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Abstract
Existing transfer learning methods for neural
machine translation typically use a well-trained
translation model (i.e., a parent model) of a
high-resource language pair to directly initial-
ize a translation model (i.e., a child model) of
a low-resource language pair, and the child
model is then fine-tuned with corresponding
datasets. In this paper, we propose a novel two-
step fine-tuning (TSFT) framework for transfer
learning in low-resource neural machine trans-
lation. In the first step, we adjust the parame-
ters of the parent model to fit the child language
by using the child source data. In the second
step, we transfer the adjusted parameters to
the child model and fine-tune it with a pro-
posed distillation loss for efficient optimization.
Our experimental results on five low-resource
translations demonstrate that our framework
yields significant improvements over various
strong transfer learning baselines. Further anal-
ysis demonstrated the effectiveness of different
components in our framework.

1 Introduction

Neural machine translation (NMT) has achieved
superior performance in terms of both fluency and
adequacy for high-resource languages (Vaswani
et al., 2017; Zhou and Keung, 2020; Cai et al.,
2021; Guo et al., 2022). With the introduction of
the attention mechanism (Yin et al., 2021; Petrick
et al., 2022), NMT has been proven to be efficient
and powerful in modeling long-distance dependen-
cies. However, the performance of NMT systems
deteriorates dramatically when insufficient paral-
lel data are available for training (Sakaguchi et al.,
2017; Michel and Neubig, 2018; Aharoni et al.,
2019; Goyal et al., 2022). The scarcity of paral-
lel corpora intensely limits the performance of an
NMT system on low-resource languages.

Transfer learning is a learning paradigm for ad-
dressing the data scarcity problem (Zoph et al.,
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Figure 1: Comparison between vanilla transfer learning
framework (a) and TSFT (b). Our proposed TSFT in-
corporates an intermediate model to pre-fine-tune the
parent parameters to fit the child data.

2016; Nguyen and Chiang, 2017; Li et al., 2022).
For NMT, transfer learning aims to transfer the
knowledge from a well-trained high-resource
translation model (i.e., a parent model, e.g.,
English→German) to a low-resource translation
model (i.e., a child model, e.g., English→the Māori
language). Prior transfer learning methods in NMT
(Zoph et al., 2016; Chu et al., 2017) primarily
achieve knowledge transfer by initializing the pa-
rameters of the child model with the parent model
and fine-tuning the child model on the correspond-
ing data. Such direct transfer of knowledge raises a
vocabulary mismatch problem (Lakew et al., 2018;
Lin et al., 2019; Kocmi and Bojar, 2020), and re-
sults in unsatisfied results for low-resource trans-
lations. Some methods have been proposed to al-
leviate the vocabulary mismatch problem, such as
constructing joint dictionaries or employing a cross-
lingual token mapping technique (Passban et al.,
2017; Kocmi and Bojar, 2018; Kim et al., 2019a).
Additionally, Aji et al. (2020) proposed a token
matching method that simply duplicates the embed-

3214



dings of overlapping tokens from the parent model
to the child model.

Recently, based on the work of Aji et al. (2020),
Li et al. (2022) proposed ConsistTL that uses the
predictions of the parent model to continuously pro-
vide soft targets during the fine-tuning of the child
model. However, given the differences between the
source inputs of the parent and the child translation
tasks, the parent model is not an optimal starting
point for the single-step fine-tuning of the child
model using limited parallel child data. Therefore,
it is necessary to pre-fine-tune the parent model to
fit the child language before initializing the child
model with it.

Building upon this insight, we propose a simple
yet effective transfer learning framework, named
Two-Step Fine-Tuning (TSFT), for low-resource
NMT. As shown in Figure 1, we introduce an in-
termediate (child) model initialized with the parent
model to adjust the parent parameters to fit the child
language. TSFT involves two fine-tuning steps. In
the first step, we feed child source sentences (i.e.,
monolingual data) and meaning-matched sentences
in the parent source language into the intermediate
and the parent models, respectively. Then, the in-
termediate model is fine-tuned with the objective
of aligning probability distributions from the par-
ent and intermediate models, aiming to adjust the
parameters transferred from the parent model to
perform well with child source sentences. Addi-
tionally, we propose a regularization-based strategy
that can improve the translation performance of
the intermediate model and benefit the child model.
Note that we apply the token matching method
to alleviate the vocabulary mismatch problem in
the first step. In the second step, we transfer the
adjusted parameters from the intermediate model
to the child model and fine-tune the entire child
model on the pertinent parallel data, employing
both a cross-entropy loss and a proposed distillation
loss. Extensive experiments on five low-resource
translations show that TSFT surpasses the strongest
baseline method with up to 1.2 SacreBLEU points.
The ablation study demonstrates the effectiveness
of different components within TSFT.

Our contributions can be summarized as follows:

• We propose a novel two-step fine-tuning
framework for low-resource NMT, which in-
troduces an intermediate (child) model to fit
parent parameters for the data of child lan-
guages before initializing the child model with

the parent model.

• We propose a regularization-based strategy for
fine-tuning the intermediate model and a dis-
tillation loss for fine-tuning the child model.

• We validate our method by extensive exper-
iments on various low-resource translations
and achieve improved performance compared
to various transfer learning methods.

2 Related work

Existing studies have demonstrated the success of
transfer learning for low-resource NMT (Lin et al.,
2019; Imankulova et al., 2019; Ji et al., 2020; Ero-
nen et al., 2023). Zoph et al. (2016) first introduced
transfer learning into the field of NMT and pro-
posed a parent-child framework, where parameters
from a pre-trained parent model are directly trans-
ferred to a new child model with a shared target
language. Subsequent research largely builds upon
the parent-child framework and tends to leverage
highly related parent language to perform trans-
fer learning (Passban et al., 2017; Setiawan et al.,
2018). However, the languages closely related
to low-resource languages are also low-resourced
(Nguyen and Chiang, 2017; Xia et al., 2019) and of-
fer only modest performance improvements. Thus,
researchers focused on identifying the critical fac-
tors for the effectiveness of the parent language. Ex-
perimental results from (Lin et al., 2019; Aji et al.,
2020) emphasized that linguistic or geographical
distance does not appear as important as the size of
the parent data (Lin et al., 2019; Aji et al., 2020).
This insight expands the range of parent languages
available for transfer learning, and alleviates the
limitations of highly related parent languages. Con-
sequently, later researchers shifted their attention
to parent languages with low relatedness but high-
resourced. However, this exacerbates the vocabu-
lary mismatch problem, posing a new challenge to
transfer learning.

One solution to the vocabulary mismatch prob-
lem is to build a joint dictionary before training a
parent model (Kocmi and Bojar, 2018; Kim et al.,
2019b). However, this restricts the applicability
of a pre-trained parent model to a specific child
model only. To overcome this limitation, Kim et al.
(2019a) proposed pre-training a language-agnostic
cross-lingual word embedding independently from
the parent model. Concurrently, token matching
methods also show their effectiveness in transfer
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learning without requiring additional training ef-
forts (Aji et al., 2020; Kocmi and Bojar, 2020).
Some other methods introduce highly related inter-
mediate languages to gradually narrow the vocab-
ulary disparity (Luo et al., 2019; Maimaiti et al.,
2019). These methods take advantage of both large-
scale data sources and syntactic similarity in the
intermediate language.

Recently, Li et al. (2022) incorporated the idea
of consistency learning into transfer learning based
on the work of Aji et al. (2020) and proposed a
novel transfer learning method called ConsistTL.
This method enables the child model to utilize the
parent model during fine-tuning. Subsequently,
Liu et al. (2023) proposed kNN-TL, which ex-
tends ConsistTL by integrating a k-nearest neigh-
bor (kNN) module, allowing the child model to
utilize the parent model during inference. While
our method also builds on ConsistTL, we focus
on enhancing the child model’s performance dur-
ing fine-tuning. Thus, our work is orthogonal to
kNN-TL.

3 Method

In this section, we begin by providing an overview
of the basic concepts behind transfer learning
and then present our transfer learning framework,
TSFT, in detail.

3.1 Transfer Learning Primary
Given a source sentence x = {x1 , . . . , xI }, the
objective of an NMT model is to translate it to
a new sentence y = {y1 , . . . , yJ} in a target lan-
guage, where the source sentence and target sen-
tence have lengths I and J , respectively. A typi-
cal NMT model is composed of an encoder and
a decoder. The encoder is designed to extract
high-level semantic information from the source
sentences and represent them as hidden states
He. The decoder generates the output probabil-
ity P (yi|He, y<i) of the next target token yi. An
NMT model is trained on a parallel corpus by min-
imizing the cross-entropy (CE) loss between the
predicted sentence and the ground-truth translation
as follows:

Lce = −
J∑

i=1

logP (yi|y<i, x, θ), (1)

where θ is the parameters of the entire NMT model.
Transfer learning has been widely used when

only limited training datasets are available for the

problem at hand. It transfers the knowledge ac-
quired from large-scale data to enhance the model
performance under low-resource conditions. Trans-
fer learning typically follows a parent-child frame-
work (Zoph et al., 2016), where it involves reusing
the parameters θp from a pre-trained parent model
to initialize part or all parameters of a child model.
In the field of NMT, the parent model Mp is ini-
tially trained on a high-resourced parallel dataset
Dp = {Xp, Yp}, while there is only a limited-sized
dataset Dc = {Xc, Yc} available to the child model
Mc . After the initialization step, the child model
can be fine-tuned on Dc, which is also optimized
through the minimization of the CE loss.

3.2 Two-step Fine-tuning
For NMT, an ideal transfer learning framework
should enable the parent model to exert its com-
plete capabilities on the child task. However, owing
to the disparities between the parent and child lan-
guages, the current one-step fine-tuning transfer
learning framework struggles to adjust the parame-
ters of the parent model to fit the child source lan-
guage under the constraints of limited child data.

The idea of TSFT is simple: before initializing
the child model with the parent model, we first
adjust the parameters of the parent model to
enhance its congruity with the child source
language. In this work, we propose to introduce
an intermediate model, denoted as Ma , to make
the parameters of the parent model fit for the child
data. Specifically, we initialize the intermediate
model with the parent model and pre-fine-tune it
by using the source side sentences of the child
data, then fine-tune the child model with both the
source and target child training data. Therefore, we
design TSFT as a two-step framework, as shown in
Figure 2.

Step 1: Intermediate Fine-tuning After initializ-
ing the intermediate model with a well-trained par-
ent model, we aim to equip the intermediate model
with the ability to utilize child source sentences
as input for target language generation. Since the
intermediate model and the parent model share the
same target language, it is crucial to retain the gen-
eration ability of the parent model. Therefore, we
input the source-side sentences of the child data
to the intermediate model and the parent model
and utilize the predicted distribution of the parent
model as the soft label for fine-tuning.

However, it is infeasible to directly input child
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Figure 2: Our proposed transfer learning framework TSFT for low-resource NMT. In Step 1, the loss function
Linter is used to optimize the intermediate model. In Step 2, the child model is optimized by Lchild. The blue
icy blocks are initialized with the parent model and frozen. The input German sentences are produced through
back-translation.

source sentences into the parent model, given that
the parent and child models have different source
languages. Thus, we need a meaning-matched sen-
tence for each child source sentence in the parent
source language. In the context of low-resource
translations, parallel data for non-English-centric
is often limited in size or entirely absent, mak-
ing it difficult to meet the requirements for in-
termediate fine-tuning. Therefore, we adopt the
method of Li et al. (2022) to generate pseudo par-
ent data Dp∗ = {Xp∗, Yc} by using a reversed
parent model, where each xp∗ ∈ Xp∗ is aligned
with yc ∈ Yc. Although such a method requires
training a reverse parent model, it effectively gen-
erates meaning-matched input sentences for the
parent model. In addition, we use the following
loss function to optimize the intermediate model:

Linter =
J∑

i=1

Fd[Pinter(yi), Pparent(yi)], (2)

where Fd is a distribution measurement method, in
this work, we choose Jensen-Shannon (JS) diver-
gence (Lin, 1991; Wen et al., 2023) as our Fd. Our
preliminary experiments find that JS divergence
outperforms using Kullback–Leibler (KL) diver-
gence when taking Pinter(yi) as the first item and
Pparent(yi) as the second one. P∗(yi) represents
the prediction distributions of translation models
at time step i, which is conditioned on the input
sentence and the previous tokens:

P∗(yi) = P∗(yi|x, y<i). (3)

Before fine-tuning the intermediate model,
we first apply the token matching method (Aji
et al., 2020) that duplicates the embeddings of
overlapping tokens from the parent and child
vocabularies to alleviate the vocabulary mismatch
problem.

Step 2: Child Fine-tuning In the second step,
we employ the target-side sentences from the child
training data as labels to fine-tune the child model
with CE loss, following the general process of trans-
fer learning. Since the encoder of the intermediate
model has fine-tuned with the child source sen-
tences, we argue that it encompasses valuable in-
formation that can facilitate the child model. There-
fore, we extract the encoder outputs, P e

∗ (·), from
both the intermediate and child models and incor-
porate a distillation loss Ldist as an extra objective
to optimize the child model by minimizing the KL
divergence between two output representations:

Ldist = −
I∑

i=1

P e
inter(xi) · logP e

child(xi), (4)

P e
∗ (xi) = P e

∗ (xi|x, τ)

=
exp(zi/τ)∑

j∈V exp(zj/τ)
,

(5)

where I denotes the sentence length of a child
source sentence, z denotes the logits output of en-
coders before log_softmax is computed, V repre-
sents the vocabulary, and τ is a temperate factor
used to smooth the prediction distributions. As we
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only reuse the output of encoders, the process of
encoder distillation does not add any extra param-
eters to models. The overall loss is obtained by a
weighted sum of Lce and Ldist:

Lchild = Lce + λLdist, (6)

where λ is a balancing hyper-parameter.

Partial Decoder Freeze Regularization-based
methods are widely used to alleviate the catas-
trophic forgetting issue (Kirkpatrick et al., 2017;
Gu and Feng, 2020; Gu et al., 2021). While up-
dating all parameters typically yields good results
on a new domain, the data distribution difference
between the old and new domains can engender
the issue of catastrophic forgetting, causing the
fine-tuned model to abandon linguistic knowledge
learned from previous dataset (Thompson et al.,
2019; Bérard, 2021). In this work, we are interested
in introducing the regularization-based technique
during Step 1 to preserve the predictive capabilities
of the parent model. We propose a Partial Decoder
Freeze (PDF) strategy to freeze the parameters of
the last l decoder layers of the intermediate model
and only update the rest parameters. For the se-
lection of parameters l, we conducted empirical
experiments in Section 5.1.

4 Experiments

4.1 Settings

Datasets We conduct experiments on five
low-resource translation tasks, four of which are
from the Global Voices datasets (Tiedemann, 2012;
Khayrallah et al., 2020): Polish (Pl), Hungarian
(Hu), Indonesian (Id), Catalan (Ca) to English (En),
where we use the officially provided training sets,
validation sets and test sets in our experiments.
The other one is the WMT 2017 Turkish (Tr) to En
benchmark. We use newstest2016 as the validation
set and newstest2017 as the test set. For the parent
models training, we use the German-English
dataset following the empirical advice of (Aji
et al., 2020; Li et al., 2022). We take the WMT
2017 news translation task as our parent dataset
containing around 5.8M paired sentences. The
detailed statistics of these parallel corpora are
presented in Table 1. For fair comparisons, we
adopt the same data preprocess techniques as
previous research of TL (Li et al., 2022), which
only apply normalization and tokenization to

Datasets # Train # Valid # Test
Global Voices Pl - En 39.9K 2,000 2,000
Global Voices Ca -En 15.2K 2,000 2,000
Global Voices Id - En 8.4K 2,000 2,000
Global Voices Hu - En 7.7K 2,000 2,000
WMT 2017 Tr - En 196.6K 3,000 3,007

WMT 2017 De - En 5.8M 3,000 3,003

Table 1: The statistics of parallel corpora.

parallel sentences by using Moses toolkit1. Further,
we apply Byte Pair Encoding (BPE) (Sennrich
et al., 2016) to address the out-of-vocabulary
problem and segment words with 16,000 merge
operations for Turkish and 8,000 for the rest.

Model Configuration In our experiments, we
implement translation models with fairseq 2

toolkit. We choose the Transformer (Vaswani
et al., 2017) as the backbone to implement our
framework. We use Transformer_base that consists
of 6 encoder and decoder layers with 8 attention
heads. The number of dimensions of all sub-layers
in the model is set to 512, and the inner layers of
feed-forward layers have 2048 dimensions. Our
models are trained on 2 Nvidia A100 GPUs. We
train our models using Adam (Kingma and Ba,
2015) with (β1, β2) = (0.9, 0.98) and use cross-
entropy as criterion with label smoothing = 0.1.
In addition, we train the forward and backward
parent model (i.e., De→En and En→De) with the
initial learning rate 1e−7 and gradually increase
till 1e−3 within 10,000 warm-up updates. For the
models with transfer learning, we set the initial
learning rate to 1e−7, and the peak learning rate
is 2e−4 within 1,000 warm-up steps. Dropout is
applied to the output of each sub-layer with a rate
of 0.3 to avoid over-fitting. Besides, attention and
activation dropouts are also used with a rate of 0.1
and 0.1. We train all models with a maximum of
200 epochs and select the checkpoints with the
best BLEU score on the validation set as our final
model, where beam search is applied with beam
size 5, and the length penalty is 1.

Baselines We use the following baselines to vali-
date our method:

1https://github.com/moses-smt/
mosesdecoder

2https://github.com/facebookresearch/
fairseq
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Model
Tr→En Hu→En Id→En Ca→En Pl→En

BLEU BS BLEU BS BLEU BS BLEU BS BLEU BS

Vanilla 17.8 51.8 0.9 0.9 1.1 13.2 1.1 15.5 1.5 18.9

TL 17.6 51.9 5.9 27.4 13.5 37.7 21.6 51.8 19.9 55.3

TM-TL 18.6 53.9 10.6 41.2 18.6 49.9 25.3 58.9 21.4 58.2

ConsistTL 19.3 55.9 11.9 43.9 19.7 52.2 26.6 60.0 22.4 59.9

TSFT (ours) 20.0 56.7 13.1 44.6 20.5 53.3 27.7 60.7 23.3 60.5

Table 2: The SacreBLEU and BERTScore scores of baselines and ours on various translations. "BS" represents
BERTScore. Blod indicates the best result. BLEU score reflects that TSFT is significantly better than ConsistTL
with t-test p < 0.05. The number of bootstrap resamples is set to 1,000 to measure the significant difference between
results.

• Vanilla NMT (Vaswani et al., 2017): A bilin-
gual NMT model with Transformer architec-
ture directly trained on low-resource child
training data from scratch.

• TL (Zoph et al., 2016): The first transfer learn-
ing work for NMT, initializing the child model
with a parent model except for the source word
embeddings. Note that the original work em-
ployed a two-layer encoder-decoder LSTM
model, whereas we replicate TL using Trans-
former.

• TM-TL (Aji et al., 2020): To transfer embed-
dings across languages with distinct linguistic
characteristics, Token Matching (TM) is pro-
posed to assign the child word embeddings
with the same tokens in the parent embed-
dings. The remaining unmatched tokens are
assigned random embeddings as TL.

• ConsistTL (Li et al., 2022): Based on TM-
TL, ConsistTL is proposed to enhance the
child model by incorporating the prediction
of the parent model during the fine-tuning of
the child model.

Metrics To validate the effectiveness of our pro-
posed framework, we use the following two met-
rics:

• BLEU (Papineni et al., 2002): Considering
the discrepancy among different tokenization
processes, we apply the SacreBLEU score
(Post, 2018)3 for all experiments.

3Signature: nrefs:1 + case:mixed + eff:no + tok:13a +
smooth:exp + version:2.0.0

Hyper-parameter Tr→En Hu→En
(λ = 2.0, τ = 2.0) 19.9 13.0
(λ = 3.0, τ = 2.0) 19.8 12.8
(λ = 4.0, τ = 2.0) 20.0 13.1
(λ = 5.0, τ = 2.0) 19.9 12.9
(λ = 4.0, τ = 0.5) 19.7 12.9
(λ = 4.0, τ = 1.0) 19.7 13.1
(λ = 4.0, τ = 3.0) 19.4 13.0

Table 3: The SacreBLEU scores on the test set of the Tr
→ En and Hu→En translations with different λ and τ .

• BERTScore (Zhang et al., 2020): Leverag-
ing a pre-trained BERT model to evaluate the
semantic correctness between the predictions
and references by cosine similarity.

4.2 Main Results

The results on five low-resource translation bench-
marks are presented in Table 2. In our experiments,
we utilize German as the parent language, and
the parent models are pre-trained on a German-
to-English dataset. As we can see, our method sig-
nificantly outperforms the vanilla NMT in terms of
both SacreBLEU and BERTScore. Compared with
TL and TM-TL, TSFT still achieves significant
improvements on all translations. Moreover, our
proposed TSFT also has demonstrated superior per-
formance compared to the strongest baseline Con-
sistTL with up to +1.2 SacreBLEU points and +1.1
BERTScore points. Overall, these results prove that
our proposed transfer learning framework TSFT
can effectively improve the performance of the
child model on low-resource translation tasks.

3219



2 4 6
Hyper-parameter l

19.5

19.6

19.7

19.8

19.9

B
L

E
U

 (%
)

De => Tr

2 4 6
Hyper-parameter l

12.5

12.6

12.7

12.8

12.9
De => Hu

Figure 3: The SacreBLEU scores of TSFT with different
hyper-parameter l on Tr → En and Hu → En. De ⇒ Tr
/ Hu indicates De is the parent language and Tr / Hu is
the child language.

Models Tr→En Hu→En
TSFT 20.0 13.1

w/o PDF 19.5 12.5
w/o Ldist 19.8 12.8
w/o Step 2 18.9 11.2
w/o Step 2 + PDF 18.6 10.6

Table 4: The SacreBLEU scores on the test set of the
Tr → En and Hu→En translations with PDF, Ldist, and
Step 2 ablation.

5 Analysis

5.1 Effect of the Number of Freezing Layers
In Section 3.2, we utilize the PDF strategy in Step
1. However, we do not clearly know the optimal
number of freezing layers l that can benefit the
child model most. Different numbers of freezing
layers would significantly impact the child model
performance. Hence, in this section, we conduct a
comparative analysis of the impact of different l on
the translation performance of the child model.

Concretely, we still use the De→En model as
the parent model and select Tr→En and Hu→En
translations as child tasks. We tune the hyper-
parameter l by performing a grid search on l ∈
{1, 2, 3, 4, 5, 6}. Figure 3 illustrates the model per-
formance with different values of l. We can find
that the final child models achieve the best per-
formance in Tr→En and Hu→En when l is 5 and
4, respectively. Consequently, we set l as 5 for
Tr→En translation and 4 for the rest.

Despite a substantial size difference between the
Tr→En and Hu→En datasets, there is not much
difference in the choice of the number of layers
to freeze. For this phenomenon, we speculate that
the distinction between these two child datasets is
negligible compared to the size distinctions with
the parent dataset, as shown in Table 1. Therefore,
when applying our framework to parent models

0 50 100 150 200
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B
L

E
U
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TM-TL
ConsistTL
TSFT

Figure 4: Learning curves of different TL methods.

with relatively limited resources, the choice of the
number of frozen decoder layers needs to be care-
fully considered to achieve optimal results.

5.2 Effect of Hyper-parameters λ and τ

Hyper-parameter λ is crucial to controlling the in-
fluence of the two losses within the Lchild. In this
part, we set λ to {2.0, 3.0, 4.0, 5.0} to investi-
gate the impact of different values of λ on the per-
formance of the child model. The corresponding
SacreBLEU scores are presented in Table 3. For
both Tr→En and Hu→En translations, the best per-
formances are obtained when λ is set to 4.0. Hence,
we set λ as 4.0 for all experiments involving Ldist.

In addition, we also conduct experiments with
varying values of τ during the training process of
the child model, while keeping λ fixed at 4.0. As
illustrated in Table 3, we can find that the perfor-
mance of the child model is sensitive to τ and the
performance is best when τ is set to 2.0. We ar-
gue that this is because minimizing the KL diver-
gence is difficult, but using a larger τ (e.g., 3.0)
may diminish the information from the intermedi-
ate model, which is not helpful in improving the
performance of the child model.

5.3 Ablation Study
We conduct an ablation study of the PDF strategy,
Ldist, and Step 2 to explore their effects on our
framework. We present the performance of four
variants of TSFT as follows: 1) w/o PDF. During
the training process of Step 1, we do not freeze
any layers of the intermediate model, fine-tuning
all parameters in every epoch. 2) w/o Ldist. In
Step 2, we eliminate the distillation loss between
the encoders of the intermediate and child models,
conducting fine-tuning of the child model using
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Figure 5: Sentence representations after using T-SNE dimensionality reduction. The blue points denote the output
from the parent model, and the red points denote the output from the fine-tuned models obtained from different
transfer learning methods.

Lce exclusively. 3)w/o Step 2. We evaluate the
translation performance of the intermediate model.
4) w/o Step 2 + PDF. Based on 3), we do not freeze
any layers of the intermediate model during Step 1.
We conduct experiments on Tr→En and Hu→En
translations, which correspondingly represent the
largest and smallest datasets among those applied
in our main experiments. The results are shown in
Table 4. It is evident that excluding the PDF strat-
egy, Ldist, or Step 2 resulting in a deterioration of
the translation quality, underscoring the efficacy of
these components within TSFT. The experimental
results show that PDF has a greater impact than
Ldist. Further, we observe that PDF can effectively
improve the translation performance of the inter-
mediate model and benefit the child model. This
observation shows that retaining the performance
of the parent model is crucial for improving the
performance of the child model.

5.4 Comparison of Learning Curves
A learning curve represents a model’s learning per-
formance throughout the duration of training and
is a widely employed diagnostic tool in machine
learning (Kambhatla et al., 2022; Bao et al., 2023).
In this section, we present the validation learning
curve to assess the generalization capabilities of
TM-TL, ConsistTL, and TSFT by using the Sacre-
BLEU score as the criterion. Figure 4 illustrates
the learning curves of child models trained with
three transfer learning methods. Compared with
TM-TL and ConsistTL, TSFT exhibits superior ini-
tial performance and convergence speed. Note that
the TSFT curve delineates the performance of the
model fine-tuned after Step 1. This observation
emphasizes the effectiveness of fine-tuning the in-
termediate model in enhancing the final model’s

performance, which can be attributed to the aug-
mentation of adaptability to child data consequent
to the fine-tuning process in Step 1. Besides, as
the training progresses into the stable phase, we
can find that the performance of the child model
under the TSFT framework is consistently higher
than that of TM-TL and ConsistTL. It is notewor-
thy that, similar to TM-TL and ConsistTL, TSFT
does not utilize additional data or resources. Thus,
the performance improvement of the child model
can be attributed to the effectiveness of the pre-fine-
tune process.

5.5 Sentence Representation Visualization

In our framework, the intermediate model is used to
adjust the parent parameters to perform well when
using child source sentences as input (Section 3.2).
Thus, in this section, we visualize the target-side
sentence representations of the De-En parent model
and Hu-En models obtained from different transfer
learning methods. We utilize the T-SNE method
(Hinton and Roweis, 2002) to project the represen-
tations into a 2-dimensional space, as shown in
Figure 5. This figure shows that TM-TL struggles
to align the child representations with the parent
representations. ConsistTL slightly reduces the
discrepancy between the parent and child represen-
tations, whereas the intermediate model from TSFT
makes the representations much more similar. This
observation shows that our fine-tuned intermediate
model can produce similar outputs to the parent
model even with different source languages.

6 Conclusion

In this paper, we propose TSFT: a novel two-
step fine-tuning framework for low-resource NMT.

3221



TSFT incorporates an intermediate (child) model to
pre-fine-tune the parent model to fit the child data.
The intermediate model is initialized with the par-
ent model and then fine-tuned on the child source
data in the first step. We propose freezing partial
decoder layers when fine-tuning the intermediate
model to alleviate catastrophic forgetting. In the
second step, TSFT initializes the child model with
the intermediate model and fine-tunes the child
model on the parallel data using the cross-entropy
and proposed distillation losses. Experimental re-
sults on five low-resource translations demonstrate
the effectiveness of our proposed TSFT.

Limitations

When using our proposed framework, two fine-
tuning steps are necessary to obtain the final child
model. Therefore, compared to one-step transfer
learning methods in NMT, TSFT may require more
training time and computation resources to transfer
parent knowledge to the child model. Nevertheless,
it is important to note that TSFT does not introduce
additional time or computing resource consump-
tion during inference. Besides, TSFT is designed
for transfer learning scenarios when the target lan-
guages of the parent and child models are identical.
We will try transferring different target languages
in the future.
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