
Findings of the Association for Computational Linguistics: NAACL 2024, pages 2959–2971
June 16-21, 2024 ©2024 Association for Computational Linguistics

Tram: A Token-level Retrieval-augmented Mechanism for Source Code
Summarization

Tong Ye1, Lingfei Wu2, Tengfei Ma3, Xuhong Zhang1, Yangkai Du1,
Peiyu Liu1, Shouling Ji1, Wenhai Wang1∗

1Zhejiang University; 2Anytime.AI; 3Stony Brook University
{tongye,zhangxuhong,yangkaidu,liupeiyu,sji,zdzzlab}@zju.edu.cn

lwu@anytime-ai.com, tengfei.ma@stonybrook.edu

Abstract

Automatically generating human-readable text
describing the functionality of a program is
the intent of source code summarization. Al-
though neural language models achieve signif-
icant performance in this field, they are lim-
ited by their inability to access external knowl-
edge. To address this limitation, an emerging
trend is combining neural models with external
knowledge through retrieval methods. Previ-
ous methods have relied on the sentence-level
retrieval paradigm on the encoder side. How-
ever, this paradigm is coarse-grained, noise-
filled and cannot directly take advantage of the
high-quality retrieved summary tokens on the
decoder side. In this paper, we propose a fine-
grained Token-level retrieval-augmented mech-
anism (Tram) on the decoder side rather than
the encoder side to enhance the performance of
neural models and produce more low-frequency
tokens in generating summaries. Furthermore,
to overcome the challenge of token-level re-
trieval in capturing contextual code semantics,
we also propose integrating code semantics
into individual summary tokens. The results
of extensive experiments and human evaluation
show that our token-level retrieval-augmented
approach significantly improves performance
and is more interpretable.

1 Introduction

With software functions becoming more compre-
hensive and complex, it becomes a heavy burden
for developers to understand software. It has been
reported that nearly 90% (Wan et al., 2018) of ef-
fort is used for maintenance, and much of this effort
is spent on understanding the maintenance task and
related software source codes. Source code sum-
mary as a natural language is indispensable in soft-
ware since humans can easily read and understand
it, as shown in Table 1. However, manually writing

∗ Corresponding author.

source code summaries is time-consuming and te-
dious. Besides, the source code summary is often
outdated in continuous software iteration. Hence,
automatically generating concise, human-readable
source code summaries is critical and meaningful.

def cos(x):
np = import module("numpy")
if isinstance(x, (int, float)):

return interval(np.sin(x))
elif isinstance(x, interval):

if (not(np.isifnite(x.start) and
np.isfinite(x.end))):

return interval((-1), 1, is_valid=x.is_valid)
(na, _) = divmod(x.start, (np.pi / 2.0))
(nb, _) = divmod(x.end, (np.pi / 2.0))
start = min(np.cos(x.start), np.cos(x.end))
end = max(np.cos(x.start), np.cos(x.end))
if ((nb - na) > 4):

return interval((-1), 1, is_valid=x.is_valid)
elif (na == nb):

return interval(start, end, is_valid=x.is_valid)
else:

if ((na // 4) != (nb // 4)):
end = 1

if (((na - 2) // 4) != ((nb - 2) // 4)):
start = -1

return interval(start, end, is_valid=x.is_valid)
else:

raise NotImplementedError

Summary: evaluates the cos of an interval.
Token-level retrieval results

at the next generation step "cos":
cos, tangent, sin, hyperbolic, · · ·

Table 1: A sample of source code summarization.

With the development of language models and
the linguistic nature of source code, researchers
explored Seq2Seq architecture, such as recurrent
neural networks to generate summaries (Iyer et al.,
2016; Loyola et al., 2017; Liang and Zhu, 2018).
Soon afterward, transformer-based models (Ah-
mad et al., 2020; Wu et al., 2021; Gong et al.,
2022) were proposed, outperforming previous
RNN-based models by a large margin. Recently,
many approaches have been proposed to leverage
the structural properties of source code, such as
Abstract Syntax Tree (AST) and Program Depen-
dency Graph (PDG). Current structure-aware meth-
ods typically either fuse structural information in a
hybrid manner (Hu et al., 2018; Shido et al., 2019;
LeClair et al., 2020; Choi et al., 2021; Shi et al.,

2959

2021), or use a structured-guided way (Wu et al.,
2021; Son et al., 2022; Gong et al., 2022; Guo et al.,
2022b; Choi et al., 2023). Although these methods
have shown promising results, they primarily focus
on leveraging the information within the code to
obtain richer code representation without fully uti-
lizing the potential of the available human-written
code-summary pairs.

In order to leverage external existing high-
quality code and the corresponding summary in-
stances, recent works (Zhang et al., 2020; Li et al.,
2021; Liu et al., 2021; Parvez et al., 2021) have
proposed a retrieval augmented approach. Their
unified paradigm involves sentence-level retrieval,
which uses text similarity metrics or code semantic
similarity metrics to retrieve the most similar code
snippet from a code repository for the given input
code snippet. The retrieved code snippet and its
corresponding summary are either directly concate-
nated with the input code snippet or semantically
enhanced to augment the input code snippet on the
encoder side.

However, the granularity of sentence-level re-
trieval methods poses challenges. Specifically, they
can erroneously retrieve and incorporate code snip-
pets that, while syntactically similar, are seman-
tically distinct or those that only bear partial se-
mantic resemblance. The unintended noise intro-
duced through such mismatches can adversely af-
fect the generation performance, especially for low-
frequency tokens. Moreover, code summarization
is essentially a generative task, the decoder autore-
gressively generates the summary tokens. However,
previous sentence-level retrieval-augmented meth-
ods neglect to fuse the retrieved information on the
decoder side, only doing so on the encoder side,
which will result in the utilization pattern being
indirect and insufficient.

These limitations have inspired us to explore a
more fine-grained and sufficient retrieval approach
on the summary generation process. In order to
achieve the purpose of retrieving semantic simi-
lar summary tokens on the decoder side, we first
construct a datastore to store the summary tokens
and corresponding representations through a pre-
trained base model offline. Meanwhile, to over-
come the challenge of not fully utilizing code se-
mantics on the encoder side when retrieving on
the decoder side, we intelligently fuse summary
token representation with code token representa-
tion and AST node representation with attention
weight. This approach fully considers contextual

code semantics associated with summary tokens.
Then, at each generation step, the fused summary
token representation is used to retrieve the top-K
most similar tokens. As illustrated in Table 1, the
token-level retrieval results at the next token gener-
ation step “cos” are “cos, tangent, sin, hyperbolic,
· · ·”. The retrieved top-K tokens are expanded
to a probability distribution, which we refer to as
the retrieval-based distribution. The retrieval-based
distribution is then fused with the vanilla distribu-
tion to form the final distribution. Additionally, our
proposed token-level retrieval mechanism can be
seamlessly integrated with existing sentence-level
retrieval methods and code-related large pre-trained
models.

To facilitate future research, we have made our
code publicly available1. Overall, the main contri-
butions of this paper can be outlined as follows:

(1) We are the first to explore a Token-level
retrieval-augmented mechanism (Tram) on the de-
coder side for source code summarization.

(2) Our proposed retrieval-augmented mecha-
nism is orthogonal to existing improvements, such
as better code representation, additional sentence-
level retrieval approaches, and pre-trained models.

(3) Extensive experiments and human evalua-
tion show that Tram significantly outperforms other
baseline models, generates more low-frequency to-
kens and is more interpretable.

2 Related Works

Retrieval-based Source Code Summarization.
Liu et al. (2021) retrieved the most similar code
snippet by text similarity metric to enrich target
code structure information for getting a better code
representation encoder. This retrieval method only
carries out from the perspective of text similarity
and neglects code semantic similarity in the re-
trieval phase. Besides, the summary corresponding
to the retrieved code snippet is just a simple con-
catenation to the encoder. Zhang et al. (2020);
Parvez et al. (2021) used a pre-trained encoder to
obtain code semantic representation, which was
used to retrieve similar code snippets. The former
only uses similar code snippets and discards the cor-
responding summaries; the latter directly splice the
retrieved code snippet and the corresponding sum-
mary behind the target code; both are also aimed
at better code representation on the encoder side.
Different from the above sentence-level retrieval

1https://github.com/tongye98/SourceCodeSummary

2960

https://github.com/tongye98/SourceCodeSummary

SCEnc Decoder ASTEnc

Attend-Node
×

Attend-Code
×

AST Source Code Summary Tokens

base
model

DataStore

base model
distribution

retrieval-based
distribution

Fused Distribution

✖ λ （1 - λ）✖

Output Layer

Key Value
evaluates

the
......

Store
Query

Figure 1: The overview architecture of Tram.

methods, Tram performs token-level retrieval aug-
mentation at each step of the decoder that generates
the next token.

K-Nearest-Neighbor Machine Translation. Re-
cently, non-parametric methods have been success-
fully applied to neural machine translation (Khan-
delwal et al., 2021; Jiang et al., 2021; Zheng et al.,
2021a,b). These approaches complement advanced
NMT models with external memory to alleviate
the performance degradation in domain adaption.
Compared to these works, we have fully accounted
for the code’s inherent structure and have intelli-
gently integrated code semantics into the retrieval
process. Additionally, we demonstrate how Tram
integrates with sentence-level retrieval methods.

3 Methodology

3.1 Overview

The overview architecture of Tram is shown in
Figure 1. Initially, we introduce the base model,
which is an encoder-decoder architecture that takes
a code snippet and corresponding AST as input
and generates a summary as output. Building upon
the base model, we then construct a datastore that
stores summary tokens and corresponding repre-
sentations, where the representation is an intelli-
gent combination of the decoder representation,
code token representation, and AST node repre-
sentation. Next, we develop a fine-grained token-
level retrieval mechanism. This mechanism focuses
on retrieving the top-K most similar tokens from
the datastore and generating a retrieval-based dis-
tribution. The retrieval-based distribution is then
fused with the vanilla base model distribution by a

Self Attention

Cross-Attention

Attend-Code

Cross-Attention

Attend-Node

Feed Forward

GAT

Res. & Norm.

ReLU

AST Source Code Summary Tokens

Multi-Head
Self Attention

Feed Forward

ASTEnc SCEnc

Decoder

Figure 2: The architecture of base model.

weight hyper-parameter λ to form the final distri-
bution. Additionally, we detail the integration of
both token-level and sentence-level retrieval. The
combination of token-level retrieval and sentence-
level retrieval enables a more comprehensive sum-
marization process. In terms of integrating Tram
with code pre-trained models, the implementation
is broadly consistent and detailed in Appendix A.

3.2 Base Model

The base model serves as the foundation for the
subsequent retrieval process. It is designed to con-
struct the datastore and generate the base model
distribution. Figure 2 illustrates the specific archi-
tecture of the base model, which consists of two
encoders (SCEnc and ASTEnc) and a decoder.

Source Code Encoder (SCEnc). As shown in
Figure 2, we utilize Transformer (Vaswani et al.,
2017) as the encoder for the source code tokens.
The Transformer consists of stacked multi-head
attention and parameterized linear transformation
layers. Each layer emphasizes on self-attention
mechanism. Nevertheless, as pointed out in Ah-
mad et al. (2020), the code semantic representation
is influenced by the mutual interactions between its
tokens rather than their absolute positions. There-
fore, we adopt the method of relative positional
encoding, as proposed by Shaw et al. (2018).

Assuming the code snippet contains p tokens
[t1, t2, ..., tp], after SCEnc, each token has a hidden
representation, which is denoted as:

[h1, h2, ..., hp] = SCEnc([t1, t2, ..., tp])

AST Encoder (ASTEnc). Furthermore, the AST
of the source code can be considered as a graph

2961

structure, making it suitable for representation and
learning using Graph Neural Networks (GNNs).
Taking advantage of the GAT’s (Veličković et al.,
2018) exceptional performance and its ability to
assign adaptive attention weights to different nodes,
we employ GAT to represent each node in the AST.
The graph encoder layer processes the AST by first
aggregating the neighbors of the nodes with edge
information. It then updates the nodes with the
aggregated information from their neighborhoods.

After updating the node information, the node
representations are put together into a ReLU acti-
vation followed by residual connection (He et al.,
2016) and layer normalization (Ba et al., 2016).

Assuming the AST of the code snippet contains
q nodes [n1, n2, ..., nq], after the ASTEnc, each
node has a hidden representation, denoted as:

[r1, r2, ..., rq] = ASTEnc([n1, n2, ..., nq])

Summary Decoder. The summary decoder is de-
signed with modified transformer decoding blocks.
At time step t, given the existing summary tokens
[s1, s2, ..., st−1], the decoding blocks first encode
them by masked multi-head attention. After that,
we expand the transformer block by leveraging
two multi-head cross-attention modules to interact
with the two encoders for summary decoding. One
multi-head cross-attention module is performed
over the code token features to get the first-stage
decoded information, which will then be fed into
the other over the learned AST node features for
the second-stage decoding. Then the decoded sum-
mary vectors [d1, d2, ..., dt−1] are put into a feed-
forward network for non-linear transformation.

3.3 Datastore Construction

Based on the base model, to achieve the goal of
fine-grained token-level retrieval, we build the data-
store that stores summary tokens and correspond-
ing representations. At the stage of datastore es-
tablishment, we adopt the above pre-trained base
model to go through all training instances in an
offline manner. During this process, for each in-
stance, the SCEnc and ASTEnc encode the code
tokens and AST nodes into a sequence of hid-
den states: [h1, h2, ..., hp] and [r1, r2, ..., rq], the
decoder generates the target summary autoregres-
sively. At time step t, the decoder takes existing
summary token [s1, s2, ..., st−1] as input, for the
last token st−1, the decoder’s first cross-attention
module gets the attention score of the code tokens

(called Attend-Code [α1, α2, ..., αp]), the second
cross-attention module gets the attention score of
the AST nodes (called Attend-Node [β1, β2, ...βq]).
We use Attend-Code and Attend-Node to perform
weighted summation of the representations of code
tokens and AST nodes, respectively, denoted as:

[α1, α2, ..., αp] ∗ [h1, h2, ..., hp]T = Ht

[β1, β2, ..., βq] ∗ [r1, r2, ..., rp]T = Rt

where Ht means weighted code token representa-
tion, Rt means weighted AST node representation.

After two cross-attention modules, the input to-
ken st−1 is converted to token representation dt−1.
Because the goal at time step t is to generate the
next token st, we pick the token representation
dt−1 to represent st. To fully consider the contex-
tual code semantics associated with the summary
token, we concatenate Ht, Rt, and dt−1 to create
the final and more comprehensive representation
of st. Besides, to facilitate efficient retrieval in the
subsequent steps, we applied L2 regularization to
the representations in practice, denoted as:

kt = Concat(Ht, Rt, dt−1)

k̃t = L2_Normalize(kt)

where k̃t is the final presentation of token st. Fi-
nally, the ground-truth summary token st and cor-
responding representation k̃t are inserted into data-
store as a key-value pair, denoted as (key, value) =
(k̃t, st), the whole datastore can be denoted as:

(K,V) = {(k̃t, st),∀st ∈ S}

where S means all summary tokens in the training
dataset. It is important to note that the datastore
contains duplicate tokens because the same sum-
mary token can have different keys, representing
different semantic representations due to variations
in linguistic contexts.

3.4 Token-level Retrieval
During inference, at each decoding step t, the cur-
rent summary token representation dt−1 is com-
bined with the corresponding Ht and Rt using
the same concatenate and L2 regularization oper-
ator as query qt. The query retrieves the top-K
most similar summary tokens in the datastore ac-
cording to cosine similarity distance. It is worth
noting that we use cosine similarity instead of
squared-L2 distance because of the performance

2962

of the preliminary experiment. As an added bonus,
cosine similarity can be seen as retrieval confi-
dence. In practice, the retrieval over millions of
key-value pairs is carried out using FAISS (John-
son et al., 2019), a library for fast nearest neigh-
bor search in high-dimensional spaces. The re-
trieved key-value pairs (k, v) and corresponding
cosine similarity distance α composed a triple set
N = {(ki, vi, αi)|i = 1, 2, · · · ,K}. Inspired by
KNN-MT (Khandelwal et al., 2021), the triple
set can then be expanded and normalized to the
retrieval-based distribution as follows:

Pr(st|c, ŝ<t) ∝
∑

(ki,vi,αi)∈N
1vi=st exp (g(ki, αi))

g(ki, αi) = αi ∗ T
where g(·) can be any Kernel Density Estimation
(KDE); in practice, we use the product form; T is
the temperature to regulate probability distribution.

3.5 Fused Distribution
The final prediction distribution can be seen as a
combination of the vanilla base model output distri-
bution and the retrieval-based distribution, which
is interpolated by a hyper-parameter λ:

P (st|c, ŝ<t) = λ ∗ Pr(st|c, ŝ<t)

+ (1− λ) ∗ Pm(st|c, ŝ<t)

where Pm indicates the base model distribution.

3.6 Additional Sentence-level Retrieval
Our proposed token-level retrieval augmented
method can also be seamlessly incorporated with
additional sentence-level retrieval. Sentence-level
retrieval here means using the target code snippet to
retrieve the most semantically similar code snippet
in the corpus through code semantic representa-
tions. Then we assign an additional but the same
base model for the most similar code snippet to
generate tokens autoregressively. At each genera-
tion step, the decoder of the additional base model
(generating similar-code-based next token distribu-
tion) is synchronous with the original target code
snippet decoder (generating base model next token
distribution). Finally, the above two distributions,
together with the “token-level retrieved next token
distribution”, form the final distribution through a
weighted sum, which is denoted as:

P (st|c, ŝ<t) = λ1 ∗ Pr(st|c, ŝ<t)

+ λ2 ∗ Sim ∗ Ps(st|⟨c⟩, ŝ<t)

+ (1− λ1 − λ2) ∗ Pm(st|c, ŝ<t)

Datasets Java Python CCSD Python‡

Train 69,708 55,538 84,316 65,236
Validation 8,714 18,505 4,432 21,745

Test 8,714 18,502 4,203 21,745
Code: Avg. tokens 73.76 49.42 68.59 150.82

Summary: Avg. tokens 17.73 9.48 8.45 9.93

Table 2: Statistics of the experimental datasets.

where Ps is the additional base model produced
distribution, ⟨c⟩ is the most semantically similar
code snippet to the target code snippet c, and Sim
is the corresponding similarity score.

4 Experiments

4.1 Experimental Setup
Datasets. We conduct the experiments on four
public benchmarks of Java (Hu et al., 2018), Python
(Wan et al., 2018), CCSD (C Code Summarization
Dataset) (Liu et al., 2021), and Python‡ (Zhang
et al., 2020). The partitioning of train/valida-
tion/test sets follows the original datasets. The
statistics of the four datasets are shown in Table 2.

Out-of-Vocabulary. The vast operators and iden-
tifiers in program language may produce a much
larger vocabulary than natural language, which can
cause Out-of-Vocabulary problem. To avoid this
problem, we apply CamelCase and snake−case
tokenizers that are consistent with recent works
(Gong et al., 2022; Wu et al., 2021; Ahmad et al.,
2020) to reduce the vocabulary size of source code.

Metrics. Similar to recent work (Gong et al.,
2022; Son et al., 2022), we evaluate the source code
summarization performance using three widely-
used metrics, BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005) and ROUGE-L
(Lin, 2004). Furthermore, considering the essence
of source code summarization to help humans bet-
ter understand code, we also conduct a human eval-
uation study. The volunteers are asked to rank sum-
maries generated from the anonymized approaches
from 1 to 5 (i.e., 1: Poor, 2: Marginal, 3: Accept-
able, 4: Good, 5: Excellent) based on Similarity,
Relevance, and Fluency metrics. Further details
on human evaluation can be found in Appendix C.

Training Details. We implement our approach
based on JoeyNMT (Kreutzer et al., 2019). The
batch size is set to 32 and Adam optimizer is used
with an initial learning rate 10−4. To alleviate over-
fitting, we adopt early stopping with patience 15.
For Faiss (Johnson et al., 2019) Index, we employ

2963

Model Java Python
BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

Transformer-based Methods
Transformer (Ahmad et al., 2020) 44.58 54.76 26.43 32.52 46.73 19.77
CAST (Shi et al., 2021) 45.19 55.08 27.88 - - -
mAST + GCN (Choi et al., 2021) 45.49 54.82 27.17 32.82 46.81 20.12
SiT (Wu et al., 2021) 45.70 55.54 27.55 33.46 47.50 20.28
SiT + PDG (Son et al., 2022) 46.86 56.69 - - - -
CODESCRIBE (Guo et al., 2022b) 46.93 56.18 29.13 34.44 49.02 20.91
Our Method

Base 46.84 56.92 28.71 34.20 48.37 20.99
Tram w/o HR 47.85 57.51 29.28 35.37 49.31 21.53
Tram 48.32 58.13 29.56 35.97 49.92 22.09
Tram with SenRe 48.58 58.43 29.77 36.23 50.04 22.23

Our Method on Pre-trained Models
CodeT5 (Wang et al., 2021) 46.47 58.11 27.92 35.37 51.27 23.22
CodeT5 + Tram 47.85 59.32 28.75 36.23 52.08 24.13
UniXcoder (Guo et al., 2022a) 45.32 56.61 26.52 35.89 51.17 23.11
UniXcoder + Tram 46.17 57.22 26.94 36.45 51.78 23.55

Table 3: Comparison of the performance of our method with other baseline methods on Java and Python benchmarks
in terms of BLEU, ROUGE-L, and METEOR. The results of baseline models are reported in their original papers.
‘-’ refers to no corresponding value from the paper. HR refers to code token and AST node representation; SenRe
refers to additional sentence-level retrieval. All of our results are the mean of 5 runs with different random seeds.

IndexFlatIP and top-K=16 to maintain a balance
between retrieval quality and retrieval speed in the
large-scale datastore. It is worth noting that only
the base model requires training, and once trained,
all the parameters of the base model are fixed. For
validation, we use greedy search, while for evalua-
tion, we use beam search with beam size of 4.

4.2 Baselines
Transformer-based. Transformer (Ahmad et al.,
2020) is the first attempt to use transformer archi-
tecture in this field. Soon, structure-aware methods
were proposed. Among these are CAST (Shi et al.,
2021) and mAST+GCN (Choi et al., 2021), which
integrate structural information in a hybrid manner.
SiT (Wu et al., 2021), SiT+PDG (Son et al., 2022),
and CODESCRIBE (Guo et al., 2022b) utilize a
structured-guided way. The detailed description of
these baselines is shown in Appendix B.

Retrieval-based. Rencos (Zhang et al., 2020)
is the first retrieval-based Seq2Seq model, which
computes a joint probability conditioned on both
the original source code and the retrieved most sim-
ilar source code for a summary generation. HGNN
(Liu et al., 2021) is the retrieval-based GNN model,
which retrieval the most similar code and uses a
Hybrid GNN by fusing static graph and dynamic
graph to capture global code graph information.

4.3 Main Results

The main experiment results are shown in Table
3 and Table 4 in terms of three automatic evalu-
ation metrics. The reason we have two tables is
that transformer-based works compare their perfor-
mance on the widely-used Java and Python bench-
marks, while the retrieval-based works use two
different benchmarks, namely CCSD and Python‡.
Thus, our experiments are performed on all four
datasets for a more thorough comparison. We calcu-
late the metric values following the same scripts2.

From Table 3, SiT + PDG and CODESCRIBE
achieve better results than all previous works. How-
ever, it is worth noting that even our base model
can achieve comparable performance to other mod-
els. This is due to the improved training method we
used, Pre-LN (layer normalization inside the resid-
ual blocks), which is discussed in (Liu et al., 2020).
This method enhances the stability of the training
process and leads to better performance. Tram fur-
ther boosts results with 1.39 BLEU points on Java
and 1.53 BLEU points on Python and achieves new
state-of-the-art results. We also observe that the
performance improvement for Python is better than
that for Java. The main reason we speculate is that
Java has a longer average code token length (from

2https://github.com/gingasan/sit3/blob/main/
c2nl/eval/bleu/google_bleu.py

2964

https://github.com/gingasan/sit3/blob/main/c2nl/eval/bleu/google_bleu.py
https://github.com/gingasan/sit3/blob/main/c2nl/eval/bleu/google_bleu.py

Model CCSD Python‡

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR
Retrieval-based Methods
Rencos (Zhang et al., 2020) 14.80 31.41 14.64 34.73 47.53 21.06
HGNN (Liu et al., 2021) 16.72 34.29 16.25 - - -
Our Method

Base 17.82 35.33 16.71 34.85 48.84 21.49
Base + Rencos 19.43 36.92 17.69 35.26 49.25 22.07
Tram w/o HR 21.27 37.61 18.09 36.41 50.18 22.24
Tram 21.48 37.88 18.35 36.73 50.35 22.53
Tram with SenRe 22.23 38.16 18.96 36.95 50.69 22.93

Table 4: Comparison of other retrieval methods. HR means code token and AST node representation; SenRe means
additional sentence-level retrieval. All of our results are the mean of 5 runs with different random seeds.

Model Java Python‡

Similarity Relevance Fluency Similarity Relevance Fluency
Rencos - - - 3.07 3.06 3.96
CODESCRIBE 3.67 3.72 4.16 - - -
Base 3.62 3.64 4.10 3.20 3.24 4.03
Tram 3.83 3.89 4.23 3.33 3.44 4.14

Table 5: Human Evaluation on Java and Python‡ datasets.

Table 2) and richer code structure information.
In Table 4, we compare Tram with other retrieval-

based models on CCSD and Python‡ benchmarks.
Our base model is even superior to other retrieval-
based methods; the main reason is that the back-
bone 3 are different. We reproduce Rencos archi-
tecture4 in our base model for a fair comparison,
which we denoted as “Base + Rencos”. Tram out-
performs all other retrieval-based methods, further
improving performance with 2.05 BLEU points
and 1.47 BLEU points on CCSD and Python‡, re-
spectively. Furthermore, as shown in Table 3 and
4, enhancing Tram with additional sentence-level
retrieval (refer as "Tram with SenRe") and its inte-
gration with code pre-trained models ("Our Method
on Pre-trained Models" section in Table 3) leads to
a notable improvement in performance.

4.4 Ablation Study

To validate the effectiveness of intelligently fus-
ing summary token representation with code token
representation Ht and AST node representation
Rt, we conduct an ablation experiment where we
eliminate the Ht, Rt, and directly use dt−1 to repre-
sent target summary token st for comparison (refer
as “Tram w/o HR”). As shown in Table 3 and 4,
the performance declined by 0.47, 0.60, 0.21, and

3Other retrieval-based methods are RNN-based.
4HGNN code is not open source.

0.32 BLEU points for Java, Python, CCSD, and
Python‡, respectively. This decline in performance
across all datasets demonstrated the importance of
fusing code semantics into the summary token for
effective token-level retrieval on the decoder side.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
46.6

46.9

47.2

47.5

47.8

48.1

B
LE

U

Java -

Tram
Base

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
33.9

34.2

34.5

34.8

35.1

35.4

35.7

36.0

B
LE

U

Python -

Tram
Base

5 10 15 20 25 30 35 40 45 50

T

46.6

46.9

47.2

47.5

47.8

48.1

B
LE

U

Java - T

Tram
Base

5 10 15 20 25 30 35 40 45 50

T

33.9

34.2

34.5

34.8

35.1

35.4

35.7

36.0

B
LE

U

Python - T

Tram
Base

Figure 3: λ and T selections in Java and Python datasets.

4.5 Human Evaluation

We perform a human evaluation (details provided in
Appendix C) to assess the quality of the generated

2965

void scsi_netlink_init(void){
struct netlink_kernle_cfg cfg;
cfg.input = scsi_nl_rcv_msg;
cfg.groups = SCSI_NL_GPRP_CNT;
scsi_nl_sock = netlink_kernel_create(&init_net,
NETLINK_SCSITRANSPORT, &cfg);
if (!scsi_nl_sock){

printk(KERN_ERR "%s: register of receive handler failed\n", __func__);
return;}

return;}
Base: called by scsi netlink initialization to register the scsi netlink interface.
Rencos: called by scsi netlink interface to register the scsi netlink interface.
Tram: called by scsi subsystem to register the scsi transport netlink interface.
Human Written: called by scsi subsystem to initialize the scsi transport netlink interface.
Retrieval Results: “subsystem” (0.90), “transport”(0.04), “stack”(0.02), “command”(0.0034), “device”(0.0025) · · ·

Table 6: A Python instance. The bold red font is the keyword of generated summary. The Retrieval Results line is
the visible retrieval results and corresponding probability after applying softmax on the keyword generation step.

summaries by Tram, Rencos, CODESCRIBE, and
base model in terms of Similarity, Relevance, and
Fluency as shown in Table 5. The results show that
Tram can generate better summaries that are more
similar to the ground truth, more relevant to the
source code, and more fluent in naturalness.

5 Analysis

5.1 Hyperparameters Analysis

Tram has two primary hyperparameters: λ and T . λ
means the weight of the retrieval-based distribution
component in the final distribution; the higher value
indicates greater reliance on retrieval results, and
vice versa. T means temperature, which smooths
the retrieval-based distribution. We plot the perfor-
mance of Tram with different hyperparameter selec-
tions in Figure 3. The value of λ has a significant
impact on the final performance, and we find that
different datasets have different optimal values (i.e.,
λ = 0.5 for Java and λ = 0.6 for Python). We also
observe that λ = 1 outperforms λ = 0. The reason
is related to the BLEU score (detailed cause anal-
ysis provided in Appendix D). Regarding T , if it
is too small, the retrieval-based distribution cannot
be adequately distinguished; while if it is too large,
the retrieval-based distribution will concentrate on
a single token. Our final results indicate that both
extremes result in a performance decrease.

5.2 Token Frequency In-Depth Analysis

Compared to the coarse-grained retrieval approach
at the sentence-level, the token-level retrieval can
capture the top-K most semantically relevant to-
kens at every step. This can increase the likeli-
hood of generating those low-frequency tokens in
the summary text. Since these low-frequency to-

Token Frequency 1 2 5 10 50 100

Java
Base 126 75 45 27 28 16
Rencos 243 138 73 38 37 18
Tram 307 164 115 51 42 21

Python‡
Base 452 376 272 176 84 82
Rencos 799 515 344 223 88 109
Tram 983 647 405 298 103 121

Table 7: Count of Accurately Generated Low-Frequency
Tokens.

kens and their corresponding representations are
stored in the datastore, by retrieving the most se-
mantically similar tokens at each generation step,
these low-frequency tokens can be more easily and
directly fetched from the datastore compared to
purely model generated. We further conduct an in-
depth statistical analysis of the generation quantity
of low-frequency tokens. We first collect all the
correctly generated tokens according to the ground-
truth summaries. Then we count the frequencies
of all these correct tokens in the training set and
record the number of the correct and low-frequency
tokens (frequency = 1, 2, 5, 10, 50, 100). From
Table 7, we can see that Tram can correctly predict
more low-frequency tokens than Rencos (sentence-
level retrieval) and Base (vanilla model generated)
when the token frequency is small (≤ 100).

5.3 Datastore Quality and Robustness
Analysis

To accurately assess the impact of datastore quality
on Tram’s performance, we conduct robustness ex-
periments where noise is intentionally introduced
into the datastore. Specifically, we randomly shuf-
fle a certain percentage of (representation, token)
pairs, leading to misaligned pairings. These experi-

2966

Python Datastore BLEU ROUGE-L METEOR
Vanilla 35.97 49.92 22.09

Noise-5% 35.84 49.79 21.98
Noise-10% 35.68 49.67 21.85
Noise-20% 35.49 49.33 21.70

Java Datastore BLEU ROUGE-L METEOR
Vanilla 48.32 58.13 29.56

Noise-5% 48.15 57.95 29.44
Noise-10% 48.07 57.90 29.37
Noise-20% 47.82 57.61 28.81

Table 8: Datastore Quality and Robustness Analysis at
Different Noise Levels.

ments, conducted using Python and Java datasets,
are based on the averages from five separate runs.
We introduce noise levels of 5%, 10%, and 20%,
corresponding to the proportion of misaligned pairs
in the datastore. Table 8 presents the experimen-
tal results, indicating that even with a 10% noise
level in the datastore, the BLEU score reduction
is only up to 0.3 points. Furthermore, even under
20% noise conditions, the model maintains robust
performance. These results suggest that the impact
of datastore quality and the presence of noisy or
poorly aligned pairs is relatively minimal, confirm-
ing the robustness of both the datastore and our
Tram method.

5.4 Qualitative Analysis

We provide a python example in Table 6 to demon-
strate the effectiveness and interpretability of Tram.
The qualitative analysis reveals that, compared to
other models, Tram enables visualization of the
Retrieval Results and corresponding probability at
each generation step, as depicted in the last line,
making our approach more interpretable. More
visualized instances can be found in Appendix E.

6 Conclusion

In this paper, we propose a novel token-level
retrieval-augmented mechanism for source code
summarization. By a well-designed fine-grained
retrieval pattern, Tram can effectively incorporate
external human-written code-summary pairs on the
decoder side. Extensive experiments and human
evaluation show that Tram not only significantly
improves performance but also generates more low-
frequency tokens and enhances interpretability.

Limitations

Our retrieval-augmented method (Tram) takes full
advantage of external retrieval information, and the

performance improvement relies on high-quality
code-summary token-level pairs. However, there
exists some noise in the datastore which will bias
the final token distribution; therefore, dealing with
noise deserves our deeper exploration. Further-
more, our experiments are only on high-resource
programming language (Python, Java, C) scenarios;
exploring how to apply our model in a low-resource
programming language (Ruby, Go, etc.) is our fu-
ture direction.

Acknowledgements

This work was partly supported by NSFC under
Grant No. 62302443, the Fellowship of China Na-
tional Postdoctoral Program for Innovative Talents
(BX20230307), the Fundamental Research Funds
for the Central Universities (Zhejiang University
NGICS Platform). This research was also sup-
ported by the advanced computing resources pro-
vided by the Supercomputing Center of Hangzhou
City University.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007, On-
line. Association for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-
Hyong Lee. 2021. Learning sequential and structural
information for source code summarization. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2842–2851, Online.
Association for Computational Linguistics.

YunSeok Choi, Hyojun Kim, and Jee-Hyong Lee. 2023.
BLOCSUM: Block scope-based source code summa-
rization via shared block representation. In Findings
of the Association for Computational Linguistics:
ACL 2023, pages 11427–11441, Toronto, Canada.
Association for Computational Linguistics.

2967

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://arxiv.org/abs/1607.06450
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2023.findings-acl.724
https://doi.org/10.18653/v1/2023.findings-acl.724

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu,
Yun Peng, and Zenglin Xu. 2022. Source code sum-
marization with structural relative position guided
transformer. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 13–24.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022a. UniXcoder: Unified
cross-modal pre-training for code representation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7212–7225, Dublin, Ireland. As-
sociation for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin Clement, Dawn Drain, Neel
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.
2021. Graphcode{bert}: Pre-training code represen-
tations with data flow. In International Conference
on Learning Representations.

Juncai Guo, Jin Liu, Yao Wan, Li Li, and Pingyi Zhou.
2022b. Modeling hierarchical syntax structure with
triplet position for source code summarization. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 486–500, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
ICPC ’18, page 200–210, New York, NY, USA. As-
sociation for Computing Machinery.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073–2083, Berlin, Germany. Association for Com-
putational Linguistics.

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo
Cheng, Shujian Huang, and Lei Li. 2021. Learning
kernel-smoothed machine translation with retrieved
examples. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Process-
ing, pages 7280–7290, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler.
2019. Joey NMT: A minimalist NMT toolkit for
novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP): System
Demonstrations, pages 109–114, Hong Kong, China.
Association for Computational Linguistics.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th International Conference on Program Com-
prehension, ICPC ’20, page 184–195, New York, NY,
USA. Association for Computing Machinery.

Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and
Zhi Jin. 2021. Editsum: A retrieve-and-edit frame-
work for source code summarization. In 2021 36th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 155–166.

Yuding Liang and Kenny Zhu. 2018. Automatic gener-
ation of text descriptive comments for code blocks.
Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5747–5763, On-
line. Association for Computational Linguistics.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid {gnn}. In Inter-
national Conference on Learning Representations.

Pablo Loyola, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2017. A neural architecture for generating natu-
ral language descriptions from source code changes.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 287–292, Vancouver, Canada.
Association for Computational Linguistics.

2968

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/2022.acl-long.37
https://doi.org/10.18653/v1/2022.acl-long.37
https://ieeexplore.ieee.org/document/7780459/
https://ieeexplore.ieee.org/document/7780459/
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://arxiv.org/abs/1702.08734
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/ASE51524.2021.9678724
https://doi.org/10.1109/ASE51524.2021.9678724
https://doi.org/10.1609/aaai.v32i1.11963
https://doi.org/10.1609/aaai.v32i1.11963
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://doi.org/10.18653/v1/P17-2045
https://doi.org/10.18653/v1/P17-2045

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval
augmented code generation and summarization. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2719–2734, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ehud Reiter. 2018. A structured review of the validity of
BLEU. Computational Linguistics, 44(3):393–401.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
CAST: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4053–4062, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. 2019.
Automatic source code summarization with extended
tree-lstm. In 2019 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

Jikyoeng Son, Joonghyuk Hahn, HyeonTae Seo, and
Yo-Sub Han. 2022. Boosting code summarization
by embedding code structures. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 5966–5977, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of
the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, page
397–407, New York, NY, USA. Association for Com-
puting Machinery.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code
summarization with structure-induced transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1078–1090,
Online. Association for Computational Linguistics.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
and Xudong Liu. 2020. Retrieval-based neural
source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE ’20, page 1385–1397, New
York, NY, USA. Association for Computing Machin-
ery.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021a.
Adaptive nearest neighbor machine translation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 368–374,
Online. Association for Computational Linguistics.

Xin Zheng, Zhirui Zhang, Shujian Huang, Boxing Chen,
Jun Xie, Weihua Luo, and Jiajun Chen. 2021b. Non-
parametric unsupervised domain adaptation for neu-
ral machine translation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 4234–4241, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

A Integration of Tram with Code
Pre-trained Models

We need to clarify that our Tram can be integrated
with generative code pre-trained models (encoder-
decoder architecture), such as CodeT5 (Wang et al.,
2021) and UniXcoder (Guo et al., 2022a), but is
not suitable for code pre-trained models used for
code understanding (encoder-only architecture),

2969

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.1109/IJCNN.2019.8851751
https://doi.org/10.1109/IJCNN.2019.8851751
https://aclanthology.org/2022.coling-1.521
https://aclanthology.org/2022.coling-1.521
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.18653/v1/2021.acl-short.47
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358

like CodeBERT (Feng et al., 2020) and GraphCode-
BERT (Guo et al., 2021).

Specifically, the integration process is similar to
the Methodology section and primarily consists of
three steps:

(1) We use Java (Hu et al., 2018) and Python
(Wan et al., 2018) datasets to fine-tune the code
pre-trained models, respectively, and treat the fine-
tuned models as base models;

(2) During the datastore establishment phase, the
process aligns with that described in the Datastore
Construction section. However, we have omitted
the AST input to satisfy the input conditions of the
code pre-trained models;

(3) Token-level Retrieval: The retrieved top-K
tokens are expanded to a probability distribution
(which we refer to as the retrieval-based distribu-
tion). Then we fused the retrieval-based distribu-
tion with the vanilla distribution built on the origi-
nal vocabulary table of the code pre-trained models
to obtain the final distribution.

B Details on Transformer-based Methods

Transformer (Ahmad et al., 2020) is the first at-
tempt to use transformer architecture, equipped
with relative positional encoding and copy mecha-
nism (See et al., 2017), effectively capturing long-
range dependencies of source code. CAST (Shi
et al., 2021) hierarchically splits a large AST into a
set of subtrees and utilizes a recursive neural net-
work to encode the subtrees. The aim is to capture
the rich information in ASTs. mAST + GCN (Choi
et al., 2021) adopt the AST and graph convolution
to model the structural information and the trans-
former to model the sequential information. SiT
(Wu et al., 2021) incorporates a multi-view graph
matrix into the transformer’s self-attention mecha-
nism. SiT + PDG (Son et al., 2022) points program
dependency graph is more effective for express-
ing the structural information than AST. CODE-
SCRIBE (Guo et al., 2022b) model the hierarchical
syntax structure of code by introducing a novel
triplet position.

C Human Evaluation

In our human evaluation, we invited 3 PhD stu-
dents and 5 master students with at least 2-5 years
of software engineering experience as volunteers.
We conduct a small-scale random dataset (i.e., 100
random Java samples and 100 random Python sam-
ples). The volunteers are asked to rank summaries

generated from the anonymized approaches from
1 to 5 (i.e., 1: Poor, 2: Marginal, 3: Acceptable, 4:
Good, 5: Excellent) based on the three following
questions:

• Similarity: How similar of generated sum-
mary and ground truth?

• Relevance: Is the generated summary relevant
to the source code?

• Fluency: Is the generated summary syntacti-
cally correct and fluent?

For each evaluation summary, the rating scale is
from 1 to 5, where a higher score means better
quality. Responses from all volunteers are collected
and averaged.

D Cause Analysis: Performance
Superiority of λ = 1 over λ = 0

λ means the weight of the retrieval-based distri-
bution component in the final distribution. The
reason is related to the BLEU score. The BLEU
metric measures the similarity between two sen-
tences by assessing the overlap of words between
them. Model-generated sentences tend to produce
more common words, leading to better fluency;
in contrast, sentences generated through retrieval
methods are more likely to include factual terms,
which, when evaluated using the BLEU score, re-
sults in a higher score (Reiter, 2018). However, it
may scarify the language quality.

For example, given the ground truth "start
a source file within a compilation unit.", the
retrieval-based generation with λ = 1: "start
file within a compilation unit unit.", achieves
a BLEU score of 48.78. This is higher than the
model-based generation with λ = 0: "start the
source file within the unit.", which scores a
BLEU of 33.17. Indeed, neither λ = 1 or λ = 0 is
good enough, and we need a trade-off between the
retrieval and the model generation.

E Qualitative Examples

Table 9 shows a couple of qualitative examples to
demonstrate the effectiveness and interpretability
of Tram.

2970

void batadv_sysfs_del_meshif(struct net_device *dev)
{

struct batadv_priv *bat_priv = netdev_priv(dev);
struct batadv_attribute **bat_attr;
for (bat_attr = batadv_mesh_attrs; *bat_attr; ++bat_attr)

sysfs_remove_file(bat_priv->mesh_obj, &((*bat_attr)->attr));

kobject_uevent(bat_priv->mesh_obj, KOBJ_REMOVE);
kobject_del(bat_priv->mesh_obj);
kobject_put(bat_priv->mesh_obj);
bat_priv->mesh_ojb = NULL;

}
Base: Remove mesh interface-related sysfs sysfs entries.
Rencos: Delete mesh junction sysfc attributes.
Tram: Remove soft interface specific sysfs entries.
Human Written: Remove soft interface specific sysfs entries.
Retrieval Results: “interface” (0.82), “portal”(0.11), “bridge”(0.04), “junction”(0.0086), “link”(0.0013) · · ·
def category_structure(category, site):

return {’description’: category.title,
’html_Url’: (’%s://%s%s’%(PROTOCOL, site.domain,

category.get_absolute_url())),
’rss_Url’: (’%s://%s%s’%(PROTOCOL, site.domain,

reverse(’zinnia:category_feed’, args=[category.tree_path]))),
’category_Id’: category.pk ,
’parent_Id’: ((category.parent and category.parent.pk) or 0),
’category_Description’: category.description,
’category_Name’: category.title }

Base: updates the structure.
Rencos: a post structure.
Tram: a category structure.
Human Written: a category structure.
Retrieval Results: “category”(0.43), “tag”(0.11), “post”(0.07), “helper”(0.06), “version”(0.06) · · ·

Table 9: Task samples. The first is a C instance; the second is a Python instance. The bold red font is the keyword of
the generated summary. The Retrieval Results line is the visible retrieval results and corresponding probability after
applying softmax on the keyword generation step.

2971

