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Abstract

Recent advancements in natural language tasks
leverage the emergent In-Context Learning
(ICL) ability of pretrained Large Language
Models (LLMs). ICL enables LLMs to per-
form new tasks by utilizing a limited number
of input-output examples as prompts. While
ICL circumvents the costly step of finetuning
LLMs, its effectiveness is heavily dependent on
the quality and ordering of provided examples
(called exemplars). In this work, we propose
a two-stage data-efficient framework Div-S3
for exemplar selection for ICL. The first stage
focuses on data annotation and employs a pool-
based active learning approach to select a set
of Diverse and informative exemplars from the
target tasks’ unlabeled pool. Given a test in-
put/query, the second stage uses Submodular
Span Summarization (S3) to select the most
relevant and non-redundant exemplars from the
annotated pool of a limited budget. On 7 dif-
ferent NLP datasets and 5 LLMs of varying
complexities, we show Div-S3 outperforms (1)
existing active learning-based methods for data
annotation for ICL and (2) similarity-based
methods for test query-specific exemplars re-
trieval.

1 Introduction

Pretrained large language models (LLMs) (Kenton
and Toutanova, 2019; Brown et al., 2020; Chowd-
hery et al., 2022) have become foundational for
a wide range of Natural Language Processing
(NLP) tasks, demonstrating impressive success
across various domains (Bommasani et al., 2021;
Bubeck et al., 2023) through in-context learning
(ICL) (Dong et al., 2022). ICL enables these
pretrained LLMs to perform new tasks by using
task-specific prompts containing a limited number
of input-output demonstrations (also referred to
as shots, exemplars, or prompts) in the natural lan-
guage format. This approach facilitates deployment
across different downstream tasks and reduces the

need for labeled downstream training data since
ICL does not require any task-specific training.

The typical ICL procedure consists of two
key components: (1) Exemplar annotation and
retrieval (Wu et al., 2022; Köksal et al., 2022; Liu
et al., 2022): This step involves annotating and
retrieving exemplars that serve as context demon-
strations. (2) Prompt template crafting (Sorensen
et al., 2022; Deng et al., 2022): this step involves
designing a prompt template to wrap these
demonstrations in a comprehensible and coherent
natural language instruction.

Recent studies (Liu et al., 2022; Su et al.,
2022; Margatina et al., 2023) show that providing
exemplars most relevant to the current input
instance is beneficial. Moreover, Zhao et al. (2021),
Lu et al. (2022), and Liu et al. (2023) observe that
LLMs attend more to the exemplars that are closer
in the sequence to the input instance. Therefore, to
achieve the best performance of ICL, the selection
of exemplars and their ordering in the LLM prompt
are crucial.

In practice, an extensive collection of unlabeled
exemplars is easily available (e.g., posts and
discussions on forums like Stack Exchange or
user-generated content on social media platforms),
but manually annotating all exemplars would be
exceptionally costly. To annotate and select the
exemplars optimally for a given target task, we
follow the two-stage approach shown in Figure 1:
(1) Exemplar Annotation: select a subset of
exemplars for annotation under a fixed budget (per-
formed only once) and (2) Exemplar Retrieval:
identify limited-sized exemplars in an ordering
that are most influential for a given input instance
from the annotated subset of exemplars. Intuitively,
for the first stage, we aim to find the subset with
maximal diversity and least redundancy so that,
given any input, we can find corresponding labeled
exemplars. For the second stage, in addition to
the diversity requirement similar to the first stage,
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Figure 1: Workflow of our proposed framework for data-efficient In-Context Learning using LLMs. For the first stage, we use
cardinality-constrained submodular optimization to identify diverse exemplars for annotation. For the second stage, given a test
query, we use Submodular Span Summarization to find a diverse set of labeled exemplars that are most relevant to the query.

we emphasize the relevance of the exemplars to
the given input query and order exemplars so that
their relevance to the input query decreases as the
exemplars are farther away from the input instance.

occasionally melodramatic , it 's also extremely effective. (positive)

• darkly funny and frequently insightful. (very positive)
• at once disarmingly straightforward and strikingly devious. (very positive)
• the movie is well crafted , and well executed. (very positive)
• it has plenty of laughs. (positive)
• his work with actors is particularly impressive . (very positive)
• their work is fantastic. (very positive)
• his method almost never fails him , and it works superbly here. (very positive)
• an effortlessly accomplished and richly resonant work. (very positive)

• the whole affair is as predictable as can be. (neutral)
• not too fancy , not too filling , not too fluffy , but definitely tasty and sweet. 

(positive)
• a return to pure disney magic and is enjoyable family fare. (very positive)
• after all , it 'll probably be in video stores by christmas , and it might just be better 

suited to a night in the living room than a night at the movies. (negative)
• this is a more fascinating look at the future than `` bladerunner '' and one of the 

most high-concept sci fi adventures attempted for the screen. (positive)
• far more enjoyable than its predecessor. (very positive)
• this method almost never fails him , and it works superbly here. (very positive)
• darkly funny and frequently insightful. (very postive)

Test Query

Relevance based Exemplar Retrieval (Similar)

Submodular Span Summarization (S3)

Figure 2: A sample test query from the SST-5 dataset with its
corresponding set of exemplars selected using Similar (focus-
ing only on relevance) and S3 (focusing on both relevance and
representativeness) from a limited exemplars pool. Exemplars
are colored based on their class names. We use echo lines to
denote the redundant exemplars chosen by Similar and used
as a part of the input context during ICL.

We propose a framework Div-S3 based on
submodular optimization that unifies the above-
mentioned two stages. For Exemplar Annotation,
we model the problem as a submodular optimiza-
tion problem under a cardinality constraint to find
as Diverse a subset as possible within a budget.
For Exemplar Retrieval, we formalize the problem
as a Submodular Span Summarization (S3) prob-
lem (Kumari and Bilmes, 2021) with a knapsack
constraint, which finds a diverse subset most rele-
vant to the input query under a token length limit.

Also, we naturally order the resulting exemplars
based on the gains represented by the submodular
function. The name of our proposed framework
Div-S3 captures the optimization objectives used
for both exemplar annotation (Div) and exemplar re-
trieval (S3) stages. In Fig. 2, we show a sample test
query where using Div-S3 for exemplar selection
leads to a more diverse and query-relevant exem-
plar set (more examples provided in Appendix D).

Our framework is general, as any submod-
ular function can be plugged into our method.
For models beyond LMs, e.g., for text-image
multi-modality models, we may use pre-existing
submodular functions that are powerful for
expressing diversity in the image domain. In
addition, we account for relevance, diversity, and
ordering for the exemplar retrieval stage, where
one or two aspects typically get overlooked by
previous methods. Empirically, we evaluate
Div-S3 on 7 NLP tasks with 5 LLMs and show
significantly improved performance compared to
baselines. Our contributions are:

1. We propose an end-to-end framework Div-
S3 utilizing submodular optimization for per-
forming data-efficient ICL using LLMs. De-
pending on budget requirements, Div-S3 pro-
vides the flexibility to set the budget either in
terms of the number of exemplars to be used in
the prompt or the LLM’s context window size.

2. We empirically validate the effectiveness
of our framework on 7 different NLP tasks
and show the transferability of results across
LLMs of varying complexities.

3. We thoroughly analyze each component of
Div-S3 by (a) studying S3 in a setting with no
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annotation budget constraint and (b) analyz-
ing the sensitivity of the exemplars selected by
Div-S3 to their position in the LLM’s prompt.

2 Related Work

In this section, we outline recent studies investi-
gating ICL, specifically focusing on works in the
context of exemplar annotation selection and re-
trieval. With the introduction of ICL in the GPT-3
paper (Brown et al., 2020), numerous studies have
emerged trying to understand the mechanics of
ICL (Xie et al., 2021; Min et al., 2022; Chan et al.,
2022; Von Oswald et al., 2023; Wei et al., 2023;
Dai et al., 2023; Han et al., 2023; Li et al., 2023)
and its inherent strengths and limitations (Webson
and Pavlick, 2022; Lu et al., 2023; Jang et al., 2023;
Kung and Peng, 2023; Yin et al., 2023).

A recent work by Min et al. (2022) shows that
ICL fails to learn label relationships from the in-
context exemplars, as its performance diminishes
only slightly when substituting the demonstration
labels with random labels. However, Kossen et al.
(2023) discovers that LLMs indeed utilize the in-
context label information, and label relationships
learned during the pre-training phase have a more
lasting effect than in-context demonstrations. Also,
prior works (Zhao et al., 2021; Liu et al., 2022; Lu
et al., 2022) have demonstrated the sensitivity of
ICL to the choice and order of in-context exemplars
in the final LLM prompt. This has prompted inves-
tigations into determining which samples should
be included in the exemplar pool and how to select
exemplars at test time effectively.

2.1 Active Learning for Exemplar Annotation

Recent works such as Su et al. (2022), Zhang et al.
(2022b), and Köksal et al. (2022) have explored
ICL under a fixed annotation budget. VoteK (Su
et al., 2022) uses a combination of graph-based and
uncertainty sampling-based approaches to select
diverse samples for annotation and relies on the
model’s confidence for the uncertainty sampling.
Furthermore, Zhang et al. (2022b) formulate exem-
plar selection as an iterative decision problem and
propose a reinforcement learning algorithm to train
policies for active exemplar selection.

DataModels proposed in Chang and Jia (2023)
trains a linear regression model to predict the
LLM’s outcome given an exemplar and its posi-
tion in the final prompt. The CondAcc method
proposed in the same work scores each exemplar

by its dev-set ICL performance when combined
with other randomly sampled in-context exemplars.
However, both methods require multiple rounds of
inference using the target LLM and can be pretty
costly in practice. Another recent work (Margatina
et al., 2023) highlights that uncertainty sampling
for selecting annotated exemplars results in inferior
performance. In contrast, similarity-based sam-
pling performs better, albeit with the drawback of
increasing the annotation budget, as each test query
is considered independently.

To find supporting examples for ICL, Li and
Qiu (2023) employs a two-stage framework: (1)
a progressive filtering stage, which extracts infor-
mative examples via a new metric based on LLMs’
feedback, and (2) a diversity-guided beam search
method to select the final supporting examples.

2.2 Exemplar Retrieval

This section primarily covers prior works studying
exemplar retrieval at test time. In ICL methods that
do not involve any fine-tuning, the most explored
exemplar retrieval method relies on a simple cosine
similarity-based ranking (Rubin et al., 2021; Liu
et al., 2022; Su et al., 2022; Margatina et al., 2023;
Wu et al., 2023). However, this approach treats
each exemplar independently and does not capture
their interactions.

Amongst the learning-based methods, Rubin
et al. (2021) trains a lightweight retriever model
using a contrastive learning objective to score each
exemplar independently. CEIL proposed in Ye et al.
(2023) similarly trains a retriever by utilizing a
DPP to score a subset of exemplars. They show
that selecting a set of diverse and non-redundant ex-
emplars is vital for the overall performance of ICL.
However, to learn the DPP retriever, CEIL needs
to create training data by scoring multiple sets of
exemplars formatted in a prompt template using the
inference LLM, thus adding to the computational
costs besides the costs associated with fine-tuning.

3 Notations & Background

We now outline the notations related to in-context
learning using LLMs and provide some back-
ground on submodular functions and optimization.

3.1 Notations related to ICL

ICL as a few-shot learning method (Brown et al.,
2020) enables LLMs to adapt to new tasks by utiliz-
ing only a small number of context demonstration
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examples. Formally, given an LLM fθ parame-
terized by θ, a test query (xtest, ytest), and a set of
k labeled demonstrations Dcontext = {(xi, yi)}ki=1,
the probability of generating the target label ytest
using fθ is formulated as:

p(ytest|c, xtest) = fθ(V(ytest)|c, T (xtest, ·)), (1)

where V(·) is a verbalizer that maps the task
labels y to words V(y) in the LLM’s vocabulary.
T (·) denotes the process of wrapping up the
input using the instruction prompt template. c
is the input context formed by concatenating the
k in-context demonstrations from Dcontext, i.e.,
c = T (x1, y1) ⊕ T (x2, y2) ⊕ . . . ⊕ T (xk, yk)
where ⊕ denotes concatenation.

3.2 Background on Submodularity
Submodular optimization has achieved great
success in many machine learning tasks of finding
diverse subsets, including text, image and video
summarization (Lin and Bilmes, 2011, 2012; Gygli
et al., 2015; Lavania et al., 2021; Kumari and
Bilmes, 2021), feature selection (Liu et al., 2013;
Zheng et al., 2014), curriculum learning (Zhou
and Bilmes, 2018; Zhou et al., 2020), active learn-
ing (Guillory and Bilmes, 2011; Wei et al., 2015),
training data selection (Wei et al., 2014), etc.

Submodular functions (Fujishige, 2005) are
widely recognized to model notions of diversity,
representativeness, and coverage in many applica-
tions (Bilmes, 2022). These functions satisfy the di-
minishing returns property i.e., the incremental ben-
efit of adding a new element decreases as the con-
text size increases. Mathematically, given a ground
set V , the submodular function f : 2V → R must
satisfy f(A∪ {v})− f(A) ≥ f(B ∪ {v})− f(B)
for subsets A ⊆ B ⊆ V and any v ∈ V \ B.
Given a submodular function f that is non-
negative (∀A ⊆ V, f(A) ≥ 0) and monotone
(∀A ⊆ B ⊆ V, f(A) ≤ f(B)), the ground
set V can be summarized via submodular max-
imization under a cardinality constraint, i.e.,
maxA⊆V,|A|≤k f(A). This can be approximated
with a (1− 1

e ) constant factor guarantee using the
greedy algorithm (Nemhauser et al., 1978; Minoux,
1978) described in Appendix A. We assume all
submodular functions discussed in this paper are
non-negative and monotone.

4 Proposed Framework: Div-S3

Div-S3 addresses two essential questions pertinent
to data and label-efficient ICL:

(1) Given an unlabeled pool of target task sam-
ples Xunlabeled, how can we identify the most infor-
mative set of examples Xlabeled to annotate and use
as demonstrations for the target tasks’ queries?

This question focuses on the data and label effi-
ciency aspect of ICL using LLMs. Similar to Mar-
gatina et al. (2023), this stage of “Exemplar Anno-
tation” can be viewed as one iteration of pool-
based active learning, aimed at choosing a set
of the most informative and diverse demonstra-
tions/exemplars for annotation. After augmenting
the samples in Xlabeled with their respective labels,
we denote the resultant labeled set as Dlabeled.

(2) Given a query xtest, how can we select the
most relevant and non-redundant exemplars from
Dlabeled?

This addresses the “Exemplar Retrieval” stage
of ICL, where the goal is to retrieve/select the
most relevant exemplars from an annotated pool
of exemplars given a particular test query.

4.1 Exemplar Annotation
In this stage, we assume access to a large pool of
unlabeled samples denoted by Dunlabeled belonging
to the target task. Unlike the similarity-based ac-
tive learning approach explored in Margatina et al.
(2023), we do not assume access to the full test set
during the exemplar annotation phase. Performing
similarity-based sampling of exemplars for each
test query individually would not be an efficient
use of labeling resources, as the annotation bud-
get could increase linearly with the number of test
queries considered, overlooking the shared infor-
mation among exemplars.

Given Xunlabeled of size n, this stage aims to
select Xlabeled ⊆ Xunlabeled such that |Xlabeled| =
k and k << n. This process is performed
only once and can be viewed as one iteration of
pool-based active learning (Settles, 2011). As
this stage determines the examples utilized as in-
context demonstrations in the second stage, we
aim to curate a set of diverse and representative
samples that can comprehensively cover the target
task space. To achieve this, we utilize a submod-
ular function instantiated on the entire ground set
V = Xunlabeled = {xi}ni=1.

While our framework applies to any submodu-
lar functions, for the experiments in this paper, we
use a popular submodular function called facility
location (Cornuejols et al., 1977; Mirchandani and
Francis, 1990), which is closely related to but more
general than k-medoid clustering. Given a similar-
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ity metric sim(·, ·), the facility location function is
defined as follows:

f(A) =
∑

si∈V
max
sj∈A

sim(si, sj) (2)

To obtain our Dlabeled set, we first use a pre-trained
language model gθ (sentence-BERT (Reimers and
Gurevych, 2019) in this work) to compute text em-
beddings of each sample in the unlabeled pool such
that si in Eq. 2 is gθ(xi) ∀ xi ∈ Xunlabeled. Using
the text embeddings of samples in Xunlabeled, we
compute a similarity matrix using a tuned similar-
ity kernel (further discussed in Sec. C), use it to
instantiate the facility location function, and then
maximize the submodular objective to obtain our fi-
nal set of demonstrations for annotation as follows:

Xlabeled ∈ argmaxA⊆Xunlabeled,|A|≤k f(A) (3)

4.2 Exemplar Retrieval
After obtaining a set Dlabeled of diverse and repre-
sentative annotated exemplars, the next step is to
select exemplars from Dlabeled given a test query
xtest. Previous studies in ICL (Rubin et al., 2021;
Liu et al., 2022; Su et al., 2022; Margatina et al.,
2023) have employed cosine similarity-based rank-
ing to select exemplars that are most similar to the
test query. However, when each example’s rele-
vance (or similarity) to the test query is considered
independently, it may yield relevant but similar
exemplars, carrying redundant information that is
wasteful for inference.

To reduce the redundancy amongst the selected
in-context exemplars, we formalize the exemplar
retrieval stage as a conditional submodular subset
selection problem. We use the same submodular
function utilized in the prior stage for exemplar an-
notation, but unlike the previous stage, which em-
ploys a generic summarization approach as shown
in Eq. 3, this stage focuses on conducting query-
based (or conditional) summarization, aiming to
summarize the labeled set Xlabeled given a query
set containing xtest. When performing ICL using
LLMs, the query xtest is the test input instance.

In this work, we utilize a two-phase method
named Submodular Span Summarization
(S3) (Kumari and Bilmes, 2021) to perform
query-focused summarization of an annotated pool
given a test query. Our objective is to obtain a set
of exemplars that are not only relevant to the test
query but also encompass diverse aspects crucial
for aiding the LLM in the target task.

Phase 1 of S3 targets selecting a relatively large
subset relevant to the query set. Mathematically,
given a ground set V that includes the query set
Q and the data being summarized VQ (where
VQ = V \ Q), and a submodular function f de-
fined on the entire ground set V , the submodular
span optimization problem is defined as follows:

max
A⊆VQ

|A|

s.t. f(A|Q) ≤ ϵ (4)

where ϵ ≥ 0 is a small scalar controlling the de-
sired relevance level. f(A|Q) := f(A∪Q)−f(Q)
denotes the conditional gain of set A given the
query set Q. Low f(A|Q) represents high
conditional redundancy of A given query set Q.
Thus, to optimize Eq. 4, we get a set A with a
low Q-conditioned f -valuation. The dual to this
problem is shown below, where we minimize the
conditional gain f(A|Q) subject to a lower-bound
cardinality constraint:

min
A⊆VQ

f(A|Q)

s.t. |A| ≥ k1 (5)

That is, the above optimization problem is
cardinality-constrained submodular minimiza-
tion, which does not have a constant factor
approximation algorithm (Svitkina and Fleischer,
2011). Similar to Kumari and Bilmes (2021),
we utilize a modular approximation of f(A|Q),
i.e., mQ(A) =

∑
a∈A f(a|Q) to optimize Eq. 5.

Note that mQ(A) ≥ f(A|Q) is an upper bound
of f(A|Q). Theoretical guarantees based on the
curvature of the submodular functions can be
found in Kumari and Bilmes (2021).

For the Exemplar Retrieval stage of ICL, the
data to be summarized VQ is the annotated pool of
exemplars Xlabeled. We denote our solution of S3’s
Phase 1 as AQ, essentially the annotated exemplars
relevant to the input query Q.

Phase 2 of S3 focuses on diverse aspects of
various relevant exemplars, ensuring the final set
of exemplars for ICL is both relevant and non-
redundant. We summarize the S3 Phase 1 resultant
set AQ by performing submodular maximization
subject to a cardinality (or a knapsack) constraint
(Eq. 6). In this paper’s experiments, we use
the same submodular function for the Exemplar
Annotation stage and the two phases of S3 for
the Exemplar retrieval stage. Our framework is
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general, and different submodular functions can
apply if various diversity properties are desirable.

max
A⊆AQ,|A|≤k2

f(A) (6)

Since the final set of exemplars selected will
be used as in-context demonstrations, we can also
apply a knapsack constraint for the constraint asso-
ciated with Eq. 6.

max
A⊆AQ

f(A)

s.t.
∑

a∈A
c(a) ≤ b (7)

The budget b can be set to the difference between
the pre-set context window of the inference LLM
and the token length of the formatted test query.
The cost c(a) denotes the cost associated with
exemplar a that can be set to the token length of the
instruction formatted exemplar a, i.e., T (xa, ya).
Note that the knapsack constraint generalizes the
cardinality constraint: for cardinality constraints,
c(a) is simply 1, and the budget is k2.

To optimize Eq. 7, we use the modified greedy
algorithm presented in Lin and Bilmes (2010) with
a (1− 1/

√
e) constant factor approximation factor

under certain conditions. The modified greedy at
each iteration i selects exemplar si with the largest
ratio of objective conditional gain to the scaled
cost, i.e., si = argmaxs∈AQ

f(Ai−1∪s)−f(Ai−1)
c(s)r if∑

s∈Ai−1∪si c(s) ≤ b.
We provide a detailed analysis of the computa-

tional complexity associated with the two stages of
Div-S3 in Appendix B. Since both stages discussed
in Sec. 4.1 and 4.2 involve certain hyperparameters
such as the similarity kernel, kernel width (in case
of using the RBF kernel), the budget of Phase 1 of
S3 (k1), budget associated with Phase 2 of S3 (k2
when using a cardinality constraint), or the scaling
factor (r when using a knapsack constraint), we
utilize a separate validation set for hyperparameter
tuning(Appendix C). Our approach, thus, needs
minimal supervision and is learning-free as it does
not involve fine-tuning the inference LLM on any
task-specific task.

5 Experiments

To demonstrate the effectiveness of our proposed
framework for exemplar annotation and retrieval
for performing ICL, we conduct experiments over
a diverse set of 7 NLP datasets using a suite of five

different LLMs as in-context learners. Since our
proposed framework Div-S3 does not perform any
task-specific LLM fine-tuning, we only compare
it to existing learning-free ICL methods to ensure
a fair comparison.

5.1 Datasets

We evaluate Div-S3 on the following 7 NLP
datasets, which cover five distinct tasks:

SST-5 (Socher et al., 2013): This dataset in-
volves sentiment classification of movie reviews
into five distinct sentiment categories: very nega-
tive, negative, neutral, positive, and very positive.

SST-2 (Socher et al., 2013): Similar to SST-5,
this dataset also deals with sentiment classification
into positive and negative labels.

RTE (Bentivogli et al., 2009): The Recognizing
Textual Entailment dataset focuses on discerning
textual entailment and belongs to a broader scope
of tasks studied under Natural Language Inference.
Given a pair of sentences, the goal is to determine
whether the premise (also called text) entails (or
implies) the hypothesis.

MRPC (Dolan and Brockett, 2005): This dataset
deals with paraphrase detection task where given
a pair of sentences, the objective is to determine
whether they are semantically equivalent.

TREC (Li and Roth, 2002): This dataset in-
volves a question classification task. In this work,
we focus only on the six coarse labels: Abbrevia-
tion, Entity, Description, Human being, Location,
and Numeric value.

DBpedia (Lehmann et al., 2015): Here, we have
a topic classification dataset constructed by select-
ing 14 non-overlapping classes from the base DB-
pedia 2014. The 14 different classes are as follows:
company, educational institution, artist, athlete, of-
fice holder, means of transportation, building, nat-
ural place, village, animal, plant, album, film, and
written work.

HellaSwag (Zellers et al., 2019): In this
case, we have another NLI dataset studying
grounded commonsense reasoning. It consists
of multiple-choice questions with four answer
choices. Three out of four choices are incorrect
and designed in an adversarial way to deceive
machines without misleading humans.

We provide the prompt templates used for differ-
ent datasets in Appendix E and dataset split statis-
tics in Appendix F.
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Method SST-5 SST-2 RTE TREC MRPC HellaSwag DBPedia Average

Random-Similar 47.18 88.15 57.40 71.00 63.32 66.09 90.22 69.05
VoteK-Similar 44.30 89.19 52.43 71.09 63.91 66.48 89.51 68.13

Div-Similar 45.02 90.48 53.07 77.60 67.89 66.14 90.94 70.16
Div-MixModSub 45.93 90.25 54.87 76.80 67.89 66.18 91.06 70.43

Random-S3 46.73 88.23 58.24 70.80 63.32 66.18 89.49 69.00

Div-S3 (cardinality)* 49.59 91.28 60.65 80.00 68.63 66.32 89.87 72.33
Div-S3 (knapsack)* 49.73 - 59.57 80.60 67.40 66.44 90.69 72.24

Table 1: ICL performance on different NLP datasets using GPT-J-6B as our inference LLM. Here, we compare
Div-S3 against the baselines described in Sec. 5.3. Our proposed methods are marked with an asterisk (*).

Method SST-5 SST2 RTE TREC

Random-Similar 41.01 70.26 53.91 62.60
VoteK-Similar 39.97 64.71 54.17 62.11

Div-S3 (cardinality)* 40.36 77.64 53.79 66.40
Div-S3 (knapsack)* 41.49 - 54.87 68.80

(a) GPT-Neo 2.7B

Method SST-5 SST-2 RTE TREC

Random-Similar 35.78 78.63 48.26 55.00
VoteK-Similar 39.06 80.34 48.70 52.99

Div-S3 (cardinality)* 37.29 82.80 52.71 62.80
Div-S3 (knapsack)* 38.51 - 48.74 65.00

(b) GPT-Neo 1.3 B

Table 2: ICL performance on four candidate datasets using two GPT-Neo models. Our proposed methods are marked
with an asterisk (*).

5.2 Models

We evaluated our proposed framework and com-
pared baseline methods for ICL on five LLMs of
varying complexity belonging to the GPT (Radford
et al., 2019; Brown et al., 2020) and OPT (Zhang
et al., 2022a) families. Specifically, the largest
model that we used as the inference LLM is GPT-J-
6B (Wang and Komatsuzaki, 2021), and from both
GPT-Neo (Black et al., 2021) and OPT families,
we used their respective 2.7B and 1.3B variants.

5.3 Baselines

We compare Div-S3 to the learning-free baselines
listed below. In all listed methods, the first part of
the name preceding the hyphen indicates the strat-
egy used for exemplar annotation (stage 1) while
the later part denotes the strategy used for exemplar
retrieval (stage 2). The second stage method named
“Similar” uses cosine similarity-based ranking to
extract the most relevant exemplars at test time.

Random-Similar: randomly selects exemplars
from the unlabeled pool for annotation and then
uses Similar for exemplar retrieval.

Random-S3: randomly selects exemplars dur-
ing the annotation phase and then uses S3 to select
relevant exmplars during the retrieval phase.

VoteK-Similar (Su et al., 2022): uses graph-
based method named VoteK to select k/10 samples
which are diverse in the feature space used. For se-
lecting the remaining 9k/10 samples, the inference

LLM is used to compute the average log proba-
bility over the generated output to select diverse
exemplars in terms of confidence scores. For the
retrieval stage, Similar is used.

Div-Similar (Cornuejols et al., 1977; Mirchan-
dani and Francis, 1990; Balakrishnan et al., 2022):
maximizes a submodular facility location objective
to select a subset of Diverse and representative
samples for annotation. This strategy differs from
Div-S3 where we use Submodular Span Summa-
rization for exemplar retrieval instead of Similar.

Div-MixModSub: uses a facility location-based
submodular maximization to select Diverse ex-
emplars for annotation. Similar to Kumari and
Bilmes (2021), we consider another baseline
named MixModSub, which uses a mixture of a
submodular function (facility location) and a mod-
ular function (similarity scores) to jointly balance
representativeness and query-relevance in the final
retrieved set.

We report average performance across three
runs for the following baselines: Random-Similar,
Random-S3, and VoteK-Similar. Table 8 in the ap-
pendix presents the standard deviations for these
baselines.

6 Results

We compare Div-S3 to the baselines discussed in
Sec 5.3 in Tables 1, 2, and 3 using GPT-J-6B, GPT-
Neo, and OPT models respectively. We fix the
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Method SST-5 SST2 RTE TREC

Random-Similar 37.29 74.27 51.38 58.27
VoteK-Similar 36.72 73.96 53.52 50.39

Div-S3 (cardinality)* 37.74 79.82 53.43 64.40
Div-S3 (knapsack)* 38.69 - 51.26 65.60

(a) OPT 2.7B

Method SST-5 SST-2 RTE TREC

Random-Similar 32.64 81.69 52.47 63.53
VoteK-Similar 28.52 81.38 52.73 61.07

Div-S3 (cardinality)* 32.08 86.12 53.79 67.60
Div-S3 (knapsack)* 31.54 - 54.87 67.20

(b) OPT 1.3 B

Table 3: ICL performance on four datasets using two OPT models.

Method SST-5 SST-2 RTE TREC

Similar 50.95 89.91 54.15 90.80
S3 (cardinality)* 50.81 91.28 55.96 89.00
S3 (knapsack)* 52.08 - 57.04 90.00

Table 4: ICL performance on four candidate datasets
using GPT-J-6B model in the non-active learning setting
where only Stage 2 focusing on exemplar retrieval is
active.

annotation budget as 100 i.e., |Dlabeled| = 100 for
all tasks and methods. For Div-S3 when using a
knapsack constraint, the budget (in terms of the to-
ken length) is the inference LLM’s pre-set context
window size minus the formatted test query length.
The pre-set context window size is 1,024 for the
models we study in this work.

On the SST-5 and RTE datasets, Div-S3 demon-
strates roughly 3% absolute gain compared to the
baseline models in terms of accuracy. Across all
tasks, we see that Div-Similar is a strong baseline
that outperforms the other two baselines: Random-
Similar and VoteK-Similar. This indicates that se-
lecting a diverse and representative set of exemplars
during the annotation stage is crucial to the overall
performance of ICL. Integrating Div (Stage 1) with
S3 (Stage 2) results in additional improvements,
affirming our hypothesis that the final stage of ex-
emplar retrieval at test time should be treated as a
subset selection problem rather than independently
selecting exemplars using modular similarity-based
values.

When using the smaller LLMs belonging to
the GPT-Neo and OPT families on four candi-
date datasets, we observe that Div-S3 outperforms
other baselines. Notably, across SST-2 and TREC
datasets, it achieves a maximum absolute gain of
approximately 10% in terms of accuracy. This
demonstrates that our proposed framework Div-
S3 exhibits consistent improvements across various
tasks and LLM variants.

6.1 Sensitivity Analysis

Non-Active Learning setting: In this section, we
verify the effectiveness of the S3 method for exem-
plar retrieval in a non-active learning setting where
there are no constraints on the annotation budget.
Here we consider the entire training set as the an-
notated pool of exemplars, meaning |Dlabeled| = n.
This renders the Exemplar Annotation stage redun-
dant. In Table 4 and 5 when using GPT-J-6B and
OPT models resp., we compare S3 (when using
cardinality and knapsack constraints for phase 2
of S3) to Similar. As depicted in Table 4 and 5,
S3 consistently outperforms the modular selection
method Similar, reinforcing our hypothesis of ap-
proaching exemplar retrieval as a subset selection
problem.

Order Sensitivity: Prior works such as Zhao
et al. (2021) and Lu et al. (2022) have shown
that ICL’s performance is extremely sensitive to
the ordering of the exemplars in the input prompt
with performances varying between random-guess
levels to fine-tuning based state-of-the-art levels. In
this section, our goal is to demonstrate how Div-S3
is less sensitive to the ordering of the retrieved
exemplars in the LLM’s input prompt. To do this,
we fix the strategy used during the exemplar anno-
tation stage as Div and select exemplars from the
annotated pool of exemplars using three different
methods: Random, Similar, and S3. Given m
selected exemplars, there are overall m possible
order permutations. Scoring all m orderings by
making inference calls to the LLM would be
computationally challenging, so we randomly
sample 50 different orderings and score those
across different Stage 2 methods. In Figure 3, we
demonstrate the performance variation correspond-
ing to these random orderings on three candidate
datasets, and it can be seen that Div-S3 achieves
better average accuracy while being less sensitive
to the order of the exemplars compared to other
baselines due to its ability to balance relevance and
diversity during the exemplar retrieval stage.
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Method SST-5 SST2 RTE TREC

Similar 45.25 83.94 48.01 79.60
S3 (cardinality)* 44.34 85.78 53.07 80.80
S3 (knapsack)* 45.97 - 50.18 80.80

(a) OPT 2.7B

Method SST-5 SST-2 RTE TREC

Similar 36.06 87.50 51.99 77.60
S3 (cardinality)* 37.92 88.30 53.07 78.20
S3 (knapsack)* 38.55 - 51.26 79.00

(b) OPT 1.3 B

Table 5: ICL performance on four candidate datasets using two OPT models in the non-active learning setting where
only Stage 2 focusing on exemplar retrieval is active. Our proposed methods are marked with an asterisk (*).

(a) SST-5 dataset (b) RTE dataset (c) MRPC dataset

Figure 3: Sensitivity analysis of the set of exemplars retrieved by different Exemplar Retrieval methods to their ordering in the
LLM’s input prompt. The first stage of Exemplar annotation is identical in all four methods studied. When using Random as the
second stage method, we report the sensitivity results for two different random seeds.

7 Conclusion

We propose Div-S3, which unites the two stages of
exemplar selection using submodular optimization.
For the Exemplar Annotation stage, we select a
diverse subset of exemplars for annotation under
a fixed budget utilizing submodular maximization
under a cardinality constraint. For the Exemplar
Retrieval stage, we utilize a Submodular Span
Summarization approach that finds diverse
annotated exemplars that are most relevant to the
test instance. Compared to previous methods on
the exemplar selection task, Div-S3 models both
diversity and relevance for the second stage, and
incorporates the rich class of submodular functions.
On multiple NLP tasks and using various LLMs,
Div-S3 shows consistent improvements. Div-S3 is
also more robust to the ordering of the exemplars
empirically as we account for diversity in the
exemplar retrieval stage.

8 Ethical Discussion

As a method to facilitate ICL, Div-S3 is prone to
unethical exemplars and harmful annotations. With
unethical exemplars collected in the initial unla-
beled pool of exemplars, Div-S3 could select some
of them for annotation and use them as context
for inference, which may result in unethical gen-
erations from the LLM. Moreover, we assume the
annotation process is trustworthy, but if biases are
present in the labels, the resulting selection process

and the inference results could still contain biases.
We will research solving the potential ethical issues
in future work.

9 Limitations & Future Work

In this study, the largest inference LLM that we use
for ICL has 6B parameters. It would be interest-
ing to see how the performance of Div-S3 transfers
to more heavyweight LLMs such as LLaMA-13B,
70B (Touvron et al., 2023), PaLM (Chowdhery
et al., 2022), GPT-3.5, 4 (Brown et al., 2020; Ope-
nAI, 2023), etc. The submodular function used
during both stages of Div-S3 is a facility location
function. Since our framework is general, one can
plug in any submodular function such as graph cut
function, feature-based submodular function, etc.
Defining a mixture of submodular functions to con-
trol more fine-grained aspects of relevance along
with diversity could be an interesting research di-
rection.
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A Maximizing monotone submodular
functions

In this section, we provide the outline of the greedy
algorithm (Nemhauser et al., 1978) used for maxi-
mizing monotone submodular functions subject to
a cardinality constraint (Eqs. 3 and 6).

Algorithm 1 Greedy Submodular Maximization
(Nemhauser et al., 1978)

1: Input: Polymatroid function f : 2V → R,
cardinality constraint k

2: Output: Set A ⊆ V maximizing f(A) under
cardinality constraint k

3: Initialize an empty set A← ∅
4: for j = 1 to k do
5: e← argmaxv∈V \A(f(A ∪ {v})− f(A))
6: A← A ∪ {e}
7: end for
8: return S

B Complexity Analysis

Exemplar Annotation To select the set of exem-
plars to label, we are required to maximize the facil-
ity location function using greedy selection. This
step requires 1) constructing a pairwise similarity
matrix and 2) applying greedy selection. Given
|Xunlabeled| = n and |Xlabeled| = k , constructing
the pairwise similarity matrix requires O(n2) op-
erations while greedy selection requires O(nk),
yielding a final complexity ofO(n2+nk). In prac-
tice, the quadratic cost of computing the similarity
matrix can be reduced by utilizing sparse matrices,
while greedy selection can be sped up significantly
by using a priority queue (Minoux, 1978). The
exemplar annotation cost is incurred only once for
each task.

Exemplar Retrieval At inference time, we re-
trieve exemplars annotated in the first stage that are
relevant to a particular query set by using S3. The
first phase of S3 requires minimizing a modular
function mQ(A), to select k1 query-relevant sam-
ples from a set of k labeled exemplars. Thus, this
phase has a time complexity of O(k + k log k1).

The second phase of S3 summarizes the k1 sam-
ples down to a diverse set of k2 samples by maxi-
mizing a facility location function subject to a knap-
sack constraint. Similar to the process of examplar
annotation, this phase also requires constructing
a pairwise similarity matrix (O(k21), though this

painful to watch , but viewers willing to take a chance will be rewarded with two of the year 's 
most accomplished and riveting film performances (negative)

• easily one of the best and most exciting movies of the year. (very positive)
• one of the greatest films I've ever seen. (very positive)
• demonstrates the unusual power of thoughtful , subjective filmmaking. (very positive)
• a well-crafted film that is all the more remarkable because it achieves its emotional power and 

moments of revelation with restraint and a delicate ambiguity. (positive)
• enjoyably fast-moving , hard-hitting documentary. (very positive)
• unfortunately , the experience of actually watching the movie is less compelling than the 

circumstances of its making. (very negative)
• the actors are fantastic.  (very positive)
• the movie is well crafted , and well executed.  (very positive)

• a well-crafted film that is all the more remarkable because it achieves its emotional power and 
moments of revelation with restraint and a delicate ambiguity. (positive)

• one of the greatest films I’ve ever seen. (very positive)
• enjoyably fast-moving , hard-hitting documentary. (very positive)
• a gangster movie with the capacity to surprise. (positive)
• this method almost never fails him , and it works superbly here. (very positive)
• his work with actors is particularly impressive. (very positive)
• with a spy kids sequel opening next week , why bother with a contemptible imitator starring a 

snl has-been acting like an 8-year-old channeling roberto benigni? (negative)
• not that any of us should be complaining when a film clocks in around 90 minutes these days , 

but the plotting here leaves a lot to be desired. (negative)

Test Query

Relevance based Exemplar Retrieval (Similar)

Submodular Span Summarization (S3)

Figure 4: Another sample test query from the SST-5 dataset
with its corresponding set of exemplars selected using Similar
and S3 from a limited exemplars pool. Exemplars are colored
based on their class names. We use echo lines to denote the
redundant exemplars chosen by Similar and used as a part of
the input context during ICL.

can simply be reused from the exemplar annotation
phase as we do not alter the similarity metric. Thus,
the complexity of this phase is O(k1k2) which is
incurred by performing greedy selection.

In our experiments, we focus on the low-data
regime and set the annotation budget, i.e., k, as
100 in the active-learning setting. As can be seen
in Sec. C, k1 is often less than 30, making the
entire process utilizing S3 for exemplar retrieval
very efficient and significantly faster than the LLM
inference call by several orders of magnitude.

C Hyperparameter tuning & Compute
resources

Div-S3 involves a set of hyperparameters listed at
the end of Sec. 4.1. To tune these hyperparam-
eters, we use the validation set of each dataset.
In case the validation set is unavailable, we ran-
domly select 10% of samples from the training set
while using the remaining 90% as the unlabeled
pool of exemplars. Specifically, for the similarity
metric needed to instantiate the facility location
function, we compare the following kernels: co-
sine similarity with negative entries truncated to
zero, modified cosine similarity adding a constant
1 to each entry, and RBF kernel with kernel widths
σ ∈ {0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}. While the
hyperparameter search space for the kernel is quite
broad, we prune the set of candidate kernels by in-
specting the gains of the submodular function when
performing greedy maximization as shown in Fig-
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a working class `` us vs. them '' opera that leaves no heartstring untugged and no 
liberal cause unplundered. (great)

• a depressing story that throws a bunch of hot-button items in the viewer 's face 
and asks to be seen as hip , winking social commentary. (terrible)

• a powerful and telling story that examines (great)
• an interesting slice of history. (great)
• a riveting documentary. (great)
• of enthralling drama (great)
• with a lighthearted glow , some impudent snickers , and a glorious dose of 

humankind 's liberating ability (great)
• a heartfelt story (great)
• is a discreet moan of despair about entrapment in the maze of modern life 

(terrible)

• a powerful and telling story that examines (great)
• a wonderful ensemble cast (great)
• easily one of the best and most exciting movies of the year (great)
• appears to have been made by people to whom the idea of narrative logic or 

cohesion is an entirely foreign concept (terrible)
• offers copious hints along the way -- myriad signs , if you will -- that beneath the 

familiar , funny surface is a far bigger , far more meaningful story than one in which 
little green men come to earth for harvesting purposes. (great)

• aims to present an unflinching look at one man 's downfall , brought about by his 
lack of self-awareness (great)

• makes it worth watching (great)
• a love affair (great)

Test Query

Relevance based Exemplar Retrieval (Similar)

Submodular Span Summarization (S3)

Figure 5: A sample test query from the SST-2 dataset with
its corresponding set of exemplars selected using Similar and
S3 from a limited exemplars pool. Exemplars are colored
based on their class names. We use echo lines to denote the
redundant exemplars chosen by Similar and used as a part of
the input context during ICL.

ure 6. Specifically, if a kernel configuration results
in the gains diminishing prematurely, then samples
chosen towards the later stages of the optimiza-
tion procedure may be selected randomly. Pruning
such kernel configurations is relatively inexpensive,
since we do not need to run the end-to-end pipeline
to assess their utilities on the downstream task.

The annotation budget (k) for stage 1 is set as
100 for each task and across all LLMs studied. The
budget for phase 2 of S3 (k2) when using a cardi-
nality constraint is roughly determined based on
the average number of exemplars l that are selected
by Similar method on each task. We search for
k2 by using neighboring values of l. To tune the
budget (k1) associated with phase 1 of Stage 2, we
search over k1 ∈ {15, 20, 25, 30, 35, 40, 45, 50}.
For the scaling factor r when optimizing Phase
2 under a knapsack constraint, we search over
r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
Next, we list the best-found hyperparameters for
each task in the given format (similarity kernel,
k1, r): SST-5 - (1+cosine, 40, 0.1), RTE - (1+co-
sine, 30, 0.1), MRPC - (RBF kernel with width 2.0,
15, 0.1), SST-2 - (RBF kernel with width 5.0, 30, -),
TREC - (1+cosine, 30, 0.1), DBPedia - (1+cosine,
25, 0.4), HellaSwag - (1+cosine, 25, 0.1)

For all experiments, we use an A100 80GB GPU.

Figure 6: Plot displaying the Submodular Gains on the SST-
5 dataset for different similarity kernel configurations. All
kernels that use the RBF configuration with kernel width less
than 1.0 result in gains that saturate (approach 0) prematurely.
Such configurations are not useful for the exemplar annotation
task, so they can be discarded by inspection.

D Sample examples of exemplars selected
by Div-S3

In this section, we present qualitative results in the
form of exemplars obtained by the following Stage
2 strategies: Similar and S3, demonstrating the
effectiveness of optimizing for both diversity and
query relevance when retrieving exemplars for ICL.
Figure 4 shows exemplars retrieved for a particular
test query belonging to the SST-5 dataset (Socher
et al., 2013). Figure 5 shows exemplars retrieved
for a particular test query belonging to the SST-2
dataset (Socher et al., 2013).

Dataset Size of train set Size of validation set Size of test set

SST-5 8544 1101 2210
SST-2 67349 872 -
RTE 2490 277 -

MRPC 3668 408 -
TREC 5452 - 500

DBPedia 560000 - 70000
HellaSwag 39905 10042 -

Table 6: Datasets Statistics

E Prompt template

For the majority of tasks, we use the same prompt
templates as Su et al. (2022). In Table 7, we provide
the template used for each task explored in this
work.

F Dataset Statistics

In Table 6, we provide dataset statistics of 7
datasets described in Sec. 5.1 in terms of the size
of the train/validation/test splits.
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Dataset Prompt Template Class names (Verbalizer)

SST-5 How do you feel about the following sentence? <X>
answer:

very negative, negative, neutral, posi-
tive, very positive

SST-2 <X> It was terrible, great

RTE <X>
question: <Y>. True or False?
answer:

true, false

MRPC Are the following two sentences ’equivalent’ or ’not equivalent’?
<X>
<Y>
answer:

not equivalent, equivalent

TREC Categories: Description, Entity, Abbreviation, Human, Numeric, Location
What category best describes: <X>
Answer:

description, entity, abbreviation,
human, numeric, location

DBpedia title: <X>; content: <Y> company, educational institution, artist, athlete,
office holder, mean of transportation, building, natural place,
village, animal, plant, album, film, written work

HellaSwag The topic is <X>. <Y> <Z> 4 answer choices provided

Table 7: Templates of different tasks. Text marked in blue denotes the manual instruction template. Depending on
the task, placeholders <X>, <Y>, and <Z> will be replaced by their available components.

Method SST-5 SST-2 RTE TREC MRPC HellaSwag DBPedia

Random-Similar 47.181.94 88.150.62 57.401.56 71.003.05 63.321.68 66.090.15 90.221.12
VoteK-Similar 44.303.14 89.193.80 52.433.65 71.090.84 63.913.83 66.482.64 89.512.40

Div-Similar 45.02 90.48 53.07 77.60 67.89 66.14 90.94
Div-MixModSub 45.93 90.25 54.87 76.80 67.89 66.18 91.06

Random-S3 46.730.70 88.231.67 58.243.36 70.801.83 63.322.62 66.180.29 89.490.59

Div-S3 (cardinality)* 49.59 91.28 60.65 80.00 68.63 66.32 89.87
Div-S3 (knapsack)* 49.73 - 59.57 80.60 67.40 66.44 90.69

Table 8: ICL performance on different NLP datasets using GPT-J-6B as our inference LLM. Here, we compare
Div-S3 against the baselines described in Sec. 5.3. Our proposed methods are marked with an asterisk (*). The
subscripts represent the standard deviation corresponding to baselines repeated using three random seeds.
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