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Abstract

Effectively training language models on long
inputs poses many technical challenges. As a
cost consideration, languages models are pre-
trained on a fixed sequence length before being
adapted to longer sequences. We explore var-
ious methods for adapting models to longer
inputs by training on segmented sequences and
an interpolation-based method for extending
absolute positional embeddings. We develop
a training procedure to extend the input con-
text size of pretrained models with no architec-
tural changes and no additional memory costs
than training on the original input lengths. By
sub-sampling segments from long inputs while
maintaining their original position the model is
able to learn new positional interactions. Our
method benefits both models trained with abso-
lute positional embeddings, by extending their
input contexts, as well as popular relative posi-
tional embedding methods showing a reduced
perplexity on sequences longer than they were
trained on. We demonstrate our method can
extend input contexts by a factor of 4× while
improving perplexity.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
capture sequence information through positional
embeddings (PE). There are two types of PEs: abso-
lute and relative. Absolute positional embeddings
(APE) learn a separate embedding for each posi-
tion in a sequence; these embeddings are added
to the input of the first layer. Relative positional
embeddings (RPE) encode the relative distance be-
tween positions, often by weighting attention score
of positions further away less.

The ability for models to process long sequences
efficiently is of growing importance as models be-
come more capable. Increased input context allows
for more complex in-context learning examples (Li
et al., 2023a; Sun et al., 2023). Additionally, they
allow for question answering and summarization

over scientific papers and patents (Dasigi et al.,
2021; Koh et al., 2022; Sharma et al., 2019). Due to
RPE’s positional information only being a function
of relative distance these methods can be applied
to any input sequence length. In practice, popu-
lar RPE methods fail to generalize to sequences
longer than they were trained on. Furthermore,
self-attention’s memory cost is quadratic meaning
training on long sequences becomes prohibitively
expensive as the sequence length grows.

In this work, we study the problem of extend-
ing the input context of pre-trained decoder-only
transformer-based models, considering those that
use either absolute or relative positional embed-
dings. We show that an interpolation-based ap-
proach allows APE models to extrapolate to se-
quence lengths longer then they were trained on—
matching or outperforming the extrapolation ability
of RPE methods like ALiBi (Press et al., 2021) and
RoPE (Su et al., 2021). To further improve the
ability of these models to take advantage of the
longer input context, we present resource-efficient
methods that continuously pre-train APE- and RPE-
based models on carefully sampled segmented sub-
sequences of long sequences. Doing so simulates
training on long sequences while remaining within
a fixed input length. This allows the models to
efficiently learn the embeddings of the newly cre-
ated absolute positions or the relative embeddings
associated with the longer pairwise distances.

We experiment with models trained with APEs,
RoPE, and ALiBi to verify our method improves
the extrapolation performance independent of the
choice of positional embeddings. Results show that
interpolating the embedding matrix of absolute po-
sitional embeddings without any additional training
allows for extrapolation to sequences 5× the origi-
nal input context. Furthermore, our segment-based
methods are able to increase the extrapolation abil-
ity of all positional embedding approaches. When
applied to APEs this method achieves 87% the per-

3040



Figure 1: Visualization of our various segment-based methods. We sub-sampling tokens from the original sequence
while maintaining the original positions.

formance of training on sequences twice as long at
no extra memory footprint.

The paper is organized as follows: first, we con-
duct a review of various existing literature that mo-
tivated our approach. Second, we formally define
the problem of length extrapolation and propose
our methods for efficiently extending a model’s
input context. Third, we provide a detailed break-
down of our experimental setup and methodology
to enable reproducibility. Finally, we present our
results along with a thorough discussion and analy-
sis.

2 Related Work

2.1 Positional embeddings

Language is inherently sequential and Transform-
ers are positional-agnostic, to account for this, po-
sitional information is often introduced to the archi-
tecture. The original authors Vaswani et al. (2017)
suggested adding a positional embedding to the
input of the first layer and offered two methods,
absolute positional embeddings and sinusoidal em-
beddings. Absolute positional embeddings consist
of a learnable embeddings matrix where each em-
bedding corresponds to a position. While common,
this method has an important limitation: it only al-
lows for a fixed maximum input length determined
during training. Sinusoidal embeddings did not
have this limitation but performed worse in practice
and the relative embeddings that came after were
difficult to parallelize (Shaw et al., 2018) leading
to APEs being the de facto method in early models,
eg. BERT (Devlin et al., 2019) and GPT-3 (Brown

et al., 2020).
To address the limited input context size of APE

researchers explored other relative positional em-
bedding methods (Chi et al., 2022; Wennberg and
Henter, 2021; Likhomanenko et al., 2021; Haviv
et al., 2022). Most notable are rotary embeddings
(RoPE) (Su et al., 2021), T5 (Raffel et al., 2019),
and ALiBi (Press et al., 2021). RoPE rotates the
query and the key embeddings as a function of
their position; this method allowed for easier par-
allelization compared to previous relative embed-
dings. T5 bias (Raffel et al., 2019) adds a posi-
tional embedding for each relative distance instead
of absolute position. ALiBi subtracts a linear bias
from the query-key matrix product in the attention
calculations. While T5 bias extrapolated to long
contexts well it is too inefficient to scale, taking
twice as long to train as sinusoidal (Press et al.,
2021). RoPE and ALiBi have been widely adopted
in various LLMs with LLaMA (Touvron et al.,
2023), GPT-J (Wang and Komatsuzaki, 2021), and
PaLM (Chowdhery et al., 2022) using RoPE and
BLOOM (Scao et al., 2022) using ALiBi.

2.2 Length generalization

The choice of positional embeddings (PE) has been
documented to be one of the leading factors in a
Transformer based model’s ability to generalize
to variable sequence lengths. The authors of AL-
iBi (Press et al., 2021) identified that RoPE and
sinusoidal embeddings failed to generalize on se-
quence lengths greater then those they were trained
on. Numerous new positional embedding methods
with more favorable length generalization abilities
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have been proposed (Sun et al., 2022; Chi et al.,
2022; Li et al., 2023b) but these are required to be
incorporated during pre-training.

There is a sizable body of work on methods for
extending the input context of language models
pre-trained with RoPE (Chen et al., 2023; Jin et al.,
2024; Peng et al., 2023; Ding et al., 2024). These
approaches map the positional information of long
sequences into ranges seen during training through
positional interpolation. In practice, these methods
requires fine-tuning the models on long sequences
to adjust to the new granularity of relative posi-
tional distance which is computational expensive.

2.3 Computationally efficient training
Numerous works have explored efficiency based
modifications to the standard Transformer archi-
tecture (Xiong et al., 2021b; Choromanski et al.,
2020; Kitaev et al., 2020; Qiu et al., 2019). These
methods either modify the base architecture or rely
on fast self-attention approximations.

While these methods all aim to reduce the mem-
ory cost of the Transformer architecture and allow
for training on longer sequences, our work is or-
thogonal to these methods. Our approach can be
used in conjunction with these existing methods
since we do not rely on any specific architecture.
We instead change the positional information of the
input sequences.

2.4 Sparse input sequences
A number of works have explored training lan-
guage models on sparse inputs. APEs have been
shown to overfit to certain positions. To address
this, Kiyono et al. (2021) proposed randomly
padding or offsetting the positions during fine-
tuning. This simple method led to better down-
stream performance on question answering and
machine translation (Tao et al., 2023) and general
length extension (Zhu et al., 2023; Ruoss et al.,
2023). Another work proposed Forgetful Causal
Masking (FCM) (Liu et al., 2022), a simple modifi-
cation to the next token prediction task with a ran-
domly selected fraction of previous tokens masked
out. They demonstrated this method led to improve-
ments in both few-shot and fine-tuned performance
compared to standard causal masking. Most similar
to ours, RandomPos (Ruoss et al., 2023) proposed
sampling randomized, ordered positional embed-
dings to replace the sequential positional embed-
dings normally used. They sampled from a range
of absolute positions much longer than the input se-

quence length. Results demonstrated this led to an
increase in extrapolation performance. The authors
argued this was due to exposure to longer relative
pair-wise distances than those normally seen during
training.

These results indicate that not only can lan-
guage models be trained with heavily obfuscated
sequences but can also benefit from doing so in
some cases. This idea is the intuition behind our
method.

3 Methods

There are three reasons that motivate this work.
First, there exist numerous high-quality pre-trained
models whose input context is limited to 1K–2K
tokens. Extending the input context of these mod-
els will further increase their applicability. Sec-
ond, even though methods that rely on relative po-
sitional embeddings can operate on input contexts
that are longer than what they were trained on,
their out-of-the-box extrapolation performance is
not good (Press et al., 2021). Third, due to the
quadratic complexity of self-attention and the lin-
ear compute/memory complexity of transformers
w.r.t. sequence length, direct training on long input
contexts is resource intensive. This limits the input
context that we can directly train on.

3.1 Problem Statement
Let pθ be a transformer-based language model
trained to maximize the next-token-probabilities
over a set of sequences D of length Lt; i.e.,

argmax
θ

∑

x∈D

Lt∑

i

log pθ(xi|x<i). (1)

We will refer to Lt as the model’s training input
context length.

We define extrapolation as the language model’s
ability to improve its next-token-prediction by us-
ing input contexts that are longer than those it
trained on. Specifically, for k > Lt, we will con-
sider that a model can extrapolate successfully if

∑

i≥k

log pθ(xi|x>k) >
∑

i≥k

log pθ(xi|x>Lt),

where pθ(xi|x>j) = pθ(xi|xi−1, . . . , xi−j+1). In
practice, we consider the average perplexity on se-
quences of different lengths from the same dataset
a suitable proxy for this.

Given pθ and Lt, the problem that we want to
solve is to develop resource efficient methods that
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allow pθ to extrapolate to input contexts of length
Le that are longer than Lt. We refer to Le as the
extended input context length.

3.2 Extending APE via interpolation
APEs learn an embedding vector for each position
up to a pre-specified maximum position. The fixed
nature of the embedding matrix does not allow
for inputs longer than the maximum pre-specified
length. A necessary first step when training on
longer sequences is to increase the size of the em-
bedding matrix.

We use linear interpolation to extend the embed-
ding matrix from the training input context length
Lt to the new input context length Le (Dehghani
et al., 2023). Let E and E′ be the old and new
embedding matrices, respectively and assume that
β = Le/Lt is integral. Then the embedding for
position i (0 ≤ i < Le) is given by:

e′i =
β − i%β

β
e⌊i/β⌋ +

i%β

β
e⌊i/β⌋+1,

where ‘%’ is the modulo operation. This pro-
cess retains the original embeddings but results
in β(Lt − 1) + 1 embeddings. In practice, we set
the remaining β − 1 embeddings to eLt .

3.3 Efficient input context extension
Pairwise attention is the mechanism by which trans-
former models incorporate information from other
tokens. Positional embeddings are how attention
takes into account the absolute or relative positions
of the token-pairs. To fully take advantage of an
increased input context, a model needs to learn
the embeddings of the newly created absolute po-
sitions or the relative embeddings associated with
the longer pairwise distances created with the in-
creased input context. Thus, the model needs to
be further pre-trained with input sequences that
also include the new positions—in the case of abso-
lute positional embeddings, or the longer pairwise
distances—in the case of relative positional embed-
dings.

The key insight behind our efficient approaches
is that we can meet the above requirements without
directly training on long input sequences. Instead,
we create short input sequences by sampling seg-
ments from the long sequences, keep the original
positional information, concatenate them, and use
them to further pre-train the language model. Since
this approach retains the original positional infor-
mation, the models see the new positions/distances

and learn how to use them. Though the length of
the short sequence is a hyper-parameter of our ap-
proach, in all of our experiments we keep it the
same as that of the original input context length;
i.e., Lt.

We develop two different subsequence sampling
approaches that we refer to as chunk and prefix
which are defined as follows:

• chunk-α: This approach creates a short se-
quence by sampling a small number of equal-
length contiguous subsequences from the long
sequence. Specifically, given 0 < α < 1 and
an Le-long input sequence x, this approach
samples 1/α contiguous non-overlapping sub-
sequences of length αLt from x. The reason
that we keep the sampled segments contigu-
ous is to preserve the local context informa-
tion, which is important for next-token predic-
tion (Xiong et al., 2021a) and we do not want
our model to ‘unlearn’ it.

• prefix-α: This approach creates a short se-
quence by randomly sampling a set of tokens
that forms a prefix and a contiguous segment
to form its associated suffix. Specifically,
given 0 < α < 1 and an input sequence x
of length Le, it randomly selects an index i
with (1 − α)Lt < i < Le − αLt. It creates
the suffix by taking the αLt contiguous tokens
starting at position i and creates the prefix by
randomly sampling (1 − α)Lt tokens form
the positions preceding i. In this method we
only compute the loss over the continuous suf-
fix in order to preserve the model’s ability to
incorporate local context.

A visualization of the different sampling methods
can be found in Figure 1.

While these methods can introduce discontinu-
ities in the causal language modeling objective we
argue that maintaining their original positional em-
bedding on top of the fact they happen infrequently
limits the harm they may cause. In practice we
use α’s small enough that discontinuities occurs
approximately 2% of the time in chunk and never
in prefix.

4 Experimental setup

4.1 Dataset
Since we are comparing the performance of various
methods on long sequences we chose to use the sci-
entific papers section of the arXiv dataset released

3043



by Cohan et al. (2018). Scientific papers are a com-
mon choice for reporting results on long sequence
modeling performance (Beltagy et al., 2020). This
dataset consists of 215K scientific papers, split into
205K train and 7K test, with a total token count
of approximately 1.6 billion and an average doc-
ument length of 4,938 tokens. We do not pack
our batches (Kosec et al., 2021), meaning each se-
quence contains only text from a single document
at a time. If documents are longer than Le we split
them into non-overlapping sequences with length
Le and discard the remainder; if documents are
shorter than Le we discard them as well. We feel
that ensuring each input only corresponds to one
source text is an important factor when reporting
performance on long sequences.

4.2 Models

To evaluate our methods we fine-tune three differ-
ent classes of pretrained language models, one for
each of the popular positional embedding meth-
ods: absolute, RoPE, and ALiBi. We use models
with approximately 1.5 billion parameters; for ab-
solute positional embeddings we use GPT-2 (Rad-
ford et al., 2019), for rotary embeddings we use
Pythia (Biderman et al., 2023), and for ALiBi we
use Bloom (Scao et al., 2022). In addition to these
three models we use a smaller GPT-2 and Pythia
checkpoint (approx. 10% the size), which we will
refer to as GPT-2 Small and Pythia Small, and to-
gether as our development models. Due to a lack
of small models trained with ALiBi we do not have
a development model for ALiBi. Key information
about these models can be found in Table 1. Note
that besides the positional encoding schemes, these
models also differ in other ways including training
data and model parameters. As a result, a direct
comparison of these models will be confounded by
these additional factors. For this reason our evalua-
tion only focuses on measuring how the different
continuous pre-training approaches help in improv-
ing each model’s extrapolation capabilities against
themselves and we never compare across models.

4.3 Domain adaptation

The perplexity on arXiv for these models is rela-
tively high as arXiv is considered out of domain.
In order to differentiate between gains attributed to
adapting to the domain versus improving extrapo-
lation performance we perform one full epoch of
continual pre-training with a sequence length of Lt

for each model.

Table 1: Key model characteristics.

# of params PE Lt

GPT-2 Small 170M APE 1024
Pythia Small 140M RoPE 2048

GPT-2 1.64B APE 1024
Pythia 1.4B RoPE 2048
Bloom 1.45B ALiBi 2048

Table 2: Perplexity on sequences of the model’s original
input length, Lt, after domain adaptation.

ppl.

GPT-2 Small 9.311
Pythia Small 8.609

GPT-2 6.675
Pythia 6.677
Bloom 7.217

We refer to the checkpoints after domain-
adaptation as "out-of-the-box" models. All exper-
iments start from the OOTB models unless other-
wise mentioned. The perplexity of the models after
domain adaptation can be found in Table 2.

4.4 Segmented pre-training

For training we use the causal language modeling
objective with a cross entropy loss. All experiments
on the same model are done in a compute equiv-
alent manner unless stated otherwise. To ensure
compute equivalence when training our models we
fix the number of tokens as well as the input length,
Lt, of the model.

Due to segmentation, one epoch of training on
different sequence lengths results in a different
number of tokens actually processed. For example,
training with sequences of length 2Lt results in
half the total number of tokens. To ensure an equal
number of tokens across experiments we set the
total number of epochs for each experiment to be:

# epochs =
Le

Lt
. (2)

4.5 Performance assessment

To evaluate the performance of our models on dif-
ferent sequence lengths we report the mean per-
plexity on sequence of length Le from our test set.
Perplexity measures the exponentiated average neg-
ative log likelihood over a sequence of tokens and
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is a common evaluation metric for language models.
We define the perplexity of a sequence of tokens x
of length Lt as:

ppl(x) = exp(− 1

Lt

∑

i

log pθ(xi|x<i)). (3)

Note that unlike previous work, we do not per-
form sliding window evaluation (Baevski and Auli,
2018).

5 Results

We conduct our experiments and present results in
such a way to answer the following questions:

• How well do absolute positional embeddings
extrapolate with interpolation of the embed-
dings matrix?

• Which of our proposed subsequence sampling
methods performs the best and with what pa-
rameters?

• How does our approach compare with contin-
ual pre-training on sequences of the original
length?

5.1 Out-of-the-box extrapolation
We begin by examining each model’s ability to
extrapolate to sequences longer then they were
trained on without any further pre-training. We
report the perplexity on the test set with sequence
lengths starting from Lt up to 5Lt, depending on
the memory constraints of each. Previous length
extrapolation work did not include absolute posi-
tional embeddings due to their fixed nature (Press
et al., 2021). To increase the input context size
we interpolated the positional embedding matrix
as described in Section 3.2. Results are shown in
Figure 2 and the corresponding numbers can be
found in Table 6 in Appendix A.

RoPE fails to extrapolate to sequences longer
than originally trained on while ALiBi generalizes
well. These findings about RPEs agree with those
previously observed in Press et al. (2021). Our
results show that interpolation works well until at
least 5Lt. This suggests that with linear interpo-
lation APEs generalize better than RoPE and are
comparable to ALiBi.

5.2 Comparison of segmented methods
We compare the performance of the various meth-
ods discussed in Section 3.3 on our development

L 2L 3L 4L 5L
sequence length

20

40

60

pe
rp

le
xi

ty

APE
RoPE
ALiBi

Figure 2: Perplexity of "out-of-the-box" extrapolation.
With interpolation of the positional embeddings, abso-
lute positional embeddings (APE) extrapolate as well as
ALiBi.

models. We train models on two separate exten-
sion sizes, Le = 2Lt and Le = 4Lt. For each
we use chunk with α = {0.125, 0.25, 0.5} and
prefix with α = {0.25, 0.5}. Furthermore, we
train a models on sequences of 2Lt and 2Lt with-
out any segmentation. We refer to these models
as full, and they provide a point of comparison
between our methods versus training on the full Le

sequence. The complete set of results can be found
in Table 3.

The different segment-based methods work well
to extend the input context of these models. We
observe a decrease in perplexity when evaluating
on sequences longer then originally trained on.
Overall, chunk performs better than prefix on
both models, prefix fails to improve extrapolation
when extending RoPE to sequences 4× in length.
While the full approach has the lowest perplex-
ity in most cases the relative loss in performance
for chunk is low. One notable case is extending
RoPE to 4Lt, there we observe chunk outperform-
ing full. Given that chunk requires half the se-
quence length of full it remains a competitive
option due to its memory efficiency.

Comparing the performance of different chunk
lengths, controlled by the parameter α, both models
display similar trends. For chunk, there appears to
be sweet-spot between the number of segments and
each segment’s individual length (see Table 3). An
α of 0.125 translates to chunks of 128 tokens for
APE and 256 for RoPE. In most cases this α per-
formed the worst amongst chunk, as the segments
may be too short or lead to too many discontinu-
ities in the sequence. For prefix, there is less of
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Table 3: Perplexity of different input context length
extension methods on the development sets.

method 2Lt 4Lt

APE

OOTB 9.322 13.275
full 8.287 7.819
chunk-0.125 8.521 8.307
chunk-0.25 8.471 7.989
chunk-0.5 8.420 8.259
prefix-0.25 8.757 8.826
prefix-0.5 8.672 9.304

RoPE

OOTB 30.686 176.244
full 7.403 7.353
chunk-0.125 7.476 7.239
chunk-0.25 7.447 7.210
chunk-0.5 7.461 7.461
prefix-0.25 9.543 25.539
prefix-0.5 10.119 33.375

a concrete pattern. This could be due to the higher
level of randomness in the prefix as tokens were
sampled randomly. Between chunk and prefix,
chunk computes loss over twice as many tokens,
this could be a contributing factor to the gap in
performance between the two.

Between RoPE and APE, RoPE benefits the most
from segmented pre-training. After training on
segmented sequences the perplexity on extensions
of 2Lt and 4Lt decreases by a factor of 4× and
24× respectively. While our method still improves
over the "out-of-the-box" performance of APEs,
interpolation is a competitive approach for length
extension.

5.3 Results on larger models

Based off the findings in Section 5.2 we use chunk-
0.25 for our experiments on GPT-2 1.5B, Pythia-
1.4B, and, Bloom-1.1B. As before, we continually
pre-train the models as detailed in Section 4.4 and
expand to Le = 2Lt and Le = 4Lt.

Overall, chunk works for all three models on
both expansion lengths. All models extrapolated
better than their "out-of-the-box" performance.
Again, RoPE was able to extrapolate to sequences
it previously was not able to. Our method also
demonstrated the ability to further increase the ex-
trapolation ability of ALiBi. Results can be found
in Table 4.

Table 4: Perplexity results for the 1.x billion parameter
models.

method 2Lt 4Lt

APE
OOTB 6.326 7.099
DA 6.125 7.050
chunk-0.25 6.314 6.425

RoPE
OOTB 16.428 52.644
DA 16.285 50.652
chunk-0.25 5.448 5.278

ALiBi
OOTB 7.295 7.773
DA 6.887 7.417
chunk-0.25 6.773 7.295

5.4 Comparison with further pre-training
Given that ALiBi and APE-based models already
extrapolate well (see Figure 2), a natural question is
whether the performance gains on longer sequences
come from our segmented method or additional do-
main adaption. To ablate this, we perform another
epoch of domain adaptation as described in Sec-
tion 4.3. This isolates the benefit of our method ver-
sus further domain adaptation as the total number
of tokens seen by all models are the same. Results
can be found in Table 4.

For models that extrapolate well (ALiBi and
APE), further domain adaptation also improves
the extrapolation ability however the gains are less
than our segmented training. The exception here
is when extending APE to lengths 2×, in this case
domain adaption performs slightly better. This re-
sult indicates that the interpolation-based extension
method we propose works well for APEs. Overall,
this demonstrates that while some of the gains may
be due to further domain adaptation our method
is still beneficial for models that extrapolate well
"out-of-the-box".

5.5 Comparison with RandomPos
The authors of RandomPos (Ruoss et al., 2023) pro-
posed a similar method for simulating training on
long sequences within a fixed input context win-
dow. Instead of subsampling sequences of length
Le, RandomPos randomized the positional ids of
sequences of length Lt selecting positions rang-
ing from [0, Le − 1] while maintaining the causal
ordering. Similar to our approach, RandomPos ex-
poses the model to extrapolated pairwise relative
distances but the key difference is content used.
Whereas RandomPos only presents local context to
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Table 5: Comparision with RandomPos. Numbers re-
ported are perplexity.

method 2Lt 4Lt

APE
OOTB 9.322 13.275
RandomPos 9.018 11.534
chunk-0.25 8.420 7.989

RoPE
OOTB 30.686 176.244
RandomPos 8.021 11.692
chunk-0.25 7.447 7.210

ALiBi
OOTB 7.295 7.773
DA 6.816 7.352
chunk-0.25 6.773 7.295

the model, chunk exposes the model to distant con-
tent and encourages the model to learn to leverage
distant contexts.

To verify the exposure to distant content is an
important step in improving extrapolation we im-
plement a version of RandomPos and extend our
models to 2× and 4× the original input sizes. We
keep all settings and models the same as Section 5.2
with the exception of including the ALiBi model.
In all cases, chunk outperforms RandomPos indi-
cating the inclusion of distant context valuable to
length extrapolation. Results can be found in Ta-
ble 5.

6 Analysis

Our results demonstrate that segmented training is
a viable approach to extend the input context size
of language models. It is not immediately intuitive
why, especially given that the relative positional
embeddings methods are not learned.

For absolute positional embeddings the reason-
ing is fairly straightforward. First, in Section 5.1
we demonstrated interpolating the embedding ma-
trix led to reasonable extrapolation without any
training. Before any training occurs the model
already has some extrapolation ability. The seg-
mented sequences allow for positions further away
than the input size normally allows to interact and
learn how to incorporate information.

In the case of relative positional embedding
methods these results are less intuitive. Both RPE
methods penalize the attention scores of positions
as a function of their relative distance, meaning that
initially there is not much attention across chunk
boundaries. We hypothesize that through training
on segmented sequences the model learns to at-

Median attention weight

Co
un

t

RoPE- OOTB
RoPE- chunk

Figure 3: Histogram of median attention weights for
positions past the original input length before and after
our segmented training on models with RoPE. After
adaptation, the distribution of attention weights becomes
more uniform.

tend to longer-range interactions. There is a lack
of nearby positions for the model to attend to so
it learns to incorporate information from further
away. In doing so it adjusts the weights to penal-
ize further positions less. This counteract-acts the
RPE’s inductive bias towards nearby positions.

To attempt to visualize this we plot the distri-
bution of median attention weights for positions
past Lt. In both cases, the medians are well below
the mean suggesting that a few positions account
for the majority of the attention weight. After seg-
mented training, we observe the average median in-
creases as well as become more evenly distributed.
This suggests that more positions are being at-
tended to as well as the model attending to more or
less positions depending on the context. The plot
can be found in Figure 3. This hypothesis is also
supported by a recent work that analyzes the failure
of RoPE to generalize to long sequences (Xiong
et al., 2023). The observed that simply reducing
the decaying effect of RoPE distant tokens lead to
strong extrapolation performance.

7 Conclusion

In this work we proposed a simple and memory effi-
cient approach to extend the effective input context
size of models through training on sequences cre-
ated by sampling segments from long documents.
We demonstrated our method is robust to the choice
of positional embeddings and allows models to be
trained on sequences at least 4× their original in-
put length. Furthermore, our results on extending
absolute positional embeddings through interpola-
tion demonstrated they can extrapolate better than
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RoPE and provide a method to extend the context
of models trained with APEs at no additional cost.

8 Limitations

In this work we explore various computationally ef-
ficient methods for pre-training on long sequences.
Due to the compute limitations we only verify our
method’s performance on models up to 1.4 billion
parameters. Current state of the art models are
orders of magnitudes larger. While our results in-
dicate the success of our method there is always
the chance that results do not transfer to different
model sizes. We believe these methods will hold as
model size increases since the extrapolation prob-
lem is fundamentally an artifact of the positional
embeddings and not model size. Additionally, the
models we used were originally only trained with a
maximum sequence length up to 2048 tokens and
only extended to a maximum 8192 tokens. Even
though this is a 4× extension, this is much lower
then the input size of some production models.

Inline with previous work on encoding positional
information (Press et al., 2021; Su et al., 2021),
we use perplexity as our method for evaluating
a model’s extrapolation performance. Some re-
cent work has shown that this may not always be
a strong signal for downstream performance (Sha-
ham et al., 2022). A more thorough evaluation on
downstream benchmarks would be insightful, un-
fortunately the majority of our models were too
weak to produce competitive performance on zero-
shot or few-shot long sequence tasks.

9 Ethics statement

When working with language models and large,
web-crawled datasets it is important to remain cog-
nizant of some of the potential ethical concerns. We
trained on scientific papers which are voluntarily
posted by users.
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Table 6: Perplexity of "out of the box" extrapolation for
models with APE, RoPE, and ALiBi positional embed-
dings.

(ppl.) 1× 2× 3× 4× 5×
APE 6.675 6.326 6.394 7.099 8.438
RoPE 6.677 17.348 45.797 69.288 -
ALiBi 7.217 7.295 7.653 7.773 -

A Full Results
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