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Abstract

Recently, instruction-tuned large language
models (LLMs) are showing prominent perfor-
mance on various tasks, such as question an-
swering. However, the majority of instruction-
tuned LLMs are English-centric, which hinders
their application to low-resource language QA.
In this paper, we propose COde-Mixed Multi-
lingual Instruction Tuning (COMMIT) to adapt
English-centric LLM to low-resource language
QA. We point out two main causes of English-
centricness: imbalance of unlabeled data, and
English-centric instruction tuning datasets. To
deviate from English-centric instruction tuning,
we propose to specialize code-mixing for in-
struction tuning, which blocks code-mixing in
English templates, to leverage the potential of
its superiority. To overcome data imbalance,
we perform cross-lingual alignment. The ma-
jority of cross-lingual alignment works focused
on making representations similar, which is
not desirable to decoder-based LLMs, such as
LLaMA. Therefore, we propose code-mixed
continual causal language modeling to align the
decoder. COMMIT improves the exact match
score of low-resourced language QA by up to
32x. Code is publicly available.

1 Introduction

Recently, large language models (LLMs) have
shown prominent performance on various natu-
ral language processing tasks (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023), such as
question answering (QA). Moreover, instruction-
tuning (Wang et al., 2022b; Taori et al., 2023; Wang
et al., 2023) further updates the LLMs to be more
efficient.

However, the majority of instruction-tuned
LLMs are English-centric. The reasons are
two-fold: both the pretraining corpora and the
instruction-tuning datasets are English-centric
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Therefore, the performance of QA with low-
resourced languages is lacking.

Resolving two would boost performance, but it
is not trivial. First, to alleviate the former problem,
the imbalance in unlabeled data, a naïve approach
would be pretraining the LLM again with balanced
data, which is tremendously costly (Zeng et al.,
2023). Alternatively, cross-lingual alignment (Wu
and Dredze, 2020; Alqahtani et al., 2021) can be
considered. These methods focus on making the
representations of different languages similar, par-
ticularly on encoder-based architectures such as
mBERT (Devlin et al., 2019) or XLM-R (Conneau
et al., 2020). However, for decoder-based LLMs,
such as LLaMA (Touvron et al., 2023), similar
representation across languages may confuse what
language should decoder generate, thus such an
approach is undesirable. Second, to deviate from
English instruction tuning datasets, machine trans-
lation could be considered. However, assuming
high-quality machine translation for low-resource
languages can be impractical. Moreover, it ignores
cross-lingual transferability from high-resource lan-
guages.

To overcome such shortcomings, in this paper,
we propose COde-Mixed Multilingual Instruction
Tuning (COMMIT). First, to efficiently utilize
the English instruction tuning dataset, we code-
mix it using the provided lexicon. Since a dictio-
nary is much more available than machine trans-
lation (Wang et al., 2022a), it is more practical to
assume a dictionary. Furthermore, code-mixing
can leverage cross-lingual alignment (Lin et al.,
2020).

While promising, we notice more room for im-
provement than naïvely performing code-mixing to
the all part of the data. Thus, we specialize code-
mixing for instruction tuning. Inspired by the fact
that the English prompt is more effective even in
multilingual LLMs (Muennighoff et al., 2023), we
keep the template in English to preserve its strength,
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without allowing code-mixing.
Second, to alleviate unlabeled data imbalance,

we perform cross-lingual alignment beforehand. To
align, we propose continual causal language mod-
eling with code-mixed corpus, relying on the cross-
lingual alignment ability of the code-mixing (Qin
et al., 2020; Lin et al., 2020).

Experiments on MLQA (Lewis et al., 2020), and
XQuAD (Artetxe et al., 2020) show the effective-
ness of COMMIT–it increases the exact match up
to 32x. Our code is publicly available.1

2 Related Works

2.1 Large Language Models

LLMs, which are pre-trained with language mod-
eling over a large corpus, contain world knowl-
edge (Zhao et al., 2023). To generalize world
knowledge over diverse tasks such as question an-
swering, LLMs reduce the gap between the pre-
training and downstream tasks. Specifically, di-
verse tasks are formulated as language modeling,
under which LLMs are pre-trained (Raffel et al.,
2020). Additionally, LLMs adopt a decoder-only
transformer which is specialized for the language
modeling task (Zhao et al., 2023; Touvron et al.,
2023).

2.2 Instruction Tuning for Non-English

For better generalization on unseen tasks, LLMs
are instruction-tuned, fine-tuning to follow natural
language instruction of such tasks (Chung et al.,
2022). To generate such data for non-English lan-
guages, the simplest approach would be human
annotation (Zhang et al., 2023), which is expensive.
An alternative approach is to translate the instruc-
tion tuning data (Cui et al., 2023; Muennighoff
et al., 2023; Li et al., 2023a; Santilli and Rodolà,
2023; Holmström and Doostmohammadi, 2023;
Chen et al., 2023a,b; Lai et al., 2023; Li et al.,
2023b) or utilize machine translation data (Zhu
et al., 2023a; Ranaldi et al., 2023), or generation
with an LLM (Wei et al., 2023). However, for
low-resourced languages, high-quality translation
or generation may not be available. In contrast,
we assume the existence of a dictionary, which is
a much more practical assumption (Wang et al.,
2022a). Our proposed COMMIT can generate an
instruction-tuning dataset for the target language,
only relying on a dictionary.

1https://github.com/thnkinbtfly/COMMIT

𝑻 = Answer carefully. Instruction: 
Response:

𝑰 = What are the primary colors?
𝑿 = 𝝓

𝒀 = Red, blue, and yellow.

𝐩(𝐓, 𝐈𝐜, 𝐗𝐜, 𝐘𝐜) = Answer carefully. 
Instruction: What are the primary 
χρώματα? Response: Red, μπλέ, 

and κίτρινο.

Μου αρέσει το apple

LLM

② COMMIT (§3.1)① Align (§3.2)

Figure 1: Overview of the proposed method, Align
(§3.2) + COMMIT (§3.1). Grey represents the template,
which is fixed, purple represents the target language,
and green represents the replaceable English words.

3 Proposed Method

We assume that the given instruction tuning dataset
is in English, and a dictionary is provided. This is a
realistic scenario, considering the existing instruc-
tion tuning datasets (Taori et al., 2023; Wang et al.,
2022b), and the availability of a dictionary (Wang
et al., 2022a). We also assume that our English-
centric LLM covers the majority of target language
tokens, which is practical considering language
contamination (Blevins and Zettlemoyer, 2022).

3.1 COMMIT: Specialized Code-Mixing for
Instruction Tuning

We first formally define instruction tuning. For
given instruction I , and input X , the model is ex-
pected to generate the specific output Y , with the
aid of template T . X can be an empty string, while
I must be a non-empty string, as exemplified in
Figure 1. The model does language modeling with
the sentence formulated as follows:

p(T, I,X);Y (1)

where p is a function to put the words of I,X
among T , and ; is the concatenation.

Recall that we take a practical assumption that
T, I,X, Y are typically in English. Direct instruc-
tion tuning with the dataset would not efficiently
transfer the knowledge to the target language. To
efficiently utilize the English dataset for the tar-
get language, we may perform code-mixing. For
S ∈ {T, I,X, Y }, let S = [w1, · · · , wn]. For
given dictionary D = {(wi, ti)} between English
and the target language, we generate code-mixed
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sentence Sc as follows:

xi ∼ B(α) (2)

ci =

{
ti if xi = 1, (wi, ti) ∈ D

wi otherwise
(3)

Sc = [c1, · · · , cn] (4)

where B is the bernoulli distribution, and α is the
hyperparameter for it. The model may do language
modeling with the sentence p(T c, Ic, Xc);Y c,
which we call ‘naïve code-mixing’.

While promising, we conjecture mixing all En-
glish words would hinder the transfer of the knowl-
edge learned in English-centric LLM. It is known
that English prompts show superior performance
than prompts in the target language, even in mul-
tilingual pretrained language models (Lin et al.,
2022; Muennighoff et al., 2023; Huang et al., 2023).
Inspired, by this phenomenon, we propose to keep
the template of instruction tuning in English, to
preserve the strength of English prompts. To this
end, we let the model do language modeling with
the following sentence:

p(T, Ic, Xc);Y c (5)

3.2 Aligning Before COMMIT

COMMIT may improve the performance of instruc-
tion tuning, however directly performing COM-
MIT may not fully leverage cross-lingual ability
in the given English-centric language model. It is
known that even the multilingual pretrained lan-
guage models do not fully leverage cross-lingual
ability, therefore cross-lingual alignment has been
proposed (Kulshreshtha et al., 2020; Alqahtani
et al., 2021). We shift our view to this aspect.

We need to carefully select the cross-lingual
align method, since the majority of them focus
on encoder-based models, making the representa-
tion similar. This is undesirable for decoder-based
models, since it would confuse the decoder with
what language should it generate.

To this end, we choose code-mixing (Qin et al.,
2020; Lin et al., 2020) as a tool for cross-lingual
alignment. Since it does not explicitly force the lan-
guage model to make representation similar, such
confusion would be reduced. Formally, before per-
forming COMMIT, given the sentences of the cor-
pus in target language C, we first construct the
code-mixed corpus Cc, similarly to Eq. 4. Then
we perform continual causal language modeling

lang (iso code) lang family # wiki ling.sim

Greek (el) Indo-European 209K 0.729
Thai (th) Tai-Kadai 147K 0.712
Hindi (hi) Indo-European 151K 0.683

Bengali (bn) Indo-European 121K 0.680
Tamil (ta) Dravidian 146K 0.620

Table 1: Languages used for the experiments in this
paper. We report the size of the unlabeled dataset (#
wiki), and linguistic similarity with the English.

with the following objective:

Lalign = − 1

N

∑

i

logP (cci |cc<i) (6)

where Cc = [cc1, · · · , ccN ], cc<i = [cc1, · · · , cci−1].

4 Experiments

4.1 Experimental Settings
We use LLaMA-7B (Touvron et al., 2023) as
our representative English-centric large language
model.
Tasks and Datasets For instruction tuning, we
use the ALPACA dataset (Taori et al., 2023), and
for continual causal language modeling, we utilize
Wikipedia corpus.2 For code-mixing, we use the
MUSE dictionary (Lample et al., 2018).

We evaluate our model on the extended version
of LM-EVALUATION-HARNESS (Gao et al., 2021).3

We select the available QA datasets: MLQA (Lewis
et al., 2020), and XQuAD (Artetxe et al., 2020).
We also implement IndicQA (Doddapaneni et al.,
2023), which additionally requests unanswerable
question classification, differently from MLQA or
XQuAD.
Language selection Among languages with
given QA datasets and dictionaries, we choose
languages with less than 250K Wikipedia articles,
which are the five least-resourced languages: Greek
(el), Hindi (hi), Thai (th), Tamil (ta), and Bengali
(bn). These languages are not covered in the pre-
training of LLaMA (Touvron et al., 2023). We
describe the size of the unlabeled dataset, and lin-
guistic similarity with English,4 in Table 1.

2https://huggingface.co/datasets/
graelo/wikipedia

3https://github.com/OpenGPTX/
lm-evaluation-harness

4Following Ansell et al. (2021) we take the cosine similar-
ity of URIEL feature vectors (Littell et al., 2017) to calculate
the linguistic similarity between languages.
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MLQA XQuAD
hi EM hi F1 hi EM hi F1 th EM th F1 el EM el F1 EM avg F1 avg

LLaMA 0.35 5.93 0.59 6.85 0.08 2.38 1.09 7.93 0.53 5.77
Alpaca 0.28 7.95 0.00 8.10 0.25 3.76 1.01 11.82 0.39 7.91

LLaMA+En prompt 0.79 7.21 1.09 7.28 0.08 2.80 3.45 10.83 1.35 7.03
Alpaca+En prompt 1.12 9.78 1.34 10.48 1.34 4.86 3.36 14.98 1.79 10.03

COMMIT+En prompt 2.56 7.89 3.87 8.99 2.18 3.89 7.39 15.18 4.00 8.99
COMMIT 4.35 9.26 6.22 10.41 4.37 7.30 9.92 18.12 6.22 11.27

Align+COMMIT 6.04 14.77 7.56 14.72 8.15 13.84 8.57 16.19 7.58 14.88

Table 2: Exact match and F1 score of COMMIT and comparisons. Best scores are emphasized with bold.

MLQA XQUAD
hi hi th el avg

COMMIT 4.35 6.22 4.37 9.92 6.22
CLM+COMMIT 4.19 4.96 7.39 6.22 5.69
Align+COMMIT 6.04 7.56 8.15 8.57 7.58

Table 3: Exact match score of aligning with code-mix,
or simply consuming data with CLM, before COMMIT.

Implementation Details To perform instruc-
tion tuning, we largely follow the setting from Al-
paca (Taori et al., 2023).5 We use learning rate of
2e-5; sequence length of 512; warmup for 3% of
total steps; and train for 3 epochs. We use α of
0.9 for code-mixing.6 We perform continual causal
language modeling with similar hyperparameters,
except that we train for 10K steps. We use α of
0.5 for code-mixing. COMMIT is performed on
TPUv3-8, taking less than 8 hours in total. The
code is based on EasyLM (Geng, 2023), imple-
mented with JAX (Bradbury et al., 2018).

We evaluate the LLMs with a batch size of 2,
in a zero-shot manner. Evaluation is conducted on
RTX3090, which takes less than an hour.
Baselines We compare COMMIT with the fol-
lowing baselines. a) LLaMA: The baseline LLM;
b) Alpaca: The baseline instruction-tuned LLM;
c) LLaMA/Alpaca+En Prompt: We try English
prompt instead of prompt in the target language,
since they are known to perform better (Lin et al.,
2022; Huang et al., 2023); d) naïve codemix: We
use naïve code-mix, described in §3.1; e) Machine
Translation: We use Google Translate API to
translate the instruction tuning dataset.

5https://github.com/tatsu-lab/
stanford_alpaca

6We probed {0.8,0.9,1.0} since large code-mix ratio is
preferred in language adaptation (Wang et al., 2022a), and
selected based on MLQA val EM score.

4.2 Experimental Results

Superiority of COMMIT COMMIT outper-
forms the baselines (Table 2). For example,
XQuAD th EM of Align+COMMIT is more than
32x larger than LLaMA or Alpaca. Using English
prompts does improve the performance, however,
COMMIT even outperforms this tough baseline.
For example, XQuAD th EM score or MLQA hi
EM score of COMMIT is about 6x larger than the
baselines with English prompts.

Overall, the average scores of Align+COMMIT
is the best among the comparisons (Table 2).The
exception of a lowered score of Greek (el) can be
explained by the linguistic similarity with English
(Table 1). Since Greek is showing the maximum
similarity, the LLM is already aligned well; addi-
tional alignment may harm the language model.
Note that the similarity score does not perfectly
correlate with the performance gain (e.g. th vs hi),
however combined with linguistic genealogy, we
can roughly explain the trend. We leave the improv-
ing the quality of the similarity metric as a future
work.
English prompt is not needed Surprisingly,
COMMIT favors target language prompts over En-
glish prompts (Table 2), which implies COMMIT
effectively adapted the model to the target lan-
guage. This favor is more desirable for real-world
use cases, which is different from the known fact
that LLMs favor English prompts (Lin et al., 2022;
Huang et al., 2023).
Efficiency of aligning beforehand One may
question whether the improvement simply comes
from an increase in data. Table 3 discloses that
simply consuming the target language corpus with
causal language modeling (CLM) even lowers the
average score, ruining the language model. In con-
trast, our approach efficiently utilizes the corpus,
improving the performance.
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MLQA XQUAD
hi hi th el avg

Alpaca (no code-mix) 0.28 0.00 0.25 1.01 0.39
naïve code-mix 3.90 5.21 2.10 8.99 5.05

COMMIT 4.35 6.22 4.37 9.92 6.22

Table 4: Exact match score of specialized code-mix of
COMMIT, naïve code-mix, and no code-mixing.

MLQA XQuAD
hi hi th el avg

Machine Translation 5.19 2.52 8.57 6.39 5.67
Align+COMMIT 6.04 7.56 8.15 8.57 7.58

Table 5: Exact match score of COMMIT and instruction
tuning with machine translation.

Effectiveness of specialized code-mix Our spe-
cialization of code-mixing for instruction tuning
is effective (Table 4). While naïve code-mixing
improves the performance over not performing it,
COMMIT outperforms naïve code-mixing.
Outperforming Machine Translation COM-
MIT outperforms MT baseline (Table 5). This may
look counter-intuitive, but consistent observation
was made (Ranaldi et al., 2023), benefiting from
cross-lingual alignment during instruction-tuning.
Based on this observation, we re-emphasize our
contribution: Our proposed code-mixing, by us-
ing only a dictionary, enables cross-lingual align-
ment (Lin et al., 2020) during the instruction tun-
ing, even outperforming compute-intensive MT-
instruction-tuning.
Observation consistent on IndicQA When
we extend our evaluation to include classifi-
cation of unanswerable questions, utilizing In-
dicQA, the observations are consistent (Table 6).
Align+COMMIT outperforms the baselines, COM-
MIT, and machine translation.

ta bn avg
LLaMA 18.51 15.83 17.17
Alpaca 20.62 16.00 18.31

LLaMA+En prompt 19.96 15.94 17.95
Alpaca+En prompt 19.24 15.71 17.47

Machine Translation 22.67 17.87 20.27
COMMIT 22.28 17.92 20.10

Align+COMMIT 24.45 20.25 22.35

Table 6: Exact match score of COMMIT and compar-
isons on IndicQA.

5 Conclusion

We studied adapting English-centric LLM
to low-resource language QA. We proposed
Align+COMMIT, aligning and then performing
a specialized code-mixing method for instruction
tuning. Experiments show that each component
contributes to improving the performance.

6 Limitation

In this work, we followed the most common way
to code-mix the data (Qin et al., 2020; Lin et al.,
2020). Considering context or morphology during
code-mixing would be beneficial (Feng et al., 2022;
Zhu et al., 2023b).

However, considering context or morphology is
not necessary to claim the strength of our proposed
method, as COMMIT outperforms machine trans-
lation, a solution scarcely violates such context or
morphology. We would probe better code-mixing
strategy (Feng et al., 2022; Zhu et al., 2023b) or
optimization techniques such as LoRA (Hu et al.,
2022) as future work.

Acknowledgements

This research was partially supported by the MSIT
(Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center)
support program (IITP-2024-2020-0-01789) su-
pervised by the IITP (Institute for Information &
Communications Technology Planning & Evalua-
tion). This work was also partially supported by
IITP grant funded by MSIT (No.2022-0-00077, AI
Technology Development for Commonsense Ex-
traction, Reasoning, and Inference from Heteroge-
neous Data and No.2021-0-01343-004, Artificial
Intelligence Graduate School Program (Seoul Na-
tional University)]. We would also like to thank
Google’s TPU Research Cloud (TRC) program for
providing Cloud TPUs.

References
Sawsan Alqahtani, Garima Lalwani, Yi Zhang, Salva-

tore Romeo, and Saab Mansour. 2021. Using Opti-
mal Transport as Alignment Objective for fine-tuning
Multilingual Contextualized Embeddings. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3904–3919, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Sebas-
tian Ruder, Goran Glavaš, Ivan Vulić, and Anna Ko-
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