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Abstract

Addressing the challenge of automated ge-
ometry math problem-solving in artificial in-
telligence (AI) involves understanding multi-
modal information and mathematics. Current
methods struggle with accurately interpreting
geometry diagrams, which hinders effective
problem-solving. To tackle this issue, we
present the Geometry problem sOlver with
natural Language Description (GOLD) model.
GOLD enhances the extraction of geometric
relations by separately processing symbols and
geometric primitives within the diagram. Sub-
sequently, it converts the extracted relations
into natural language descriptions, efficiently
utilizing large language models to solve geom-
etry math problems. Experiments show that
the GOLD model outperforms the Geoformer
model, the previous best method on the UniGeo
dataset, by achieving accuracy improvements
of 12.7% and 42.1% in calculation and proving
subsets. Additionally, it surpasses the former
best model on the PGPS9K and Geometry3K
datasets, PGPSNet, by obtaining accuracy en-
hancements of 1.8% and 3.2%, respectively.1

1 Introduction

Automated solving of geometry math problems has
gained considerable attention in the AI community
recently (Chen et al., 2021; Lu et al., 2021; Cao and
Xiao, 2022; Chen et al., 2022; Zhang et al., 2023;
Peng et al., 2023; Ning et al., 2023). Unlike math
word problems, geometry math problems involve
additional geometry diagrams, necessitating com-
prehensive reasoning capabilities for understand-
ing multi-modal information (refer to Figure 1 for
an example of a geometry math problem). As a
result, research on automated geometry math prob-
lem solving is still in its infancy (Chen et al., 2022).

Existing approaches for solving geometry math
problems utilize neural networks to embed the dia-

1GOLD code can be found at https://github.com/
NeuraSearch/Geometry-Diagram-Description

gram and problem text separately or jointly, result-
ing in highly generalized models (Chen et al., 2021,
2022). However, these methods struggle with accu-
rately capturing the complex relationships within
geometry diagrams (Lu et al., 2023b). Additionally,
their vector-based representation of geometric rela-
tions is not easily interpretable by humans, posing
challenges in identifying whether performance is-
sues are from the relation extraction or the problem-
solving component. In a different approach, some
studies have successfully translated geometry dia-
grams into formal languages, enhancing precision
and interpretability (Sachan et al., 2017; Seo et al.,
2015; Lu et al., 2021; Zhang et al., 2023). How-
ever, these methods do not separately process re-
lations among geometric primitives and relations
between symbols and geometric primitives, which
adds difficulty in solving the geometry math prob-
lem correctly. Moreover, these approaches necessi-
tate specifically designed solvers that take formal
languages as input, making them incompatible with
prevalent large language models (LLMs).

To address the limitations of existing methods
in solving geometry math problems, we introduce
the GOLD model. The GOLD model converts
geometry diagrams into natural language descrip-
tions, aiding in the generation of solution programs
for the problems. Particularly, the GOLD model’s
relation-construction head extracts two types of
geometric relations: sym2geo (relations between
symbols and geometric primitives) and geo2geo
(relations among geometric primitives). This pro-
cess involves two specialized heads that separately
model symbols and geometric primitives within
diagrams as distinct vectors. These extracted ge-
ometric relations are then converted into natural
language descriptions. This not only improves the
model’s interpretability but also connects geometry
diagrams with problem texts. Furthermore, since
these natural language descriptions meet the input
requirements of LLMs, the GOLD model is able to
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utilize the advanced LLMs as the problem-solving
module, efficiently generating solution programs
used to solve geometry math problems.

To evaluate the effectiveness of the GOLD
model, we conduct experiments on the three lat-
est released datasets: UniGeo (comprising calcu-
lation and proving subsets) (Chen et al., 2022),
PGPS9K (Zhang et al., 2023), and Geometry3K
(Lu et al., 2021). The experimental results show
the significant performance gains of our GOLD
model compared to state-of-the-art (SOTA) mod-
els. It surpasses the Geoformer model, which is the
SOTA model on the UniGeo dataset, by 12.7% and
42.1% in accuracy on the UniGeo calculation and
proving subsets, respectively. Additionally, our
GOLD model outperforms the PGPSNet model,
the SOTA model on the PGPS9K and Geometry3K
datasets by 1.8% and 3.2% in accuracy, respec-
tively. These results highlight the superior perfor-
mance and effectiveness of our proposed GOLD
model compared to existing approaches.

The contributions of this work are: (1) We pro-
pose the GOLD model to extract geometric rela-
tions from geometry diagrams and subsequently
convert these relations into natural languages,
which are then utilized for solving geometry math
problems. Its compatibility with LLMs is a sig-
nificant advantage, enabling the GOLD model to
utilize the capabilities of LLMs to generate solution
programs. (2) The GOLD model separately pro-
cesses symbols and geometric primitives from the
diagrams. This separation design simplifies the ex-
traction of the geometric relations. (3) Our GOLD
model demonstrates significant improvements over
previous methods across all evaluated datasets, val-
idating the effectiveness of our approach.

2 Related Work

Early works have explored solving geometry math
problems through rule-based approaches (Gelern-
ter et al., 1960; Wen-Tsün, 1986; Chou and Gao,
1996a,b). Recently, with the success of deep learn-
ing methods, several works have explored using
neural network architectures for automated geom-
etry math problem-solving. Approaches such as
NGS (Chen et al., 2021) utilizing LSTM (Hochre-
iter and Schmidhuber, 1997) and ResNet-101 (He
et al., 2016) encoded problem texts and geometry
diagrams separately. Later, methods like DPE-NGS
(Cao and Xiao, 2022) replaced the text encoder
with transformer models. However, these methods

struggle to effectively integrate problem texts and
geometry diagrams. In response, Geoformer (Chen
et al., 2022) emerged, embedding both diagram and
problem text jointly using the VL-T5 (Cho et al.,
2021) model, treating visuals as additional tokens.
Despite these advancements, they still struggle to
provide precise descriptions of slender, overlapped
geometric primitives with complex spatial relation-
ships (Zhang et al., 2022), resulting in sub-optimal
performance when solving geometry math prob-
lems.

Other approaches typically involve parsing the
diagram into formal language and utilizing spe-
cific solvers to generate solution programs. Recent
works like Inter-GPS (Lu et al., 2021) and PGP-
SNet (Zhang et al., 2023) employed their parsers to
describe the diagram using carefully crafted rules.
However, these methods based on predefined rules
often lack extensibility, resulting in limited general-
ization capabilities. To address this issue, our pro-
posed GOLD model generates natural language de-
scriptions of the diagrams, ensuring compatibility
of adopting LLMs to generate solution programs.

3 Model

Our GOLD model is illustrated in Figure 1.

3.1 Task Description and Pre-parsing

The objective is to generate the correct solution
program P to solve the problem by analyzing a ge-
ometry math problem text T and its corresponding
diagram D. Specifically, the solution program rep-
resents intermediate steps in the domain-specific
language generating the output for the question (see
an example of solution program in Figure 1).

In our approach, we initially preprocess geom-
etry diagrams to extract geometric primitives G
(including Point P, Line L, and Circle C) and sym-
bols S from the diagram D for subsequent task.
Specifically, we utilize a standard Feature Pyra-
mid Network (FPN) (Lin et al., 2017) integrated
with a MobileNetV2 (Sandler et al., 2018) back-
bone for this task. For the detection of symbols,
we apply the anchor-free detection model FCOS
(Tian et al., 2022), and for the extraction of geo-
metric primitives, we use the GSM model (Zhang
et al., 2022). The FCOS model employs feature
maps P3 to P7, generated by the FPN layer, to de-
tect symbols within the diagram. This detection
step produces bounding box coordinates (boxs) and
class type (clss) for each symbol (s ∈ S). For the
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Figure 1: The illustration of the GOLD Model. The diagram D, problem text T , and solution program P used in
this illustration are sourced from the PGPS9K dataset (Zhang et al., 2023). The symbols and geometric primitives in
the diagram are annotated using the notations from the Notation Table, which are consistent with the colours of
extracted relations of sym2geo and geo2geo.

extraction of geometric primitives, we prefer using
the feature map P2 instead of P1, as P2 is more
memory-efficient due to its lower resolution. This
process results in the identification of segmenta-
tion masks (maskg) and class type (clsg) for each
geometric primitive (g ∈ G).

3.2 Mapping Symbols and Geometric
Primitives Separately

Before constructing the geometric relations, we
map the symbols and geometric primitives into
vectors. To achieve this, we introduce two heads:
symbol vector head and geometric primitive vec-
tor head. Specifically, each head functions as ex-
tracting the feature_embedding (embfeat ) and spa-
tial_embedding (embspat ). The feature_embedding
is computed from the cropped feature map, which
is determined by either the bounding box or the seg-
mentation mask. Moreover, where symbols and ge-
ometric primitives are placed significantly shapes
how they relate. For instance, only points lying
on a line can hold the geometric relation with that
particular line. Thus, we hypothesize that incorpo-
rating spatial information of S and G can enhance
the accuracy of predictions about geometric rela-
tions. Consequently, we embed the bounding boxes
of symbols and the coordinates of the geometric
primitives into the spatial_embedding.

3.2.1 Constructing the feature_embedding
To obtain the feature_embedding (embs,gfeat ) and spa-
tial_embedding (embs,gspat ) for symbol s or geomet-

ric primitive g, we conduct the below calculation:

embs,g
feat = ReLU(Ws,g

featV
s,g) (1)

where Ws,g
feat ∈ Rh×h are trainable parameters for

either symbols or geometric primitives. Next, we
elaborate the calculation process of Vs,g for sym-
bols and geometric primitives separately.

To obtain the Vs for symbol s, we utilize
RoIAlign (He et al., 2017) on its feature map, based
on the bounding box of symbol s:

Vs = F(ReLU(BN(Conv(RoIAlign(boxs, feat_mapi)))))
(2)

where i refers to the i-th layer of feature maps
where the bounding box (boxs) is calculated from.
The Conv is the convolution layer with 64 channels,
BN is the BatchNorm layer, and ReLU is the ReLU
activation layer. The F means flatten operation,
indicating that the Vs is further flatten into a vec-
tor and used for obtaining the feature_embedding
embsfeat for symbol s through Eq 1.

To obtain the Vg for geometric primitive g, we
perform an element-wise multiplication between
the segmentation mask (maskg) of g and the P2
layer of feature map (feat_map2). Next, we flatten
the resulting vector along the height and width
dimensions and apply global average pooling to
obtain the Vg:

Vg = AvgPool(F(maskg × feat_map2)) (3)

The Vg is used for calculating the fea-
ture_embedding embgfeat for geometric primitive g
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through Eq 1.

3.2.2 Constructing the spatial_embedding
The spatial_embedding is obtained by mapping
the spatial information of symbols and geomet-
ric primitives into embeddings. Specifically, for
symbol s, we map the coordinates of its bound-
ing box into an embedding using the trainable pa-
rameters Ws

spat ∈ Rh×4. Specifically, embsspat =
Ws

spat [xt, yt, xb, yb]
⊤, where (xt, yt) represent the

coordinates of the top-left corner of the bounding
box, and (xb, yb) is the coordinates of the bottom-
right corner of the bounding box.

Next, to obtain the spatial_embedding of a geo-
metric primitive g, we start by representing coordi-
nates of g using locg. The format of locg depends
on the class type (clsg) of the geometric primitive:
for a point, it contains two numbers (ng = 2) rep-
resenting its coordinates; for a line, it contains four
numbers (ng = 4) representing the coordinates of
its start and end points; and for a circle, it contains
three numbers (ng = 3) representing the coordi-
nates of its centre point and the radius length. We
then map locg into spatial_embedding by calculat-
ing embgspat = ReLU(Wg

spat(W
g
loclocg)), where

Wg
loc ∈ Rh×ng are different trainable parameters

for different clsg, and Wg
spat ∈ Rh×h are trainable

parameters.
To help the model differentiate between dif-

ferent types of geometric primitives, we intro-
duce the geo_type_embedding (embgtype) to cap-
ture the semantic information of the geometric
primitive. The embgtype is obtained by perform-
ing a lookup operation on the embeddings us-
ing the class type (clsg) of g from the list of ge-
ometric primitive types [P,L,C]. Specifically,
embgtype=embedding(clsg), where clsg is the class
type ID of g.

3.2.3 Symbol Vector and Geometric Primitive
Vector

The vector representation vecs∈S of symbol s is ob-
tained by passing concatenated embsfeat and embsspat
through a specific feed-forward neural network:

vecs∈S = ReLU(Ws
vec [embs

feat : embs
spat ]

⊤) (4)

where Ws
vec ∈ Rh×2h are the trainable parameters

depending on the class type (clss) of symbol s, and
[:] refers to concatenation operation.

The vector representation of the geometric prim-
itive vecg∈G is obtained by summing up three em-

beddings relevant to the geometric primitive g,
embgfeat , embgspat , and embgtype :

vecg∈G = ReLU(Wg
vec(embg

feat +embg
spat +embg

type)) (5)

where Wg
vec ∈ Rh×h are the trainable parameters.

3.3 Relation Construction Head

The relation-construction head aims to establish
sym2geo relations among symbols and geometric
primitives and geo2geo relations among geometric
primitives themselves.

3.3.1 sym2geo relation
The sym2geo relation can be further divided into
text2geo and other2geo relations. The text2geo rela-
tion explains the association between text symbols
and geometric primitives, where the text symbols
are used to be the reference to a geometric primitive
or to display degree, length, etc. To distinguish the
role of a text symbol, we introduce the text_class
for the text symbol. Specifically, when text_class
is category 0 , the text2geo signifies point (or line,
or circle) names; when text_class is category 1 ,
the text2geo corresponds to angle degrees; when
text_class is category 2 , the text2geo signifies line
lengths; when text_class is category 3 , the text2geo
denotes the degree of an angle within a circle. The
probabilities of the category (P (text_class|s)) of
text symbol (s ∈ {S|clss = "text"}) is defined as:

P = softmax(Wsym2geo
text_classReLU(Wsym2geo

1 vecs)) (6)

where Wsym2geo
1 ∈ Rh×h and Wsym2geo

text_class ∈
R4×h, both are the trainable parameters.

The other2geo relation captures relations be-
tween non-text symbols (s ∈ {S|clss ̸= "text"})
and geometric primitives. The non-text symbols
are used to find out the relations among geometric
primitives, such as angles of same degree, lines of
same length, parallel lines, and perpendicular lines.
For instance, in Figure 1, the symbol enclosed in a
red rectangle signifies the parallel relation.

To establish the sym2geo relation between sym-
bol s and geometric primitive g, we begin by uti-
lizing the corresponding symbol head to trans-
form the vector of the geometric primitive: v̂ecg =
ReLU(Wsym2geo

s1 vecg), where Wsym2geo
s1 ∈ Rh×h

are trainable parameters that vary depending on
different class types (clss) of symbols. Finally, we
calculate the probabilities of the existence of the
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relation between symbol s and geometric primitive
g as follows:

O1 = ReLU(Wsym2geo
2 [vecs : v̂ecg∈{sub}

])

P (relsym2geo
s,g |s, g) = sigmoid(Wsym2geo

rel O1)
(7)

where Wsym2geo
2 ∈ Rh×2h and Wsym2geo

rel ∈ R1×h

are the trainable parameters. Worth mentioning,
that each type of symbol, including the additional
four categories of the text symbol, has its own
Wsym2geo

2 . Additionally, {sub} refers to the sub-
set of geometric primitives, as certain symbols can
only have relations with specific geometric primi-
tives. Please refer to Appendix A.1 for details on
how to predict text2geo and other2geo relations
during the inference stage.

3.3.2 geo2geo relation
Previous work tend to provide only sym2geo re-
lations. However, despite the sym2geo relation
can provide geometric relations among geometric
primitives like parallel, perpendicular, etc. We hy-
pothesize that providing additional information that
describes all the geometric primitives from the di-
agrams is beneficial for the task. Moreover, we
tackle the issue concerning the absence of refer-
ences to geometric primitives in the diagram. For
example, in Figure 1, the original diagram lacks a
reference to the line, where sym2geo relation can-
not address. To overcome this limitation, we have
devised an automated approach that assigns appro-
priate references to the geometric primitives using
the format "clsg + num" (e.g., "L1, L2, L3, L4"
in purple in Figure 1). This enables the relation-
construction module to (1) present a detailed de-
piction of the diagram by describing the geo2geo
relations, even in the absence of a single reference,
and (2) generate all sym2geo relations, even when
some geometric primitives lack references. The
geo2geo relations are categorized according to the
involved geometric primitives: (1) Point and Line:
"on-a-line" and "end-point". The "on-a-line" rela-
tion occurs when a point lies between the tail and
the head of the line. Specifically, a point lying at ei-
ther the head or the tail of the line is the "end-point",
which is the special case of "on-a-line". (2) Point
and Circle: "centre-point" and "on-a-circle." The
"centre-point" relation refers to a point being the
centre point of the circle. The "on-a-circle" relation
occurs when a point lies on the arc of the circle.
Finally, the probabilities (P (relgeo2geogi,gj |gi, gj)) of

the relations between geometric primitives gi and
gj can be calculated as follows:

P = softmax(Wgeo2geo
rel ReLU(Wgeo2geo

1 (vecgi + vecgj )))
(8)

where Wgeo2geo
1 ∈ Rh×h and Wgeo2geo

rel ∈ R3×h

are the trainable parameters (the number 3 refers
to "no relation" and two relations from either Point
and Line or Point and Circle). Please refer to Ap-
pendix A.2 for details on how to predict geo2geo
relations during the inference stage.

3.4 Problem-Solving Module
Both the sym2geo and geo2geo relations are ex-
pressed in natural languages by the GOLD model,
following the same format as the problem text T
(please refer to Appendix B for the paradigm of
converting sym2geo and geo2geo relations to natu-
ral language descriptions). Therefore, it is conve-
nient to utilize the LLMs as the problem-solving
module. Specifically, the problem text T and the
natural language descriptions L are concatenated
for the LLMs to generate the solution program
P . To illustrate the compatibility of our methods
with LLMs, we employ three well-known mod-
els for problem-solving: T5-base (Raffel et al.,
2020), Llama2-13b-chat (Touvron et al., 2023),
and CodeLlama-13b (Rozière et al., 2023). The
T5-base model is fine-tuned for the target solution
programs. Conversely, for Llama2-13b-chat and
CodeLlama-13b, we employ directive instructions
to guide their solution generation process (please
refer to Appendix C for the choice of instructions).

3.5 Training Objective
Given a dataset of geometry math problems. The
training process begins with training the pre-
parsing module to extract necessary features from
the geometry diagrams. Following this, we focus
on training three components: the symbol vector
head, the geometric primitive vector head, and the
relation-construction head. This training is guided
by minimizing a joint loss function, which is de-
fined as Lcons = Lg2g + Lt_cls + Ls2g . The Lg2g

loss represents the negative log-likelihood loss for
accurately identifying the ground truth geo2geo re-
lations. Meanwhile, the Lt_cls constitutes the nega-
tive log-likelihood loss for correctly categorizing
the text symbols. Lastly, the Ls2g loss is the bi-
nary cross-entropy loss associated with the ground
truth sym2geo relations. Once they are trained, and
their parameters are fixed, we advance to the final
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stage of fine-tuning the problem-solving module.2

During this stage, our objective is to minimize the
Lprog loss, which is the negative log-likelihood loss
for correct solution programs (please refer to Ap-
pendix D for more details of loss functions).

4 Experiments and Results

4.1 Experimental Setup

Our method was implemented using the PyTorch
(Paszke et al., 2019) and HuggingFace (Wolf et al.,
2020) libraries. For the pre-parsing module, we
followed the training and parameter settings of the
previous work (Zhang et al., 2022). We evaluated
the dimensions of the embeddings over a range
of {32, 64, 128}, and based on the model’s per-
formance in the validation set, we experimentally
determined 64 as the optimal dimension size for
the embeddings. We utilized the Adam optimizer
with a learning rate of 1e−4 and weight decay of
1e−4 for training all modules. The symbol vector
head, geometric primitive vector head, and relation-
construction head were trained end-to-end for 50
epochs with a batch size of 20, while the problem-
solving module (using T5-base) was fine-tuned for
30 epochs with a batch size of 10. All experiments
were conducted on one NVIDIA A100 80GB GPU.

4.2 Datasets

Our experiments are conducted on three datasets:
UniGeo (Chen et al., 2022), PGPS9K (Zhang et al.,
2023), and Geometry3K (Lu et al., 2021). The
UniGeo dataset comprises 14,541 problems, cate-
gorized into 4,998 calculation problems (CAL) and
9,543 proving problems (PRV), which are split into
train, validate, and test subsets in a ratio of 7.0: 1.5:
1.5. The Geometry3K includes 3,002 problems, di-
vided into train, validate, and test subsets following
a 7.0: 1.0: 2.0 ratio. Since PGPS9K contains a
partial Geometry3K dataset, we keep an exclusive
set of 6,131 problems, of which 1000 problems are
a test subset. Due to the absence of a validation
subset in PGPS9K, we divide its training set to
create a train-validation split in a 9.0: 1.0 ratio.

4.3 Evaluation Metrics

To compare against existing works, we adhere to
the evaluation criteria from the original datasets
for both our model and the baselines. For the Uni-
Geo dataset, we utilize the top-10 accuracy met-

2Note that the fine-tuning step is only implemented when
T5-base is used as the problem-solving module.

ric, which measures the ratio of correct solution
programs among the top ten predictions, aligning
with the metric used by the authors of the Uni-
Geo dataset. For the PGPS9K and Geometry3K
datasets, we adopt a stricter metric, the top-3 ac-
curacy, as recommended by the authors of the
PGPS9K dataset. Note that our comparison in-
volves matching the predicted solution program
with the ground truth, which is more rigorous than
merely comparing the numerical output derived
from the solution program.3

4.4 Comparison with State-of-the-art Models

We evaluate the performance of our GOLD model
(using T5-base as its problem-solving module)
against state-of-the-art (SOTA) methods in solving
geometry math problems. The selected baselines
for this comparison include: 1. PGSPNet (Zhang
et al., 2023): it integrates a combination of CNN
and GRU encoders, which generate an encoded vec-
tor of the diagram that serves as the input aligning
with the logic form to the solver module. 2. Inter-
GPS (Lu et al., 2021): it parses both the problem
text and the diagram into a formal language, subse-
quently feeding this into the solver. 3. Geoformer
(Chen et al., 2022): it utilizes the VL-T5 model
for the purpose of diagram encoding, then servers
encoded embeddings to the transformer. 4. NGS
(Chen et al., 2021): it uses the ResNet-101 for its
encoding process, showcasing a different approach
in handling the diagram encoding. 5. Bert2Prog
(Chen et al., 2021): it leverages BERT and ResNet
as encoders and an LSTM network for generating.

The results presented in Table 1 demonstrate that
our GOLD model outperforms baselines across test
subsets of all datasets. Specifically, when com-
pared to Geoformer, the SOTA on the UniGeo
dataset, our model exhibits a remarkable increase
in accuracy: 12.7% on the UniGeo CAL and 42.1%
on the UniGeo PRV. Compared to the SOTA model
on PGPS9K and Geometry3K datasets, PGPSNet,
the GOLD model surpasses it by 1.8% and 3.2%
in accuracy, respectively. When using ground truth
diagram annotations, the GOLD (GT) shows a sig-
nificant improvement in accuracy on the PGPS9K

3This is grounded in the principle that a correct output can
sometimes be produced by an incorrect solution program, in-
dicating a failure in the model’s understanding of the problem.
For example, consider a problem where the correct answer
is "5" and the correct program is "2 × 3 - 1". An incorrect
program like "2 + 3" could still yield the correct output. Thus,
generating the correct program is a more reliable indicator of
the model’s accurate problem comprehension.
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Models UniGeo CAL Test (%) UniGeo Prv Test (%) PGPS9K Test (%) Geometry3K Test (%)

BERT2Prog 54.7† 48.0† - -
NGS 56.9† 53.2† 34.1‡ 35.3‡
Geoformer 62.5† 56.4† 35.6‡ 36.8‡
InterGPS 56.8 47.2 38.3 48.6
InterGPS (GT) n/a n/a 59.8‡ 64.2‡
PGPSNet 53.2 42.3 58.8 59.5
PGPSNet (GT) n/a n/a 62.7‡ 65.0‡
GOLD 75.2 98.5 60.6 62.7
GOLD (GT) n/a n/a 65.8 69.1

Table 1: Comparison results on the test subsets of chosen datasets. PGPSNet reported models’ performances using
the ground truth diagram annotations, where these models have "(GT)" behind them. We re-implemented these
methods to get performances without GT annotations. Note that UniGeo lacks GT diagram annotations, so relevant
cells are "n/a". "†" and "‡" indicates the results are from Chen et al., 2022 and Zhang et al., 2023, respectively.

and Geometry3K, with gains of 3.1% and 4.1%
over PGPSNet (GT). Against InterGPS (GT), the
improvements are at 6.0% and 4.9%, respectively.
These results underline the effectiveness of the
GOLD model in solving geometry math problems.

Moreover, our GOLD model distinguishes it-
self from approaches like InterGPS and PGPSNet,
which rely on logic-form representations to de-
scribe diagrams. In contrast, GOLD inputs natural
language descriptions to LLMs to generate solution
programs. Using natural language leads to signifi-
cant improvements across all datasets compared to
InterGPS and PGPSNet, as evidenced in Table 1.
Furthermore, models like Geoformer and NGS pri-
marily encode diagrams into vectors. These ap-
proaches fall short in providing precise descriptions
of the diagrams and limit the adoption of LLMs,
thus leading to worse performances compared to
our GOLD model. This highlights the importance
of detailed and accurate diagram representations
for tackling geometry math problems, where our
GOLD model excels.

Worth mentioning is that the training for the sym-
bol vector head, geometric primitive vector head,
and relation-construction head of the GOLD model
was exclusively conducted on the PGPS9K and Ge-
ometry datasets due to the lack of annotations in
the UniGeo dataset. Despite this, the outstanding
performance of the GOLD model on the test subset
of UniGeo, as shown in Table 1, demonstrates its
exceptional generalization capability.

4.5 Ablation Study on Natural Language
Description

We assess our model’s efficacy using three distinct
diagram description formats: absence of diagram
description, logic forms, and natural language de-

scriptions. The comparative results are detailed in
Table 2. When fine-tuning T5-base as the problem-
solving module, Table 2 indicates that descriptions
in natural language outperform those in logic-form,
with 3.1% and 3.4% improvements on the test sub-
sets of PGPS9K and Geometry3K, respectively.

PGPS9K Geometry3K

n/a LF NLD n/a LF NLD

T5-base 22.3
± 0.0

57.5
± 0.3

60.6
± 0.3

12.3
± 0.0

59.3
± 0.5

62.7
± 0.2

Llama2-13b-chat 5.2
± 0.0

33.5
± 0.4

39.6
± 0.2

2.3
± 0.0

31.8
± 0.3

40.1
± 0.4

CodeLlama-13b 3.2
± 0.0

15.8
± 0.0

16.2
± 0.0

2.0
± 0.0

14.6
± 0.0

15.1
± 0.0

Table 2: Evaluation of the GOLD model on two datasets
with no description (n/a), logic-forms (LF), and natural
language descriptions (NLD). Both the mean and stan-
dard errors of the accuracy metrics are presented.

Conversely, when using Llama2-13b-chat
(Llama2) and CodeLlama-13b (CodeLlama) as the
problem-solving module, we implement instruc-
tions to guide the generation of answers. Since
their generations differ from the ground truth, we
opt to calculate the accuracy of choosing the cor-
rect option from given candidates. According to
Table 2, using natural language descriptions signifi-
cantly enhances the accuracy of the Llama2 model
compared to using logic forms, demonstrating the
greater compatibility of our natural language de-
scriptions with models like Llama2. However, nei-
ther natural language descriptions nor logic forms
yield satisfactory outcomes with CodeLlama, possi-
bly due to a mismatch between the training corpus
of CodeLlama and the description formats.

Lastly, we conduct experiments by excluding
relevant modules used to generate the natural lan-
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guage descriptions and solely inputting the prob-
lem text T into the problem-solving module. The
results in Table 2 show a substantial decline in
the performance of the GOLD model across all
selected LLMs, highlighting the importance of dia-
gram descriptions provided by relevant modules of
the GOLD model in solving geometry math prob-
lems.

4.6 Accuracy of the Extraction of geo2geo and
sym2geo Relations

Our analysis in Table 3 and measured by F1 met-
ric, evaluates the accuracy of extracting geometric
relations with and without embfeat and embspat on
PGPS9K test subset. We note that the pre-parsing
stage achieves a high F1-score of 98.9%, ensuring
accurate identification of symbols and geometric
primitives for sym2geo and geo2geo relations ex-
traction. However, when directly using Vs,g as
vectors of symbols and geometric primitives (only
using feature outputs from the pre-parsing step), the
absence of embfeat and embspat leads to a notable
decrease in performance for both relations extrac-
tion. Conversely, the inclusion of either embfeat
and embspat results in improved performance. Ta-
ble 3 further reveals that the extraction of both rela-
tion types reaches its highest F1-score when both
embeddings are utilized. These results highlight the
advantages of our approach in separately modelling
symbols and geometric primitives, which proves
to be more efficient in addressing the relation ex-
traction of geometry math problems (please see
Appendix G for the impact of embfeat and embspat
on problem-solving accuracy, and Appendix H for
the ablation analysis for the embgtype ).

embfeat embspat pre-parsing geo2geo sym2geo

98.9 65.2 ± 0.1 58.6 ± 0.1
Ë 98.9 79.8 ± 0.3 75.6 ± 0.5

Ë 98.9 80.6 ± 0.4 71.1 ± 0.2
Ë Ë 98.9 93.7 ± 0.2 77.3 ± 0.1

Table 3: The check mark (Ë) indicates that the corre-
sponding embedding is enabled. Note that "pre-parsing"
is not influenced by embfeat and embspat . Both the
mean and standard errors of the accuracy metrics are
presented. See Appendix E and F for the accuracy of
fine-grained relations.

Table 3 shows that the GOLD model accurately
captures geo2geo relation, prompting us to investi-
gate its impact on solving geometry math problems.
The bar chart in Figure 2 indicates a notable de-

Figure 2: Top-left: the performance of the GOLD (using
T5-base) with (w) and without (w/o) the geo2geo. Top-
right: Geometry math problem. Bottom: Predicted
diagram description with and without the geo2geo. The
same text between (w) and (w/o) is omitted for space
consideration, where the red text is geo2geo relations.

cline in model performance on the PGPS9K and
Geometry3K datasets when geo2geo relations are
omitted. However, this trend is less pronounced
on the UniGeo datasets. This is likely because the
PGPS9K and Geometry3K datasets often lack de-
scriptions of geometric primitives in their problem
texts. An example from the Geometry3K dataset,
illustrated in Figure 2, demonstrates this issue: the
problem text typically poses a question (e.g., "Find
X") without extra information. Consequently, rely-
ing only on sym2geo relations leads to insufficient
representation of essential diagram details.

5 Conclusion

In this work, we have introduced the GOLD model
for automated geometry math problem-solving.
GOLD uniquely converts geometry diagrams into
natural language descriptions, facilitating direct in-
tegration with LLMs for problem-solving. A key
feature of the GOLD model is that it separately
handles symbols and geometric primitives, sim-
plifying the process of establishing relations be-
tween symbols and geometric primitives and rela-
tions among geometric primitives themselves. Our
experiments show that the GOLD model outper-
forms the Geoformer, the previous SOTA on the
UniGeo dataset, with accuracy improvements of
12.7% and 42.1% on the UniGeo calculation and
proving datasets, respectively. Additionally, com-
pared to PGPSNet, the SOTA for the PGPS9K and
Geometry3K datasets, the GOLD model shows no-
table accuracy improvements of 1.8% and 3.2%,
respectively, showing our method’s effectiveness.
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6 Limitations

While our GOLD model marks a significant ad-
vancement in solving geometry math problems, ar-
eas remain for future improvement. For example,
the GOLD model has not yet reached the level
of human performance in solving geometry math
problems. This gap is possibly due to the limita-
tions in fully extracting geometric relations from
diagrams. While GOLD accurately identifies sym-
bols, geometric primitives, and geo2geo relations,
the extraction of sym2geo relations still requires
enhancement. Moreover, this study evaluated three
popular large language models (LLMs): T5-bases,
Llama2-13b-chat, and CodeLlama-13b. To deepen
our understanding and leverage the full potential
of LLMs in solving geometry math problems, it
would be beneficial to assess more LLMs. This
broader evaluation could provide more comprehen-
sive insights into optimizing LLMs for this specific
task.
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A Inference

During the inference stage, we employ Eq 4 and
Eq 5 to map symbols s ∈ S and geometric prim-
itives g ∈ G to corresponding vectors vecs∈S and
vecg∈G , respectively. Following this, we proceed
with the inference of sym2geo and geo2geo rela-
tions.

A.1 Predict sym2geo Relation
For a text symbol s ∈ {S|clss = "text"}, it is
necessary to determine its meaning based on its
text_class. To accomplish this, we assign the cat-
egory of text symbol s ∈ {S|clss = "text"} as
the one with the highest probability among the
P (text_class|s) values, as specified in Eq 6:

text_classs = argmaxP (text_class|s) (9)

• if text_classs is 0 (i.e., category 0 ), it indi-
cates that the symbol s corresponds to the
reference name of a point, or a line, or a circle.
In this case, we assign the symbol s to the ge-
ometric primitive g that has the highest proba-
bility of P (relsym2geo

s∈{S|clss="text"},g∈{P,L,C}|s, g),
where g ∈ {P,L,C} specifies that the geo-
metric primitive g belongs to the set of points,
lines, and circles:
g = argmaxP (relsym2geo

s∈{S|clss="text"},g∈{P,L,C}|s, g)
(10)

• if text_classs is 1 (i.e., category 1 ), it indi-
cates that the symbol s represents the de-
gree of an angle. Since an angle con-
sists of two lines and one point, we se-
lect the point with the highest probability
P (relsym2geo

s∈{S|clss="text"},g∈{P}|s, g), and we se-
lect the two lines with the top two highest
probabilities P (relsym2geo

s∈{S|clss="text"},g∈{L}|s, g).
It is worth mentioning these two lines must
have geo2geo relations of "end-point" or "on-
a-line" with the selected point.

p = argmaxP (relsym2geo
s∈{S|clss="text"},g∈{P}|s, g)

l1, l2 = argmaxtwoP (relsym2geo
s∈{S|clss="text"},g∈{L}|s, g),

where rel l1,p ∈ {"end-point"‘, "on-a-line"} and
rel l2,p ∈ {"end-point"‘, "on-a-line"}

(11)

• if text_classs is 2 (i.e., category 2 ), it indicates
that the symbol s represents the length of a
line. Since a line consists of two points, we
select the points with the top two highest prob-
abilities P (relsym2geo

s∈{S|clss="text"},g∈{P}|s, g):

p1, p2 = argmaxtwoP (relsym2geo

s∈{S|clss="text"},g∈{P}|s, g)
(12)

• if text_classs is 3 (i.e., category 3 ), it
indicates that the symbol s represents the
degree of an angle on the circle. In this
case, the angle is formed by the centre
point of a circle and two points lying on
the arc of a circle. Therefore, we first
select the circle with the highest probabil-
ity of P (relsym2geo

s∈{S|clss="text"},g∈{C}|s, g).
Subsequently, we select two points
with the top two highest probabilities
P (relsym2geo

s∈{S|clss="text"},g∈{P}|s, g). Worth
mentioning, these two points must be on the
arc of the selected circle:

c = argmaxP (relsym2geo
s∈{S|clss="text"},g∈{C}|s, g)

p1, p2 = argmaxtwoP (relsym2geo
s∈{S|clss="text"},g∈{P}|s, g),

where relp1,c = relp2,c = "on-a-circle"
(13)

For the geometric relations among geometric
primitives, such as parallel. It is determined by
the other2geo relation. For the other2geo relation
involving other symbols, it is required that the re-
lation holds with at least two geometric primitives.
This means that there should be at least two geomet-
ric primitives with probabilities P (relsym2geo

s,g |s, g)
larger than a threshold θ. In this case, the geometric
primitives are selected based on this criterion.

{gindices} = sorted(P (relsym2geo
s∈{S|clss ̸="text"},g∈{P,L,C}|s, g)) > θ

gselected = G[{gindices}]
(14)

where "sorted" indicates that values are sorted
in descending order, and [] refers to the selection
from the geometric primitives group G according
to the indices {gindices}. The threshold θ is set as
0.5 experimentally.

A.2 Predict geo2geo Relation

The geo2geo relation between geometric primitives
gi and gj is determined based on Eq 8, where it is
assigned as the relation with the highest probabil-
ity:
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relgi,gj∈G = argmaxP (relgeo2geogi,gj |gi, gj) (15)

In an ideal scenario, the OCR results would ac-
curately provide references to the points, lines, and
circles, allowing us to extract precise information
about the geometric primitives. However, the open-
source OCR tool4 we have adopted is not accurate.
As a result, some primitives may lack reference
names. To address this issue, we automatically la-
bel the primitives in sequential order (e.g., "P1, P2,
L1, L2") if their reference names are missing.

A.3 Generate Solution Program
Once the geo2geo and sym2geo relations are con-
structed, we proceed to convert them into natural
language descriptions L (See Appendix B for de-
tails). We then concatenate the natural language
descriptions L with the problem text T . This com-
bined text is passed to the problem-solving module,
which employs BeamSearch with a beam size of
10 to generate the solution program P . Moreover,
when using larger LLMs, such as Llama2, we add
instructions in front of the concatenation of L and
T , which is further sent to LLMs to generate rea-
soning process.

B Convert Relations to Natural Language
Descriptions

Once the geo2geo relations and sym2geo relations
have been established, we proceed to convert these
relations into natural language descriptions denoted
as L following the guidelines specified in Table 4.

To begin, we initiate the process by representing
the existing geometric primitives in the diagram
by enumerating points, lines, and circles within the
description of the geo2geo relation. In detail, we se-
quentially enumerate all existing points, providing
their reference names as described in the "Point"
entry of Table 4. We describe the associated points
for each line by mentioning their reference names.
Additionally, we include a list of points that have
"end-point" and "on-a-line" relations with the line,
as specified in the "Line" entry of Table 4. Simi-
larly, for each circle, we mention its reference name
and proceed to list the points that exhibit "center-
point" and "on-a-circle" relations with the circle,
following the guidelines provided in the "Circle"
entry of Table 4.

Next, we proceed to describe the text2geo re-
lation within the sym2geo relation based on the

4https://github.com/JaidedAI/EasyOCR

predicted text_class. Here are the guidelines for
each case:

• If the text_class indicates that the symbol
refers to the reference name of a point (or
a line, or a circle), we modify the name of the
corresponding point (or line, or circle) accord-
ingly.

• If the text_class indicates that the symbol
refers to the degree of an angle, we describe it
following the guidelines specified in the "De-
gree" entry of Table 4.

• If the text_class indicates that the symbol
refers to the length of a line, we describe it
according to the instructions provided in the
"Length" entry of Table 4.

• If the text_class indicates that the symbol
refers to the degree of an angle on the circle,
we describe it based on the guidelines outlined
in the "Circle Degree" entry of Table 4.

Furthermore, when dealing with the other2geo
relations, we describe them based on the specific
type of geometric relation as indicated in Table 4.

C Instruction Choice

Instructions serve as direct and explicit commands
that clearly communicate to the model the specific
task it is required to perform. For our experiments,
we initially selected two distinct instruction tem-
plates for Llama2-13b-chat (Touvron et al., 2023)
and CodeLlama-13b (Rozière et al., 2023), as de-
tailed in Table 5. Upon experimental evaluation, it
was observed that the instruction template modified
from the one used to train the Llama2 model (dis-
played at the upper row in Table 5) demonstrated
superior performance. Consequently, we opted for
this template in our work.

D Loss Function Details

The Lg2g is defined as the negative log-likelihood
loss, where we aim to minimize the negative log-
likelihood of the ground truth relations among geo-
metric primitives:

Lg2g = −
∑

gi∈P

∑

gj∈L,C

log(P (relgeo2geogi,gj |gi, gj)) (16)

where gi is a geometric primitive belonging to
points, and gj is a geometric primitive belonging to
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Relations Paradigm Example

Point The diagram contains ${}. The diagram contains Point A, B, C.

geo2geo Line
The diagram contains ${},
which has endpoints: ${} and ${},
In addition, there is/are ${} on the line.

The diagram contains Line L1,
which has endpoints: Point P0 and Point P1,
In addition, there is/are Point P2 on the line.

Circle
The diagram contains ${},
whose center point is ${},
which has ${} on its arc.

The diagram contains Circle M,
whose center point is Point E,
which has Point F, Point G on its arc.

Degree
1. Angle ${} has degree of ${}.
2. Line ${} and Line ${} cross at Point ${}
has degree of ${}.

1. Angle 1 has degree of 100.
2. Line L1 and Line L2 cross at Point C
has degree of 50.

text2geo Length The length of Line ${} between Point ${}
and Point $ is ${}.

The length of Line L3 between Point A
and Point B is 10.

Circle Degree
Line ${} and Line ${} cross at the
center point ${} of Circle ${} has
degree of ${}.

Line L1 and Line L2 cross at the
center point C of Circle C0 has
degree of 20.

same degree Angle ${} has the same degree with
Angle ${} ...

Angle 1 has the same degree with
Angle 2, Angle 3.

other2geo same length Line ${} has the same length with
Line ${} ...

Line L1 has the same length with
Line L2, Line L3.

parallel Line ${} is parallel with Line ${}... Line a is parallel with Line b.

perpendicular Line ${} is perpendicular with Line ${}
at Point ${}.

Line L1 is perpendicular with Line L2
at Point C.

Table 4: The defined paradigm used to convert geo2geo and sym2geo relations to natural language descriptions
L. "${}" is the placeholder. The placeholder is filled in as demonstrated in the "Example" column, and the filled
content is highlighted in bold type.

lines and circles. The relgeo2geogi,gj refers to the ground
truth relation between gi and gj .

The Lt_cls is defined as the negative log-
likelihood loss, where we aim to minimize the neg-
ative log-likelihood of the ground truth text_class
of the text symbol:

Lt_cls =−
∑

S

log(P (text_classs|s)) (17)

where text_classs is the ground truth text_class of
the symbol s.

The Ls2g is the binary cross-entropy loss:

Ls2g=−
∑

s∈S

∑

g∈G
{I(s, g)× log(P (relsym2geo

s,g |s, g))

+ (1− I(s, g))× (1− log(P (relsym2geo
s,g |s, g)}

(18)

where I(s, g) is 1 if there is relation between sym-
bol s and geometric primitive g, otherwise it is
0.

The Lprog is defined as the negative log-
likelihood loss, where we aim to minimize the neg-
ative log-likelihood of the tokens of the ground
truth solution programs:

Lprog =−
∑

i

log(P (ti|t<i)) (19)

where i is the i-th token in the ground truth solution
program.

E Image Parsing Accuracy

Table 6 presents the performance of the image-
parsing module, measured using the F1 metric. For
geometric primitives, we employ the parsing posi-
tion evaluation method, utilizing the Hough trans-
form with a distance threshold of 15. For symbols,
we use an Intersection over Union (IoU) thresh-
old of 0.5. The results in Table 6 demonstrate that
the image-parsing module delivers accurate pars-
ing results for diagrams, providing the model with
precise information.

F Relation Prediction Accuracy

Table 7 displays the F1 metric for the performance
of relation parsing. The results show that our
GOLD model accurately predicts geo2geo rela-
tions. However, for sym2geo relations, except for
the "parallel" relation, there is considerable room
for improvement in the prediction performance.
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Instruction Template Example

[INST]

You are a problem-solving bot,
and now I ask you to solve a geometry problem,
please answer the question and provide the correct option letter.
The problem is as follows:

{Problem Text}

Here are the basic descriptions of the diagram:

{Natural Language Descriptions}

The Answer and the Reason Process are:

[/INST]

[INST]

You are a problem-solving bot,
and now I ask you to solve a geometry problem,
please answer the question and provide the correct option letter.
The problem is as follows:

Find the perimeter of the polygon.
The Choices are: A: 20.0, B: 24.0, C: 28.0, D: 34.409,

Here are the basic description of the diagram:

The diagram contains Point P0, Point P1, Point P2, Point P3, Point P4,
The diagram contains Line L0, which has endpoints: Point P1, Point P3,
Line L1, which has endpoints: Point P1, Point P4,
Line L2, which has endpoints: Point P3, Point P4,
Line L3, which has endpoints: Point P0, Point P3,
Line L4, which has endpoints: Point P0, Point P1,
Line L5, which has endpoints: Point P0, Point P4,
The length of Line L0 between Point P2 and Point P3 is 7.
The length of Line L4 between Point P2 and Point P1 is 7.
The length of Line L5 between Point P4 and Point P2 is 5.
Line L3 between Point P0 and Point P3 has the same length
with Line L4 between Point P1 and Point P0
and Line L2 between Point P3 and Point P4
and Line L1 between Point P1 and Point P4.

The Answer and the Reason Process are:

[/INST]

Hint: Please answer the question and provide the correct option letter,
e.g., A, B, C, D, at the end

{Problem Text}

Here are the basic descriptions of the diagram:

{Natural Language Descriptions}

Hint: Please answer the question and provide the correct option letter,
e.g., A, B, C, D, at the end

Find the perimeter of the polygon.
The Choices are: A: 20.0, B: 24.0, C: 28.0, D: 34.409,

Here are the basic descriptions of the diagram:

The diagram contains Point P0, Point P1, Point P2, Point P3, Point P4,
The diagram contains Line L0, which has endpoints: Point P1, Point P3,
Line L1, which has endpoints: Point P1, Point P4,
Line L2, which has endpoints: Point P3, Point P4,
Line L3, which has endpoints: Point P0, Point P3,
Line L4, which has endpoints: Point P0, Point P1,
Line L5, which has endpoints: Point P0, Point P4,
The length of Line L0 between Point P2 and Point P3 is 7.
The length of Line L4 between Point P2 and Point P1 is 7.
The length of Line L5 between Point P4 and Point P2 is 5.
Line L3 between Point P0 and Point P3 has the same length
with Line L4 between Point P1 and Point P0
and Line L2 between Point P3 and Point P4
and Line L1 between Point P1 and Point P4.

Table 5: Two instruction templates. The template in the upper row is modified from the instruction used to train
the Llama2 model, and another one is from the Lu et al., 2023a. In the column of "Instruction Template", the
"{problem Text}" is the geometry math problem text T , and "{Natural Language Descriptions}" is the description
of the diagram L.
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Geometric Primitives or Symbols F1 (%)

point 99.8
line 99.5
circle 99.1
symbol 97.2

Table 6: Pre-parsing performances by F1 metric.

Relation Type PGPS9K Test (%)

end-point 97.9 ± 0.3

geo2geo on-a-line 91.3 ± 0.4
center-point 93.6 ± 0.2
on-a-circle 92.0 ± 0.0

text symbol 65.2 ± 0.1
angle 73.1 ± 0.0

sym2geo bar 75.7 ± 0.2
parallel 89.0 ± 0.4
perpendicular 82.9 ± 0.0

Table 7: Relation Parsing performances by F1 metric.
Both the mean and standard errors of the accuracy met-
rics are presented.

G Influence of feature_embedding and
spatial_embedding on Geometry
Problem Solving

We conduct ablation study on feature_embedding
and spatial_embedding in Table 8. To discard the
use of (embfeat and embspat ), we directly use fea-
ture outputs from the pre-parsing step as vectors
of symbols and geometric primitives, i.e., Vs,g,
to construct the sym2geo and geo2geo relations.
We can observe that the GOLD model without any
embedding performs the worst on all test subsets.
However, when either one of embeddings (embfeat
or embspat ) is added, the model’s performance im-
proves. Notably, the model equipped with both
embeddings achieves the best performance.

embfeat embspat CAL PRV PGPS9K Geometry3K

66.2
± 0.3

90.2
± 0.2

48.2
± 0.5

50.2
± 0.3

Ë
71.5
± 0.3

93.2
± 0.4

55.0
± 0.1

58.1
± 0.1

Ë
72.8
± 0.2

93.0
± 0.3

56.3
± 0.1

58.0
± 0.2

Ë Ë
75.2
± 0.3

98.5
± 0.5

60.6
± 0.3

62.7
± 0.2

Table 8: Program accuracy with or without fea-
ture_embedding and spatial_embedding. The check
mark (Ë) indicates that the corresponding embedding
is enabled. T5-base is used as the problem-solving mod-
ule for the GOLD model. Both the mean and standard
errors of the accuracy metrics are presented.

Figure 3: An example from the 111-th problem in the
PGPS9K dataset. This case shows that models’ natural
language descriptions and solution programs outputs
with and without spatial_embedding. The purple no-
tations in the diagram are added by us. Note that the
different parts of diagram descriptions between w/o and
w are coloured red.

Figure 4: The top-left bar chart compares GOLD (T5-
base as the problem-solving module) accuracy in solv-
ing geometry math problems, with (w) and without (w/o)
the use of geo_type_embedding. The top-right diagram
is from the 375th problem in the PGPS9K dataset, while
the bottom part shows the predicted diagram descrip-
tions for two different cases. Purple notations in the
diagram are added for better visual comprehension. The
differences between the two diagram description texts
are highlighted in red. It should be noted that the same
texts in the w to the w/o section are omitted, which are
represented by "...".

In Figure 3, we conduct a case study on the
GOLD model with and without the use of spa-
tial_embedding. It is evident that the model with-
out spatial_embedding incorrectly generates the
"parallel" relation between lines, resulting in an
erroneous solution program. This highlights the
importance of spatial_embedding in capturing ac-
curate spatial relations and improving the model’s
performance.
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H Importance of the
geo_type_embedding

We conducted experiments to assess the impact of
geo_type_embedding (embgtype). The top-left bar
chart in Figure 4 demonstrates that the model’s
performance declines when embgtype is not utilized.
Notably, the performance gaps between the model
with embgtype and without it are more pronounced
on the PGPS9K and Geometry3K datasets com-
pared to the UniGeo datasets. We believe this is
because the problem text in the UniGeo dataset
explicitly mentions the geometric primitives, pro-
viding valuable information that helps the GOLD
model understand the geometric primitives more
effectively. Furthermore, as shown in Figure 4, the
GOLD model without embgtype fails to generate ac-
curate circle information, impeding its ability to
further generate correct solution programs.
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