 2023; Zhang and Zhang, 2023;
Huang et al., 2023; Peng et al., 2023), it is a com-
mon practice to use different encoders to process
inputs from different modalities and a straightfor-

1https://github.com/declare-lab/flan-alpaca. FLAN-Alpaca
is developed by fine-tuning T5 model on the Flan collection
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Figure 2: Graph-of-Thought framework overview

ward and versatile approach is to employ encoder-
decoder models. Therefore, GoT employs inde-
pendent encoders to encode input data for each
modality. We use a Transformer encoder to encode
input text, a vision encoder to encode an image, and
a graph attention network to encode the thought
graph. The encoded features are further passed
into cross-attention to align text tokens with image
patches and graph nodes, respectively. We then
use a gated fusion layer to fuse these three features
further and pass them into the Transformer decoder
to predict the target rationales. (2) Answer gener-
ation stage: The second stage aims at generating
the final answer and is largely similar to the first
stage. The main difference is that the input text
is concatenated with the predicted rationales from
the first stage. It is worth noting that the above
process describes a general multimodal reasoning
framework. However, for text-only reasoning tasks,
there are no image features, so the image encod-
ing and vision feature fusion processes mentioned
above can be omitted. In the following section,
we will provide a detailed exposition of the two
key steps of our GoT reasoning framework: GoT
construction and GoT encoding and feature fusion.

2.1 GoT Construction
GoT employs thought graphs to simulate human de-
ductive reasoning, thereby modeling humans’ abil-

ity for leaps of thought. Our aim is to reflect the
most fundamental deduction process by construct-
ing a thought graph. If we have evidence that x→
y and y → z, then it follows that x → z. In Fig-
ure 3, the deduction reasoning can be formulated

as follows: Earthquake
comes from−→ {earth, quake},

{earth, quake} means−→ {ground, shake}. It is easy to
reason that Earthquake−→{ground, shake}.

We propose a novel Extract-Clustering-
Coreference (ECC) process to construct thought
graphs. ECC first extracts deductive triplets
T = {ti = (tix, t

i
y, t

i
z)} as the discrete raw graph,

where tix, tiy, and tiz are thought units of the i-th
triplet, and there exists an edge eixy between tix and
tiy, and an edge eiyz between tiy and tiz . Then, ECC
clusters the nodes that refer to the same mentions
to conduct coreference resolution. Specifically,
we replace every graph node that belongs to a
coreference cluster with the most representative
mention in the cluster. By adopting this technique,
our model is better equipped with denser thought
graphs and the ability for deductive reasoning. The
detailed algorithm is illustrated in Algorithm 1.

In GoT construction, during the rationale gen-
eration stage, the input text consists of concate-
nated question, context, and choices. In multimodal
GoT, image caption (Lu et al., 2022) is appended
to the input text for GoT to incorporate image in-
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Figure 3: Graph-of-Thought deduction example

formation. During the answer inference stage, the
predicted rationales from the rationale generation
stage are further concatenated with the input text
for corresponding GoT construction.

In our implementation of ECC process, inspired
by (Chen and Yang, 2021), we utilize open in-
formation extraction (OpenIE) systems 2 (Angeli
et al., 2015) to extract subject-verb-object triplets
as thought unit nodes. We apply coreference reso-
lution to the extracted nodes using the Stanford
CoreNLP system (Manning et al., 2014). The
constructed thought graph is denoted as G(N , E),
whereN represents the nodes extracted by OpenIE
and E represents the adjacency matrix. Rows and
columns correspond to the nodes in the graph, and
if there is an edge between two nodes, the corre-
sponding matrix element is 1; otherwise, it is 0.

Algorithm 1 ECC process

Input: Input text S
Output: Thought graph G(N , E)

Extract deductive triplet set T from S
T = {t0, t1, ..., tn}, ti = (tix, t

i
y, t

i
z)

for every triplet ti ∈ T do
Nr ← Nr ∪ {tix, tiy, tiz}
Er ← Er ∪ {eixy, eiyz}

end for
extract coreference clusters C for Nr

for every node ni ∈ Nr do
if ni ∈ ∀cj ∈ C then
n∗
j ← most representative mention in cj
N ← N ∪ {n∗

j}
end if

end for
Reconnect N based on Er to construct E
return N , E

2https://github.com/philipperemy/Stanford-OpenIE-
Python

2.2 GoT Encoding and Integration
GoT reasoning utilizes separate encoders to encode
input data for each modality. The thought graph
is encoded using a graph attention network, while
the input text is encoded using a Transformer en-
coder. In multimodal GoT reasoning, the image is
encoded using an additional vision encoder.

2.2.1 Base Encoder
Text Encoder For text representation, we use the
Transformer encoder (e.g. T5 (Raffel et al., 2020a))
to encode the input text. Given input sentence S =
{w0, ..., wl}, we extract the hidden states from the
last layer of the Transformer encoder to obtain the
text representation HT :

HT = {h0, h1, ..., hl} = Encodertext(S) (1)

where hi is the hidden representation of token i and
l represents the length of the text input.

Vision Encoder (Optional) For multimodal rea-
soning with vision modality, following (Zhang
et al., 2023), we extract patch-level features of
image I using readily available vision extraction
model as vision encoder Encodervision and then
employ a trainable projection matrix WI to project
the extracted features into the vision representation
HI which have the same shape with HT .

HI = WIEncodervision(I) (2)

2.2.2 GoT Encoder
Node Embedding We first use special tokens
<s> and </s> to highlight every thought graph
node. Specifically, for node set with j nodes
N = {n0, ...nj} , we construct the node input as p
and then feed the p into the same text encoder and
utilize the output representation of the special token
<s> as the initial node representation. Formally,

p = [<s>, n0, </s>, ..., <s>, nj , </s>] (3)
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Figure 4: Architecture of GoT encoder

GAT Encoder We employ a graph attention net-
work (GAT) (Velickovic et al., 2018; Chen and
Yang, 2021) to encode the thought graph. For every
node ni in graph G(N , E), the graph attention
layer is designed as:

aij = Attention(
[
Whsi ||Whsj

]
) (5)

qij = LeakyReLU (aij) (6)

αij = Softmax(qij) =
exp (qij)∑

k∈Ki
exp (qik)

(7)

hg′i = GELU


∑

j∈Ki

αijWhsj


 (8)

where || denotes concatenate operation, the W is
a trainable weight and the set Ki contains the node
ni’s neighbours in thought graph G. Our graph
attention layer first employed a shared attention
mechanism Attention(.) : RD′ × RD′ → R to

compute the attention weights, where D′ is the
attention layer output dimension. The attention
weights aij measures the importance of node ni’s
features to nj’s features. By only calculating the
attention weights between nodes who are neigh-
bours, our graph attention layer demonstrates the
ability to perceive structural information of graphs.
In our implementation, we adopt a single-layer
feed-forward neural network (FFNN) as the atten-
tion mechanism which is both simple and straight-
forward.

Figure 4 shows the architecture of our GoT en-
coder. Our GoT encoder employs a multi-head
graph attention layer, following (Velickovic et al.,
2018), we concatenate the output of each graph
attention layer and further pass it to a output graph
attention layer with the same architecture:

hg′i = ∥Kk=1GELU


∑

j∈Ni

αk
ijW

khsj


 (9)

hg′′i = GELU


∑

j∈Ni

αijWhg′j


 (10)

where K is the number of attention heads, || is
the concatenate operation, and n is the number of
nodes in thought graph. We then use a single-layer
feed-forward neural network (FFNN) to obtain the
final thought graph embedding HG:

hg′′ = [hg′′0 , ..., hg′′n ]; HG = FFNN(hg′′)
(11)

2.3 Feature Fusion
After obtaining the encoded features, we use a
single head attention to align the text representa-
tion HT with image representation HI and thought
graph representation HG, respectively. The image
attention output HI and thought graph attention
output HG are calculated by:

HI = Softmax

(
HTHI⊤
√
d

)
HI (12)

HG = Softmax

(
HTHG⊤
√
d

)
HG (13)

where Q is HT and d is the dimension of HT .
We take both KI and VI as HI and KG and VG as
HG. Please note that image representation is op-
tional and is only required for multimodal dataset.
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Next, a gated fusion mechanism (Wu et al., 2021;
Zhang et al., 2023; Li et al., 2022; Zhang et al.,
2020) is applied to combine the attention outputs
HI and HG with the text representation HT . The
feature fusion output H can be calculated by:

λ =





Sigmoid
(
WTH

T +WGH
G
)

text-only

Sigmoid
(
WTH

T +WIH
I +WGH

G
)

multimodal

H =





(1− λ) ·HT + λ ·HG

text-only

(1− λ) ·HT + λ ·HI + λ ·HG

multimodal

where WT ,WI and WG are all trainable weights.
We then input the fused feature output H into the
decoder to predict the rationales or the final answer.

3 Experiments

Dataset We evaluate our model on the text-only
AQUA-RAT (Ling et al., 2017) and multimodal
ScienceQA benchmark (Lu et al., 2022). The de-
tailed dataset information and statistics are shown
in Appendix B.

Model Setup In our experiments, we used
T5 (Raffel et al., 2020a) as our basic model ar-
chitecture, including both T5-base and T5-large
model sizes. Specifically, to ensure a fair compar-
ison, we initialized our model with the finetuned
T5 checkpoint FLAN-Alpaca 3 and used ViT-large
encoder (Dosovitskiy et al., 2021) for the vision
encoder, following (Zhang et al., 2023). We fine-
tuned the models for 100 epochs with a learning
rate of 5e-5. The detailed training parameters are
available in Appendix C. We trained our models on
four NVIDIA A800 80G GPUs.

4 Results and Discussion

4.1 Main Results
Baselines For AQUA-RAT, our baselines include:
(1) Zero-Shot and Zero-Shot-CoT LLMs (Kojima
et al., 2022); (2) Few-Shot and Manual-CoT LLMs
(Wei et al., 2022b) and Auto-CoT (Zhang et al.,
2022) (The above baselines all use the text-davinci-
002 version of GPT-3 with 175B parameters); (3)

3https://huggingface.co/declare-lab/flan-alpaca-base

Fintuned LLMs: Calcformer-T5-L (Kadlčík et al.,
2023) which finetunes calculator-using T5-Large
model on the Calc-X collection. To have a fair com-
parison we also fine-tuned FLAN-Alpacabase and
FLAN-Alpacalarge on AQUA-RAT with traditional
two-stage CoT.

For ScienceQA, following (Zhang et al., 2023;
Lu et al., 2022), our adopted baselines include: (1)
Vision question answering (VQA) baseline mod-
els (Yu et al., 2019; Anderson et al., 2018; Kim
et al., 2018; Gao et al., 2019; Kim et al., 2021;
Lu et al., 2021; Li et al., 2019, 2020); (2) Text-
to-text LLMs (Raffel et al., 2020b; Chen et al.,
2020) and (3) Text-to-text LLMs with CoT prompt-
ing (Lu et al., 2022; Zhang et al., 2023). Both
UnifiedQA (Lu et al., 2022) and GPT-3.5 (Lu
et al., 2022) use generated image captions to in-
corporate vision semantics. Whereas, Mutimodal-
CoT (Zhang et al., 2023) injects generated image
features into traditional CoT reasoning.

MODELS TRAINING SIZE ACC(%)

Zero-Shot (Kojima et al., 2022) zero-shot 175B 22.40
Zero-Shot-CoT (Kojima et al., 2022) zero-shot 175B 33.50
Few-Shot (Wei et al., 2022b) few-shot 175B 24.80
Manual-CoT (Wei et al., 2022b) few-shot 175B 35.80
Auto-CoT (Zhang et al., 2022) few-shot 175B 36.50
Calcformer-T5-L (Kadlčík et al., 2023) train-set 770M 27.20

FLAN-Alpacabase train-set 223M 30.09 ± 1.12
GoT-T5base train-set 223M 32.09 ± 1.62

FLAN-Alpacalarge train-set 738M 33.73 ± 1.14
GoT-T5large train-set 738M 34.48 ± 1.11

Table 1: Main test accuracy results (ACC%) of AQUA-
RAT. Size=backbone model size.

Results The rationales generation results can be
seen in Table 8 in Appendix D. The overall results
are reported in Table 1 and Table 2.

In the AQUA-RAT dataset, our GoTbase model
attains a 0.78 enhancement in ROUGE-L scores for
rationale generation during the initial stage, outper-
forming the FLAN-Alpacabase model, which does
not integrate GoT. For the answer generation phase,
the GoTbase exhibits a substantial accuracy increase
of 2.00%, while the GoTlarge model records a 0.75%
enhancement. Compared to the 175B parameter
zero-shot and few-shot LLMs, our GoT-large, em-
ploying just a 738M backbone model, achieves
results remarkably close to those of Manual-CoT
(Wei et al., 2022b).

For ScienceQA dataset, in rationale generation
stage, we can see from Table 8 that our model
achieves a ROUGE-L of 94.39 and outperforms
the Mutimodal-CoTbase by 1.15. For the final an-
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MODEL TRAINING SIZE NAT SOC LAN TXT IMG NO G1-6 G7-12 AVG

Human - - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

Vision question answering baselines
MCAN (Yu et al., 2019) train-set 95M 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54
Top-Down (Anderson et al., 2018) train-set 70M 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02
BAN (Kim et al., 2018) train-set 112M 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF (Gao et al., 2019) train-set 74M 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT (Kim et al., 2021) train-set 113M 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14
Patch-TRM (Lu et al., 2021) train-set 90M 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT (Li et al., 2019, 2020) train-set 111M 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

Text-to-text LLMs
UnifiedQAbase (Raffel et al., 2020b) zero-shot 223M 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00 70.12
GPT-3.5 (Chen et al., 2020) zero-shot 175B 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97

Text-to-text LLMs with CoT
UnifiedQAbase (CoT) (Lu et al., 2022) zero-shot 223M 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.11
GPT-3.5 (CoT) (Lu et al., 2022) 2-shot 175B 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
ChatGPT (CoT) (Lu et al., 2023) few-shot - 78.82 70.98 83.18 77.37 67.92 86.13 80.72 74.03 78.31
GPT-4 (CoT) (Lu et al., 2023) few-shot - 85.48 72.44 90.27 82.65 71.49 92.89 86.66 79.04 83.99

Mutimodal-CoTbase (Zhang et al., 2023) train-set 223M 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19

GoT-T5base train-set 223M
86.25 93.55 85.51 85.89 86.30 86.34 87.79 87.23 87.59
± 0.31 ± 0.06 ± 0.11 ± 0.32 ± 0.28 ± 0.12 ± 0.10 ± 0.40 ± 0.20

Mutimodal-CoTlarge (Zhang et al., 2023) train-set 738M 91.03 93.70 86.64 90.13 88.25 89.48 91.12 89.26 90.45

GoT-T5large train-set 738M
90.88 93.57 88.45 90.26 88.16 90.29 91.19 90.14 90.81
± 0.22 ± 0.38 ± 0.44 ± 0.35 ± 0.25 ± 0.47 ± 0.16 ± 0.23 ± 0.12

Table 2: Main test accuracy results (%) of ScienceQA. SIZE=backbone model size. Question classes: NAT =
natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image context, NO =
no context, G1-6 = grades 1-6, G7-12 = grades 7-12, AVG= average accuracy scores

swer generation stage, our GoT achieves SOTA in
all subjects and all grades. The most direct com-
parison is that our model achieves an accuracy of
87.59% which is 2.40% higher than that of the
Mutimodal-CoTbase with the similar number of pa-
rameters.

GoT demonstrates a significant advantage over
traditional CoT, elevating the accuracy from
30.09% to 32.09% in AQUA-RAT and from
85.19% to 87.59% in ScienceQA task. The results
sufficiently suggest that utilizing thought graph fea-
tures for deductive reasoning is a more effective
approach than the existing methods, which only
consider text or vision features by simply incorpo-
rating image captions or fusing generated image
features. In conclusion, our results confirm the
effectiveness of utilizing two-dimensional graph-
of-thought and demonstrate the potential of incor-
porating GoT into reasoning for LMs.

4.2 Further Exploration

4.2.1 Ablation Study
AQUA-RAT In order to make sure that intro-
ducing thought graphs into GoT reasoning indeed
boost the performance, we conduct the following
experiments:

(1) Random Thought Graph In the Random
Thought Graph experiment, we maintain the GoT
framework while introducing randomness into the

process. We construct a thought graph by ran-
domly selecting nodes and arbitrarily establishing
connections between them. This approach is de-
signed to evaluate the extent to which the GoT
reasoning mechanism is reliant on the structured
organization of thought graphs. (2) Triplets Con-
catenation In the Triplets Concatenation experi-
ment, we take a straightforward approach by ap-
pending the extracted triplets directly to the input
text. This method aims to assess the impact of
omitting the structural information typically pro-
vided by thought graphs, offering insight into the
significance of this structural element in the rea-
soning process. (3) Coreference Injection In the
Coreference Injection experiment, we explore the
potential benefits of integrating coreference resolu-
tion directly into the language model’s reasoning
process. We achieve this by incorporating coref-
erence information into the input text, where all
instances of coreferent entities are replaced with a
consistent phrase, followed by model fine-tuning.
This experiment seeks to understand the role of
coreference resolution in enhancing the model’s
deductive capabilities.

Table 3 shows the overall ablation results. From
the table, we can see that by randomly construct
thought graphs to disrupt the deductive reasoning
process, our model suffers a loss of 1.78%, indicat-
ing the effectiveness of GoT. The results of Triplets
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MODEL MODEL SIZE ACC ∆

GoT-T5base 233M
32.09 -

w/ Random Thought Graph 30.31 -1.78

Triplets Concatenation 233M 31.20 -0.89

Coreference Injection 233M 30.32 -1.77

Table 3: Ablation results of GoT on AQUA-RAT
dataset.

Concatenation on the AQUA-RAT showed an ac-
curacy of 31.20%. This performance gap of 0.89
clearly demonstrates the significance of the struc-
tural information in our approach. For Coreference
Injection, the model suffers a loss of 1.77 % ac-
curacy. We believe that these outcomes can be
attributed to a couple of factors: (1) Simply re-
placing coreferent entities may lead to a loss of
coherence in sentences, resulting in a reduction
of semantic information and consequently having
a limited impact on overall accuracy. (2) Open
Information Extraction (OpenIE) for coreference
resolution is not flawless, and direct replacement
of entities might introduce noise that misleads the
language model during judgment.

Contrastingly, the construction of a thought
graph in the GoT framework does not compromise
the original textual information (questions and ra-
tionales). Instead, it introduces additional structural
assistance for LMs to conduct reasoning effectively.
Thus, we contend that GoT’s approach is indispens-
able and beneficial, as it supplements the LM’s
comprehension without introducing potential noise
or loss of coherence in the input text.

ScienceQA To examine the impact of different
backbone and vision encoder configurations on the
GoT, we employed a distinct set of model settings.
More specifically, we adopted the pre-trained T5
checkpoint UnifiedQA (Khashabi et al., 2020) as
the backbone model and utilized DETR (Carion
et al., 2020) for the vision encoder, with results
illustrated in the Table 4. As shown, our GoT out-
performs Mutimodal-CoT across various model
configurations. A comparison reveals that GoT
can achieve greater improvements on smaller mod-
els. We believe the main reason is that when the
language model is not as robust, or when employ-
ing a relatively weaker vision encoder like DETR
compared to ViT, GoT can leverage the inherent
information within the language to enhance per-
formance significantly. Additionally, to prove that
our GoT’s performance gain is not simply due to

an increase in parameters, we conducted an abla-
tion study. We expanded the parameter count of
Multimodal-CoTbase to match our 233M model
size by adding two layers of MLP instead of one in
the gated fusion module, referred to as Multimodal-
CoTbase(enlarged). We also constructed a random
thought graph ablation study on the ScienceQA
dataset. The results from the ablation studies can
be observed in the table 4. From the table, it is
evident that our model significantly outperforms
the enlarged Multimodal-CoT by an accuracy of
2.04%. These findings convincingly demonstrate
the significance of incorporating thought graphs
into multimodal reasoning. The performance of
GoT with a randomly constructed thought graph
was even lower than Mutimodal-CoT, indicating
that when the language model and vision encoder
are weaker, the model relies more heavily on GoT
for reasoning.

Model ACC ∆
UnifiedQA+DETR
Mutimodal-CoTbase 77.67 -
Mutimodal-CoTlarge 81.37 -
GoTbase 81.21 3.54
GoTlarge 82.74 1.37
Ablation Studies
Mutimodal-CoTbase(enlarged) 79.17 -2.04
GoTbase w/ Random Thought Graph 76.74 -4.47

Table 4: Ablation results of GoT on ScienceQA dataset.
For GoT models ∆ indicates the performance gains of
GoT models over their Multimodal-CoT counterparts.
In the ablation studies, ∆ represents improvements rela-
tive to the GoTbase model

4.2.2 Analysis
Performance on Different Classes In order to
investigate the impact of GoT on the overall model
performance across different subjects , we calcu-
lated the accuracy for different subjects and com-
pared it with that of Mutimodal-CoT. We also
compare the performance of two models on dif-
ferent question classes.The radar Figure 5 shows
the overall results for our base model. With re-
spect to various subjects and question classes, our
model demonstrates superior performance over the
Mutimodal-CoTbase and attains a more consistent
and enhanced outcome. Our model presents out-
standing advantages especially in the field of social
science, with an accuracy improvement of 5.25%.
For different question classes, our model demon-
strates the largest improvement on questions involv-

2908



ing images. Our hypothesis is that by constructing
a thought graph and integrating the three features of
text, image, and thought graph, we can better align
the textual and visual information for the model,
thus maximizing the utilization of visual informa-
tion and obtaining more accurate answers.

Figure 5: Performance on different question classes

2 4 6 8 10 12
60

70

80

90

100

Grades

A
cc

ur
ac

y(
%

)

Oursbase

Mutimodal-CoTbase

Figure 6: Performance on different grades

Performance on Different Grades It can be
seen from the Table 2 that Mutimodal-CoT expe-
rience a decrease in accuracy of 1.78 as the grade
level of the given question increases while GoT
only has minor decrease of 0.56. We believe the
main reason is that by incorporating GoT, models
acquires the ability for deductive reasoning and can
better comprehend the relationships between differ-
ent entities and thus better understand the meaning

of the problems. Through this method, for higher-
grade problems with greater complexity, the model
can construct a thought graph to help itself gener-
ate a more complete logical chain for deduction,
thereby generating more accurate answers. More
detailed model performance on different grades can
be found in Figure 6. We can see that in the lower
grade, two models achieves a similar performance.
As the grade level increases and the difficulty of
the questions becomes more challenging, the gap
between our model and the Mutimodal-CoT model
gradually widens. Due to the small number of ques-
tions (≤ 130) available for each grade in grade 1
and grades 11-12, there is greater fluctuation in the
accuracy of both models. Nevertheless, it is evident
from the table that our model exhibits stronger and
more stable advantages over Mutimodal-CoT in
each grade.

Case Study and Limitation In order to gain a
deeper understanding of the performance of GoT,
we conduct case studies which can be found in
the Appendix E. We also visualize the attention
weights aij in GoT encoder to demonstrate how
GoT performs deductive reasoning to generate
more accurate answers in Appendix F. For the lim-
itation of this work, compared to CoT, GoT may
result in additional computational costs and slightly
slower training times. Detailed limitation analysis
can be found in Appendix G.

5 Conclusion

We introduce a novel Graph-of-Thought (GoT) rea-
soning approach, which is an innovative method
for modeling the non-sequential nature of human
thinking for LMs. GoT enhances LMs with deduc-
tive reasoning abilities, providing a more realistic
representation of thought processes. Our exper-
iments showcases the superiority of GoT on the
text-only reasoning dataset AQUA-RAT, achieving
a similar result compared to GPT-3 model while
utilizing significantly fewer parameters. Further-
more, GoT establishes a new state-of-the-art on
the multimodal reasoning benchmark, ScienceQA
with fewer parameters. This performance surpasses
strong ChatGPT and GPT-4 systems, as well as hu-
man performance, demonstrating the efficacy of
GoT. Through comprehensive case studies and ab-
lation studies, we provide substantial evidence of
the effectiveness of GoT in reasoning tasks. If you
want it, you GoT it!
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Appendix

A Related Works

In chain-of-thought reasoning, one idea leads to the
next in a logical sequence and builds on previous
knowledge. Each idea is supported by evidence
or reasoning, and the conclusions drawn from the
chain are logical and sound. Most CoT methods
can be divided into two categories based on how to
generate the final answer: (1) prompting for CoT,
including zero-shot CoT and few-shot CoT; and (2)
fine-tuning for CoT.

Zero-shot CoT Prompting As large language
models continue to advance rapidly, many re-
searchers are beginning to explore CoT reasoning
for LLMs. The zero-shot CoT method proposed
by Kojima et al. (2022) consists of two stages: (1)
adding a "Let’s think step by step" prompt to gener-
ate CoT, and (2) concatenating the generated CoT
and adding the phrase "So the answer is" to ob-
tain the final answer. Tree-of-Thought (ToT) (Yao
et al., 2023) enables deliberate decision-making
through exploration of coherent text units. ToT di-
vides thoughts into thought units and models them
as a tree-like search process. Although both GoT
and ToT aim to capture human non-linear thoughts,
GoT is distinct from ToT in terms of both methodol-
ogy and objectives. We believe that human thinking
involves both linear and non-linear aspects. Thus,
we build upon the linear CoT framework by in-
corporating non-linear structures to simultaneously
capture both linear and non-linear human reason-
ing. Tree-of-thoughts focuses on modeling non-
linear thoughts explicitly, whereas our approach
leverages non-linear structures to assist the Chain-
of-Thought reasoning.

Few-shot CoT Prompting Few-shot CoT rea-
soning for LLMs, however, utilizes multiple input-
output pairs to prompt the LLMs to output CoT
and obtain the final answer. Due to its ability to
provide better performance compared to Zero-shot
CoT, Few-shot CoT has gained more attention in
research, particularly through effective demonstra-
tions. Few-shot CoT prompting was first formally
explored by Wei et al. (2022a) and is a form of dis-
crete prompt learning that involves context learning
in large models. Compared to traditional in-context
learning, which prompts LLMs with a list of input-
output demonstration pairs along with a test input
to allow the model to predict output, Few-shot CoT

prompting outputs additional logical reasoning pro-
cedures apart from the target output. Wang et al.
(2022) proposed a follow-up method to (Wei et al.,
2022a). The main improvement is that the model
uses the majority vote for the answers, which was
found to significantly improve the performance of
the CoT. However, these few-shot CoT models de-
pend on hand-crafted demonstrations. To solve this
problem, Zhang et al. (2022) proposed Auto-CoT,
which maintains the diversity of sampled questions
and generates reasoning chains to automatically
construct demonstrations. Specifically, Auto-CoT
consists of two main stages: (1) Problem clustering:
divide the given dataset of problems into several
clusters; (2) Demonstration sampling: select a rep-
resentative problem from each cluster and use a
simple heuristic method to generate its reasoning
chain. Furthermore, Lu et al. (2023) also explores
few-shot CoT reasoning for recently popular LLMs
ChatGPT and GPT-4.

CoT Fine-tuning In Zhang et al. (2023), it was
proposed to fine-tune smaller language models in-
stead of prompting them in LLMs. And this ap-
proach enabled the CoT to go beyond textual infor-
mation and incorporate visual (image) modalities
using a gated fusion mechanism into a two-stage
CoT. The results demonstrated that CoT fine-tuning
with fewer parameters has potential. Therefore, in
this work, we focus on fine-tuning for CoT to re-
duce the number of required model parameters and
help LLMs better comprehend different modalities.
However, previous CoT research has been limited
to different modalities, such as textual and vision
information, without considering the deduction rea-
soning process. Therefore, in this work, we move
beyond modeling the reasoning process solely as
a thought chain and elevate it to a thought graph.
We provide a more comprehensive and nuanced
representation, enabling LLMs to perceive the de-
duction reasoning process accurately, resulting in
more precise answer generation.

B Dataset

AQUA-RAT dataset consists of about 100,000 al-
gebraic word problems with natural language ra-
tionales. For AQUA-RAT, the model is trained to
reasoning through the steps to generate the final
answer. ScienceQA benchmark is the pioneering
large-scale dataset for multimodal science ques-
tions, equipped with comprehensive annotations for
answers, including detailed lectures and explana-
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tions. The dataset contains 21k questions covering
three subjects: natural science, language science,
and social science. Each question is presented with
a context in the form of natural language or an
optional image. The model is trained to elucidate
the reasoning process in natural language while
choosing the answer from a set of options.

Splits #Problems
Train 97467
Dev 254
Test 254

Table 5: AQUA-RAT dataset statistics (# denotes num-
bers)

Statistic Number
Splits
#Train 12,726
#Dev 4,241
#Test 4,241
#Total 21,208
Attribute
#Subjects 3
#Topic 26
#Category 127
#Skill 379

Table 6: ScienceQA dataset statistics (# denotes num-
bers)

C Training Parameters

Parameters Value
Epochs 100
Batch size for T5-base (per device) 10
Batch size for T5-large (per device) 8
Learning rate 5e-5
Weight decay 0.01
Max input length 512
Max number of nodes 150

Table 7: Training parameters for GoT

D Rationale Generation Results

The rationale genration results can be found in Ta-
ble 8. We can observe from Table 8 that the im-
pact of GoT on rationale generation is limited. We
attribute this limitation to the fact that the input
text for thought graph construction only includes

questions and choices. Consequently, the thought
graph constructed from such limited information
can only facilitate constrained deductive reasoning.
However, in the answer generation stage, when pro-
vided with rationales, the model needs to possess
stronger deductive reasoning capabilities to under-
stand the relationship between rationales, questions,
and choices.

E Case Study

To facilitate a more illustrative comparison between
GoT and the CoT, we have selected several repre-
sentative examples. Figure 7 illustrates the exam-
ples from AQUA-RAT dataset. Figure 8 to Figure
11 illustrates examples from ScienceQA dataset.
From Figure 8 and Figure 9, we can see that GoT
can better understand the rationales and generate
more accurate result. In Figure 10, we can see that
when provided with wrong rationale, our model is
more robust to the noise and can focus on more
important key information. (We highlight the noisy
wrong rationale in red and correct key rationale
in green). Figure 11 presents a language prob-
lem which have less context and requires a certain
amount of common sense knowledge. Hence, the
impact of constructing a mind map on enhancing
the model is not significant. Therefore, both GoT
and CoT predict wrong answers.

F Representation Visualization

In order to demonstrate the deductive reasoning
process of GoT more intuitively, we visualized the
attention weights of the GoT encoder. The visu-
alization results can be found in Figure 12. We
took Figure 10 as an example. In Figure 10, even
given a wrong rationale, GoT still manages to gen-
erate the right answer. We select 14 representative
thought nodes and found that "blue","color", and
"common" have the greatest weights which indi-
cates that GoT guides the model to focus on more
important words and conduct correct deductive rea-
soning. For the disruptive node "a hard object," our
model can effectively discriminate against it and as-
sign a lower attention weight to prevent the model
from selecting incorrect answers, as traditional CoT
models often do due to erroneous rationales.

G Limitation

Compared to Mutimodal-CoT (Zhang et al., 2023),
incorporating GoT may result in additional com-
putational costs and slightly slower training times.
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MODELS BLEU1 BLEU4 ROUGE SIMILARITY

AQUA-RAT
FLAN-Alpacabase 19.78 3.49 28.40 68.61
FLAN-Alpacalarge 22.45 5.40 29.55 70.34
GoT-T5base 22.05 5.02 29.18 69.09
GoT-T5large 24.47 6.68 29.86 71.58

ScienceQA
Mutimodal-CoT∗

base (Zhang et al., 2023) 91.04 86.81 93.24 96.34
GoT-T5base 92.50 88.79 94.39 96.74
GoT-T5large 93.49 90.09 95.17 97.33

Table 8: Rationale generation results (%). (*: we re-run the Mutimodal-CoTbase to report the full rationale scores.
We use sentence-transformers (https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) to obtain sentence
embeddings and calculate the cosine similarity for SIMILARITY)

The training parameters and inference times of the
different models are presented in Table 9, which
reveals that our model requires a 0.2% increase in
parameters compared to Mutimodal-CoT.

#Parameters
Inference time

(eval samples/per second)

Mutimodal-CoTbase 227M 16.33
Ours 233M 13.38

Table 9: The number of training parameters and infer-
ence time of different models (# denotes numbers)

2915



Dataset

GoT Prediction

CoT Prediction

Question: paper is in a square form whose one side is 20 cm. Two semi circles 
are drawn on its opposites as diameters. If these semi circles are cut down 
what is the area of the remaining paper
Choices: (A) 8.73 (B) 8.79

(C) 8.75

Rationale: (5 * 3.5)/2 = 8.75
Answer: C

Rationale: Area of the square = pi*r2/4 = (20*20)/(2*2) = 8.73
  
Answer: A

Rationale: Explanation: Area of the paper = (r2 + r2) = (20 x 20) cm2 = 1200 cm2. Area of 
two semi circles cut down = [(20 - r2)2 - (20 x 20)2] cm2 = (1200 - 225) cm2 = 875 cm2.
Answer: C

(D) 8.71

wrong rationales right answer

wrong rationales wrong answer

(E) 8.72

Figure 7: Examples of AQUA-RAT
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Dataset

GoT Prediction

CoT Prediction

Question: Would you find the word pink on a dictionary page with the following guide words?
parrot – property

Choices: (A) yes (B) no

Rationale: lecture: Guide words appear on each page of a dictionary. They tell you the first
word and last word on the page. The other words on the page come between the guide
words in alphabetical order. To put words in alphabetical order, put them in order by their
first letters. If the first letters are the same, look at the second letters. If the second letters
are the same, look at the third letters, and so on. If one word is shorter, and there are no
more letters to compare, then the shorter word comes first in alphabetical order. For
example, be comes before bed.
solution: Put the words in alphabetical order. Since pink is between the guide words parrot -
property, it would be found on that page.
Answer: The answer is (A)

Rationale: Solution: Guide words appear on each page of a dictionary. They tell you the first
word and last word on the page. The other words on the page come between the guide
words in alphabetical order. To put words in alphabetical order, put them in order by their
first letters. If the first letters are the same, look at the second letters. If the second letters
are the same, look at the third letters, and so on. If one word is shorter, and there are no
more letters to compare, then the shorter word comes first in alphabetical order. For
example, be comes before bed. Put the words in alphabetical order. Since pink is between
the guide words parrot - property, it would be found on that page.
Answer: The answer is (A)

Rationale: Solution: Guide words appear on each page of a dictionary. They tell you the first
word and last word on the page. The other words on the page come between the guide
words in alphabetical order. To put words in alphabetical order, put them in order by their
first letters. If the first letters are the same, look at the second letters. If the second letters
are the same, look at the third letters, and so on. If one word is shorter, and there are no
more letters to compare, then the shorter word comes first in alphabetical order. For
example, be comes before bed. Put the words in alphabetical order. Since pink is between
the guide words parrot - property, it would be found on that page.
Answer: The answer is (B)

right rationales right answer

right rationales wrong answer

Figure 8: Examples of ScienceQA
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Dataset

GoT Prediction

CoT Prediction

Question: What is the name of the colony shown?

Choices: (A) New Hampshire (B) Vermont

(C) New York

Rationale: The colony is New York. During the
colonial era, New Hampshire and New York both
claimed the territory that would later become the
state of Vermont. Vermont was never its own
colony.
Answer: The answer is (C)

Rationale: Solution: The colony is New York. During the colonial era, New Hampshire and
New York both claimed the territory that would later become the state of Vermont.
Vermont was never its own colony.
Answer: The answer is (C)

Rationale: Solution: The colony is Delaware York. During the colonial era, New Hampshire
and New York both claimed the territory that would later become the state of Vermont.
Vermont was never its own colony.
Answer: The answer is (D)

(D) Delaware

right rationales right answer

wrong rationales wrong answer

Figure 9: Examples of ScienceQA
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Dataset

GoT Prediction

CoT Prediction

Question: Which property do these three 
objects have in common?

Choices: (A) blue (B) hard

(C) sticky

Rationale: lecture: An object has different properties. A property of an object can tell you
how it looks, feels, tastes, or smells. Properties can also tell you how an object will behave
when something happens to it. Different objects can have properties in common. You can
use these properties to put objects into groups.
Solution: Look at each object. For each object, decide if it has that property. A sticky object
can attach or stick to other things. The toothpaste is sticky, but the soccer shorts and the
water slide are not. Blue is a color. This color is blue. All three objects are blue. A hard object
does not change shape when pressed or squeezed. The water slide is hard, but the
toothpaste and the soccer shorts are not. The property that all three objects have in
common is blue.
Answer: The answer is (A)

Rationale: Solution: An object has different properties. A property of an object can tell you
how it looks, feels, tastes, or smells. Properties can also tell you how an object will behave
when something happens to it. Different objects can have properties in common. You can
use these properties to put objects into groups. Look at each object. For each object, decide
if it has that property. A hard object can attach or stick to other things. The is sticky, but the
shorts and the pitcher are not. Blue is a color. This color is blue. The three objects are blue.
A hard object does not change shape when pressed or squeezed. The tennis slide and hard,
but the tennis and the water shorts are not. The property that all three objects have in
common is blue.
Answer: The answer is (A)

Rationale: Solution: An object has different properties. A property of an object can tell you
how it looks, feels, tastes, or smells. Properties can also tell you how an object will behave
when something happens to it. Different objects can have properties in common. You can
use these properties to put objects into groups. Look at each object. For each object, decide
if it has that property. A sticky object can attach or stick to other things. The is sticky, but the
shorts and the blue bottle are not. Blue is a color. This color is blue. None three objects are
blue. A hard object does not change shape when pressed or squeezed. None tennis slide
and hard, but the is the water shorts are not. The property that all three objects have in
common is sticky.
Answer: The answer is (C)

wrong rationales right answer

wrong rationales wrong answer

Figure 10: Examples of ScienceQA
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Dataset

GoT Prediction

CoT Prediction

Question: Select the action that doesn't belong
Choices:

(A) chop (B) blend

(C) stir

Rationale: Chop doesn't belong. Blend, mix, and stir all describe ways to combine
things
Answer: The answer is (A)

Rationale: Solution: Mixp doesn‘t belong. Murend, chop, and chop all name things to get
things.
Answer: The answer is (D)

Rationale: Solution: Blendp doesn't belong..Murend, chop, and blend all name things to
getAnswer: The answer is (B)

(D) mix

wrong rationales wrong answer

wrong rationales wrong answer

Figure 11: Examples of ScienceQA
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Figure 12: Representation visualization
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