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Abstract

We introduce PAELLA, a Parameter-Efficient
Lightweight Language-Agnostic image cap-
tioning model designed to be both parameter
and data-efficient using retrieval augmentation.
The model is trained by learning a small map-
ping network with 34M parameters between a
pre-trained visual model and a multilingual lan-
guage model that is conditioned on two types
of input: (i) the image itself, and (ii) a set of re-
trieved captions in the target language. The
retrieved examples play a key role in guid-
ing the model to generate captions across lan-
guages. Through retrieval, the model can be
lightweight in terms of the number of trainable
parameters, which only exist in its mapping
network, and also in the amount of multilingual
training data that is required. Experiments on
the XM3600 dataset, featuring 36 languages,
show that PAELLA can outperform or com-
pete against some models with 3–77× more
learned parameters and 35–863× more data,
particularly in low-resource languages. We
also find that PAELLA can be trained on only
monolingual data and still show strong zero-
shot abilities in other languages.1

1 Introduction

We tackle the problem of multilingual image cap-
tioning, aiming to provide textual descriptions of
visual contents that can serve speakers of different
languages, in contrast to most captioning models
that only generate English captions. While sig-
nificant progress has been made in recent years,
training image captioning models has become more
expensive due to the trend of scaling both data and
model size (Hu et al., 2022; Wang et al., 2022).
This trend is even more prominent in multilin-
gual approaches (Chen et al., 2023b; Thapliyal
et al., 2022), given the need for training data cov-
ering each target language, and the need of even

1Code and model available at https://github.com/
RitaRamo/paella.

larger models to mitigate the curse of multilingual-
ity (Conneau et al., 2020; Goyal et al., 2021).

Some recent research has focused on minimiz-
ing the cost of multilingual training, such as PALI-
3 (Chen et al., 2023a) with 5B trainable parameters,
and mBLIP (Geigle et al., 2023) with only 124M
trainable parameters. Both these approaches use
pre-trained multimodal language models or pre-
trained visual encoders that are kept frozen, reduc-
ing the number of trainable parameters. Neverthe-
less, both of these models still rely on training with
millions or billions of examples, including in the
context of image captioning alone.

This paper describes a Parameter-Efficient
Lightweight Language-Agnostic captioning model
(PAELLA). The model is designed to be efficient,
not only in terms of the number of trainable pa-
rameters, but also lightweight in the amount of
multilingual training data required. PAELLA has
only 34 million trained parameters, and the model
can be trained using just 566K examples, i.e., the
size of the English COCO dataset.

PAELLA is based on frozen pre-trained models
that are augmented with retrieved examples. The
only learned parameters are in a compact mapping
network of cross-attention layers between a frozen
CLIP image encoder and a frozen XGLM multi-
lingual language model. The model is trained to
generate captions in the desired language using a
prompt in that language. Furthermore, the retrieved
examples assist the model in generating meaning-
ful captions, by providing examples of what the
predicted caption should resemble. The use of re-
trieved examples positively contributes to reducing
both the number of trainable parameters, and the
required amount of multilingual data.

We conduct experiments on XM3600 (Thapliyal
et al., 2022), an established multilingual caption-
ing benchmark that covers geographically diverse
images with human-annotated captions in 36 lan-
guages. Experiments show that PAELLA can out-
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perform or compete with models that are more
demanding in terms of trained parameters or train-
ing data. The performance of our model in low-
resource languages is particularly noteworthy, in
contrast to concurrent models like mBLIP, that of-
ten excel in English and related languages but strug-
gle to generalize effectively to underrepresented
languages.

Results also show that PAELLA demonstrates
zero-shot multilingual capabilities when trained
only with monolingual data such as the English
COCO dataset. PAELLA achieves language trans-
fer through retrieval, solemnly by retrieving cap-
tions in the target language during inference. Abla-
tion studies further demonstrate the benefit of our
retrieval-augmented approach.

2 Related Work

2.1 Image Captioning

In the last years, image captioning has wit-
nessed impressive performance improvements
through end-to-end Vision-and-Language Pre-
training (VLP), considering the use of large-scale
models and large image-text datasets in English
(Wang et al., 2021; Hu et al., 2022; Li et al., 2022).

In an effort to alleviate the increasing computa-
tion costs, recent studies have adopted off-the-shelf
pre-trained encoder and decoder models that re-
main frozen during training (Mokady et al., 2021;
Luo et al., 2022; Ramos et al., 2023b; Mañas et al.,
2023). For instance, several studies have used CLIP
(Radford et al., 2021) as the visual encoder, and
GPT-2 (Radford et al., 2019) as the language de-
coder, keeping one or both of the models frozen
during training, and instead learning a mapping
network to align the two modalities. Having the
models frozen speeds up training and reduces GPU
memory usage (Mokady et al., 2021). Besides re-
ducing computational costs, this is also a means
to seamlessly integrate powerful unimodal models
(Tsimpoukelli et al., 2021; Alayrac et al., 2022; Li
et al., 2023; Dai et al., 2023), including large-scale
pre-trained (Brown et al.; Zhang et al., 2022; Tou-
vron et al., 2023) and instruction tuned language
models (Wei et al., 2021; Chung et al., 2022; Taori
et al., 2023), which would otherwise be impractical
with end-to-end training, and could result in the
loss of generalization from catastrophic forgetting
(McCloskey and Cohen, 1989).

In the realm of multilingual image captioning, in-
stead of expensive end-to-end training from scratch

(Thapliyal et al., 2022; Yang et al., 2020), recent
models have also opted for frozen pre-trained vi-
sual encoders and/or language decoders. Examples
include mBLIP (Geigle et al., 2023) or PALI-3
(Chen et al., 2023a). In contrast to these studies,
we use a frozen pre-trained encoder and a frozen
language model, that are augmented with retrieved
examples to further reduce the number for train-
able parameters, as well as the need for extensive
multilingual training data.

2.2 Retrieval Augmention

Retrieval-augmented language generation condi-
tions the generation process by enhancing the input
with information retrieved from an external data-
store (Lewis et al., 2020). Retrieval augmented
models have gained increased popularly (Khandel-
wal et al., 2020; Izacard et al., 2022; Shi et al.,
2023; Yu et al., 2023), including in image caption-
ing (Zhao et al., 2020; Xu et al., 2019; Ramos et al.,
2021; Sarto et al., 2022; Ramos et al., 2023b; Yang
et al., 2023).

The work that more closely resembles ours is
SmallCap (Ramos et al., 2023b), a lightweight
English captioning model that uses pre-trained
encoder and decoder models, and that also uses
prompting with retrieved captions. In this paper,
we explore how retrieval augmentation can help
to reduce not just the number of trainable param-
eters but also the amount of training data. An-
other key difference between the approaches is that
PAELLA is based on a pre-trained multilingual
language model instead of a monolingual English
model. We explore how the prompt and retrieved
captions should be designed to enable generation
across different languages, instead of only English.

We note that retrieval augmentation remains
largely unexplored in the multilingual image cap-
tioning scenario. Until now, only the multilingual
LMCap (Ramos et al., 2023a) model has used re-
trieval augmentation, but solely in a training-free
manner based on prompting a multilingual lan-
guage model in an image-blind approach. In our
work, we instead show the potential of retrieval
augmentation in contributing to the training of a
multilingual image captioning model.

3 Proposed Approach

The Parameter-Efficient Lightweight Language-
Agnostic (PAELLA) captioning model uses re-
trieval augmentation to generate captions in multi-
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Figure 1: PAELLA uses a frozen pre-trained image encoder and a frozen multilingual decoder, connected with
a trainable mapping network. The decoder generates a multilingual caption conditioned on the encoded image,
together with retrieved captions given as input within a prompt in the desired language.

ple languages. An overview of the model architec-
ture can be seen in Figure 1.

We follow a similar design to the monolingual
SMALLCAP model (Ramos et al., 2023b), by
building on top of powerful pre-trained unimodal
models. We also use CLIP (Radford et al., 2021)
as the visual encoder, but instead of GPT-2
or OPT as the decoder, we use a multilingual
auto-regressive language model, i.e. XGLM (Lin
et al., 2021). Both the encoder and the decoder
are kept frozen during training, except for a newly
added mapping network of cross-attention layers,
that allows the decoder to attend to the visual
inputs. PAELLA generates captions conditioned
on the image and on a set of k retrieved captions2

from similar images. The retrieved captions
are used to prompt the model to generate in the
desired target language. The prompt follows a
fixed-template which first includes examples of the
k retrieved captions and ends with an instruction
for the multilingual decoder to generate a caption
in a desired language. The English prompt is:

Similar images show [retrieved caption1]
... [retrieved captionk]. A caption I
can generate to describe this image in
[language] is: ...

The prompt and captions can be tailored to dif-
ferent languages, by having both these parts in
the desired language (see some examples of the
prompts for other languages in Appendix A).

The parameters in the mapping network θM are
trained by minimizing the sum of the negative log-
likelihood of predicting the ground truth image

2See Section 4 for details on the retrieval system.

caption for each token in the sequence y1 . . . yM ,
conditioned on the image V and the retrieval-
augmented prompt L:

LθM = −
M∑

i=1

logPθ(yi|y<i,V,L). (1)

We quantitatively show in Section 5 that our
retrieval-augmented approach has these properties:

Parameter-efficiency: Only the cross-attention
layers between a frozen encoder and a frozen de-
coder need to be trained. To compensate for the
small number of trainable parameters, the model is
guided with examples of retrieved captions.

Data-efficiency: Through retrieval, the model
does not need a huge amount of multilingual data
for training, since it benefits from retrieved exam-
ples that demonstrate how to generate in the target
language. We thus alleviate the data hunger of ex-
isting multilingual models, that are often trained
with the same image associated to captions in multi-
ple languages, having to repeatedly translate entire
English captioning datasets for each language (e.g.,
COCO to COCO-35L (Thapliyal et al., 2022)).

Zero-shot Multilinguality: Our model demon-
strates multilingual capabilities even when trained
only on monolingual image captioning data. It can
be trained on the specific in-domain distribution
from the available data in a high-resource language,
and still generate in different languages. This by
relying exclusively, at inference time, on retrieval
augmentation in the target language from an avail-
able multilingual captioning dataset.
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4 Experimental Setup

4.1 Implementation and Training Details

We release our code and model at https://
github.com/RitaRamo/paella. PAELLA is im-
plemented using the HuggingFace Transformers
library (Wolf et al., 2020). The backbone of the
model is based on the pre-trained CLIP model
openai/clip-vit-base-patch32, and the pre-
trained XGLM facebook/xglm-2.9B.

The input image V is encoded by the CLIP en-
coder, and the language-based prompt L, which
includes the k retrieved captions, is processed by
XGLM to generate a caption in the target language.

Encoder: CLIP is a powerful multimodal
model that was pre-trained to encode images
and text into a shared embedding space, using
contrastive learning (Radford et al., 2021). We
use CLIP-ViT-B/32 to encode the input image,
producing a sequence of N=50 visual features
V={v1, ..., vN}, each with an embedding size of
768 dimensions. This encoder has 86M million
parameters, which are kept frozen during training.

Decoder: XGLM is a multilingual autoregres-
sive language model that can generate in a di-
verse set of 30 languages3 (Lin et al., 2021). In
PAELLA, we use the variant with 2.9B parame-
ters, which are frozen during training.

Retrieval: CLIP is also used for image-text
retrieval. Specifically, it is used to encode both
the candidate captions into a datastore, and each
given input image. For each given image, the k
nearest captions are retrieved from the caption data-
store. The datastore is indexed efficiently through
the FAISS library (Johnson et al., 2017), specif-
ically with the IndexFlatIP index that does not
require any training, allowing for offline retrieval.
The images are also encoded with CLIP, using the
visual backbone, to retrieve the captions that are
most similar based on cosine similarity. We se-
lect the top k = 4 retrieved captions, in-line with
previous findings which indicate that this is the op-
timal number of captions in both monolingual and
multilingual setups (Ramos et al., 2023a,b).

Mapping Network: The only part of
PAELLA that is trained is the mapping network
between the frozen encoder and decoder. The

3en, ru, zh, de, es, fr, ja, it, pt, el, ko, fi, id, tr, ar, vi, th, bg,
ca, hi, et, bn, ta, ur, sw, te, eu, my, ht, qu.

mapping network consists of randomly initialized
cross-attention layers (Vaswani et al., 2017) added
to each of the 48 layers of XLGM, so the decoder
can attend to the encoder outputs. In order to
have a smaller number of trainable parameters, we
use low rank cross-attention layers by reducing
the original dimensionality d of the projection
matrices from 128 to 8, as in Ramos et al. (2023b).
Accordingly, this amounts to only 34M trainable
parameters (see Appendix G). These parameters
are trained by predicting the tokens in the target
caption, as shown in Equation 1.

Training Requirements: PAELLA is trained
for 3 epochs with an initial learning rate of 1e-4, us-
ing the AdamW optimizer (Kingma and Ba, 2014)
and a batch size of 16 with 4 gradient accumulation
steps, on a single NVIDIA RTX A6000 GPU. In
an effort to promote accessibility, our model can be
trained in a day on a single GPU, unlike other mul-
tilingual image captioning models. With the CLIP-
ViT-B/32 encoder and the XGLM-2.9B decoder,
PAELLA takes 23h for training the 34M train-
able parameters, occupying 46G RAM. If using
instead XGLM-1.7B, it takes 14h and 29G RAM.
For XGLM-564M, it only takes 7h and 19G RAM4.
Moreover, we exclusively use publicly available
datasets, as described next.

4.2 Data

We now describe the data used in our experiments,
covering the benchmark we evaluate our model on
and its training data, as well as the dataset used for
the retrieval datastore.

Evaluation Data: We assess the performance of
our model on the well-established XM3600 dataset
(Thapliyal et al., 2022), that covers geographically-
diverse images from 36 languages (L36), including
the core set of languages defined by Thapliyal et al.
(2022): en, es, hi and zh (LCORE), and a set of low-
resource languages (L5): bn, quz, mi, sw, te. Each
language is represented by 100 images from Open
Images, chosen based on the area the language is
spoken. In total, XM3600 has 3600 images with
261375 human-annotated captions. Each image
has at least 2 captions/language.

Most human-annotated captioning datasets are
predominantly on English. Following Thapliyal
et al. (2022), we extend the evaluation to include
the COCO-35L dataset (Thapliyal et al., 2022),

4See the performance with these models in Appendix D.
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which is automatically translated from the original
English COCO dataset (Chen et al., 2015). COCO-
35L has 5000 images for validation, and 113k im-
ages for training, each with 5 reference captions
per language. The translations were obtained with
the Google Translate API5, covering all the 36 lan-
guages in XM3600, with the exception of Cusco
Quechua (quz), not supported by the API.

Training Data: Given the scarcity of multilin-
gual human-annotated captions, multilingual mod-
els typically resort to training on machine translated
data. The standard approach (Thapliyal et al., 2022)
involves training on the aforementioned COCO-
35L dataset, which contains 566K training cap-
tions translated into 35 languages, resulting in a
dataset with 20.3M captions. Existing multilingual
models (Thapliyal et al., 2022; Geigle et al., 2023;
Chen et al., 2023b) also benefit from large-scale
pre-training, using datasets such as the machine
translated CC3M-35L (Thapliyal et al., 2022), built
from the CC3M dataset (Sharma et al., 2018),
which contains 3M image-caption pairs for training,
amounting to 105M translations.

In contrast, we only train on a subset of COCO-
35L, which is downsampled to match the size of
the original English COCO dataset (i.e., 565K ex-
amples instead of 20.3M examples). The subset is
created by sampling captions from the COCO-35L
dataset according to a uniform distribution across
languages, using the same language for the 5 cap-
tions associated to each image. The exploration of
other sampling strategies is left for future work.

Retrieval Data: The datastore of our model con-
tains the training captions of the COCO dataset
using the Karpathy splits (Karpathy and Fei-Fei,
2015). The English captions are indexed with their
corresponding IDs. In this way, we apply image–
text search based on CLIP-ViT-bigG-146 by retriev-
ing, for each image, the k = 4 caption IDs from
the nearest-neighbor images7. Given the retrieved
caption IDs, we can readily integrate either the cor-
responding English captions from COCO, or use
the associated translations from any of the other
35 languages, by cross-referencing the IDs with
COCO-35L depending on the target language.

We emphasize that our retrieval system is mono-
lingual. The datastore only contains the English

5https://cloud.google.com/translate
6See Appendix B for a discussion on the design choice of

using this specific encoder for the retrieval component.
7We do not retrieve captions of the input image itself.

COCO captions, without demanding the scale of
the entire COCO-35L dataset. We only use COCO-
35L for cross-referencing the retrieved IDs to ob-
tain the captions in the language that we desire.

4.3 Evaluation Metrics

Following previous work, we mostly evaluate
multilingual captioning performance with CIDEr
(Vedantam et al., 2015). CIDEr calculates the
agreement between the generated caption and the
consensus of the reference captions, computed
through a similarity function that uses Term Fre-
quency times Inverse Document Frequency (TF-
IDF) weights. In contrast to previous multilingual
captioning studies that solely report the CIDEr
metric as per Thapliyal et al. (2022), our work
extends the evaluation scope to a diverse set of
captioning metrics, specifically BLEU-1, BLEU-
4, ROGUE, and METEOR (see Appendix C). We
used the COCO evaluation package8 with Sacre-
BLEU tokenization (Post, 2018) to compute the
metrics. During evaluation, captions are generated
by our model using beam search decoding with a
beam size of 3.

4.4 Model Variants

We evaluate PAELLA alongside two additional
variants, each trained on a more limited set of lan-
guages in order to assess the cross-lingual transfer
abilities of our approach. Model selection is based
on maximizing the average CIDEr across the LCORE

languages in the COCO-35 validation dataset. Here
we detail the model variants we compare.

PAELLA: This is our main model, trained to
generate for the 35 languages in COCO-35L. In
this case, we sampled uniformly from COCO-35L
to ensure the scale of the COCO English dataset.

PAELLAcore: This model is trained to generate
for LCORE, i.e. the core set of 4 languages proposed
in the XM3600 dataset (en, es, hi and zh). We also
sample uniformly from COCO-35L to maintain a
scale consistent with the COCO English dataset,
but within this restricted language set LCORE.

PAELLAmono: This model is trained to generate
only on English. In this case, we use the original
COCO English dataset.

8https://github.com/tylin/coco-caption

3553

https://cloud.google.com/translate
https://github.com/tylin/coco-caption


5 Results

We first compare PAELLA against state-of-the-
art models. We then discuss the performance of
our other two variants trained on a smaller set of
languages, i.e., PAELLAcore and PAELLAmono.

5.1 Parameter- and Data-efficient Training
Table 1 shows that PAELLA performs competi-
tively against state-of-the-art multilingual models,
despite training with a fraction of their trainable
parameters and with considerably less data. With
just 34M trainable parameters and only 566K train-
ing instances, PAELLA achieves a CIDEr score of
26.2 on average across all the 36 languages, and a
CIDEr of 28.2 across the languages on which the
XGLM backbone was pre-trained. Also, our model
is able to yield 20.7 CIDEr points across the set of
low-resource languages L5 (bn, quz, mi, sw, te)9.

PAELLA surpasses Lg (Thapliyal et al., 2022),
i.e. a fully-supervised model trained with 2.6 bil-
lion parameters in the entire COCO-35L dataset
(86x more trainable parameters, and 35x more train-
ing examples), largely outperforming across the set
of core languages and on average. PAELLA is
also competitive against BB+CC, another model
from Thapliyal et al. (2022) that is pre-trained on
135M examples in the combination of CC3M-35L
and COCO-35L. Although PAELLA does not out-
perform BB+CC on average, it reaches better per-
formance in 3/4 of the core languages, notewor-
thy considering their model was trained with 238x
more data than our model.

PAELLA also competes with multilingual mod-
els that were trained on diverse multimodal data
from different vision-and-language tasks, such as
mBLIP (Geigle et al., 2023). Akin to our model,
mBLIP leverages a pre-trained multilingual lan-
guage model with an effort on computational and
data efficiency. Our model surpasses these efforts
by having significantly fewer parameters and oper-
ating on considerably less data (e.g., in the context
of captioning data, mBLIP trains on machine trans-
lations of COCO alongside a diverse set of 2.3
million examples from the synthetic Web CapFilt
dataset (Li et al., 2022)). PAELLA outperforms
mBLIP BLOOMZ-7B by 2.8 CIDEr points on aver-
age, and has less 2.1 points than mBLIP mT0-XL.
The mBLIP mT0-XL model demonstrates strong
performance on English, yielding 80.2 CIDEr, yet
we see a large gap in low-resource languages, with

9See Appendix I for the performance on all languages.

13.4 CIDEr points while our model achieves 20.7
points. In Section 6.1, we discuss more extensively
the performance across languages.

Similarly to other multilingual captioning mod-
els, PAELLA performs significantly worse than
the large-scale 17B parameter PaLI model (Chen
et al., 2023b) that is trained on 12 billion exam-
ples using the private WebLI dataset. The same
holds for the recent PALI-3 (Chen et al., 2023a),
which makes efforts towards a more efficient model,
but still trains billions of parameters on billions of
multilingual data. This is still notably costly and
impractical for many applications. From a research
perspective, our model can be trained in a single
day in consumer hardware with a public dataset.

Lastly, we see a 15.2 CIDEr points improvement
compared to LMCap (Ramos et al., 2023a), which
is a few-shot retrieval-augmented approach that has
no training. With minimal multilingual training,
our model further closes the gap towards large-
scale multilingual captioning models.

Overall, the results on XM3600 demonstrate the
efficacy of our approach for efficient multilingual
captioning, contributing to the reduction of both
trainable parameters and data requirements. For
a more comprehensive evaluation, we also report
results on COCO-35L in Table 2, where we ob-
serve again that our model can outperform the fully-
supervised models of Thapliyal et al. (2022). See
qualitative examples in Appendix H.

5.2 Zero-shot Cross-lingual Transfer

In Table 1, we observe that PAELLAcore (trained
on en,es,hi,zh) and PAELLAmono (trained only on
en) have strong zero-shot performance in other lan-
guages, showing that our approach does not require
captioning data for each of the languages during
training. The generation can be conditioned on
a different language beyond the training set, by
providing the prompt and retrieved captions in the
desired output language, solely at inference time.

We further observe that PAELLA is outper-
formed by PAELLAmono on English, and by
PAELLAcore on English and Spanish. This can be
partially explained by the fact that PAELLA was
pre-trained on a uniform sample of all 35 lan-
guages in COCO-35L, while these variants were
pre-trained on a uniform sample of only those lan-
guages, i.e. with more English captions. Both the
Core and Mono variants, on the other hand, are
less able to generate captions for languages out-
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Model Data Train θ Total θ en es hi zh L5 L36

Training-free

LMCap - 0 2.9B 45.2 32.9 13.2 22.1 0.0 11.0

Large-scale Training

PALI 12B 17B 17B 98.1 - 31.3 36.5 - 53.6
PALI-3 12B 5B 5B 94.5 - - - - 46.1
mBLIP mT0-XL 489M 124M 4.9B 80.2 62.6 16.1 14.7 7.9 28.3
mBLIP BLOOMZ-7B 489M 124M 8.3B 76.4 60.0 24.9 14.7 6.7 23.4
BB+CC 135M 0.8B 0.8B 58.4 42.5 19.7 20.2 22.4 28.5
Lg 19.8M 2.6B 2.6B 34.3 22.0 11.1 9.9 12.5 15.0

Data & Parameter-efficient Training

PAELLA 566K35L 34M 3B 57.3 44.9 20.8 25.9 20.7 26.2 (28.2⋆)
PAELLAcore 566Ken,es,hi,zh 34M 3B 58.2 45.0 20.4 25.4 11.8 16.8 (24.9⋆)
PAELLAmono 566Ken 34M 3B 58.2 42.2 17.1 23.5 12.1 15.5 (23.9⋆)

Table 1: CIDEr performance on XM3600, a multilingual benchmark with geographically-diverse images across
36 languages. We compare our model, PAELLA, and its two variants, PAELLAcore (trained on en,es,hi,zh) and
PAELLAmono (trained only on en) against other state-of-the-art multilingual models. L5 represents the average
performance across the set of low-resource languages (bn, quz, mi, sw, te), and L36 over all the 36 languages. (⋆)
corresponds to the average across the languages on which the XGLM decoder was pre-trained. We highlight in bold
that our model has the lowest number of trainable parameters and requires the least amount of training data.

Model en es hi zh

BB+CC 98.0 96.2 75.9 74.8
Lg 87.5 85.9 62.4 65.6

PAELLA 113.6 113.9 86.2 123.3
PAELLAcore 118.5 120.3 94.7 130.7
PAELLAmono 120.8 91.48 45.9 59.1

Table 2: CIDEr scores on COCO-35L validation data.
The fully-supervised models from Thapliyal et al. (2022)
are shown on top, with our model variants at the bottom.

side those in the XGLM pre-training data, result-
ing in an average decrease of 9.4 and 10.7 points
of CIDEr across all 36 languages, compared to
PAELLA, respectively. Despite this limitation,
we emphasize the performance of PAELLAmono,
that achieved a 15.5 CIDEr score on average, es-
pecially considering its training was exclusively
on English. PAELLAmono even outperforms Lg
across the set of 4 core languages and on average,
even though this model had end-to-end large-scale
training across the various languages with the com-
plete COCO-35L dataset.

Our approach’s capability for zero-shot cross-
lingual transfer holds particular importance with
the predominance of English-centric captioning
datasets. We note we did not use multilingual in-

domain data in the retrieval datastore. The retrieved
captions from COCO-35L have a different distribu-
tion than the XM3600 benchmark, that contains ge-
ographically diverse images and concepts. We also
stress that the entire prompt (including the retrieved
captions) needs to be in the target language for this
zero-shot cross-lingual ability to emerge. Other-
wise the PAELLAmono model defaults to English,
as a result of having been exclusively exposed to
this language and thus having a strong tendency to
generate in English.

6 Discussion

We discuss PAELLA’s performance across lan-
guages in relation to the different writing sys-
tems. We then conduct ablations studies, first
discussing the monolingual data required to train
PAELLAmono, followed by the importance of the
retrieved information. These ablation studies were
performed on the validation split of COCO-35L
because XM3600 only contains evaluation data.

6.1 Writing Systems

In Figure 2, we observe the performance of
PAELLA across the diverse writing systems of
the 36 languages, alongside the mBLIP mT0-XL
model for comparison. mBLIP has a notable per-
formance on English and languages that share the
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Figure 2: Performance by writing system. Horizontal lines denote corresponding English performance.

Latin script writing system. This specialization
results in poor performance for some writing sys-
tems, for instance Persian and Korean. In contrast,
our model demonstrates a more balanced perfor-
mance across the various writing systems beyond
the high-resource Latin script, achieving a better
performance on the Arabic, Bengali, Cyrilic, De-
veganari, Greek, simplified Chienese, Korean, Per-
sian, and Tegulu writing systems.

6.2 Monolingual Supervision

We previously saw that our multilingual caption-
ing model could also be trained on monolin-
gual data (see Section 5.2). We now discuss
whether PAELLAmono works when trained with
languages other than English. As seen in Table 3,
PAELLAmono exhibits zero-shot multilingual ca-
pabilities with the other 3 core languages as well.
Surprisingly, training on Spanish yields better gen-
eralization to the other core languages compared to
training on English. When trained on Chinese, on
the other hand, the model loses its ability to gener-
ate captions in Hindi. Additionally, we investigated
the model’s behavior when trained with a language
falling outside the pre-training of the XGLM de-
coder, such as Danish. Here, the model is able to
generate captions in Danish, yet we see the inter-
esting behaviour that this breaks the generalization
to other languages.

6.3 Retrieval as PAELLA’s Key Ingredient

We now study the importance of augmenting with
retrieved examples, the key component of our ap-
proach. We start by ablating the retrieval compo-
nent, by training without including the retrieved
captions in the prompt.10 As seen in Figure 3, the
performance drops 24 CIDEr on average across

10The prompt only includes the last part: A caption I can
generate to describe this image in [language] is.

English Spanish Hindi Chinese
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Figure 3: Ablation results on the COCO-35L validation
data, reported with CIDEr metric. We ablate the re-
trieval (NoRAG) and the visual encoder (image-blind).

Model en es hi zh da

PAELLAen 120.8 91.5 45.9 59.1 2.7
PAELLAes 93.3 125.3 52.6 95.3 2.9
PAELLAhi 70.4 68.1 99.3 80.9 0.1
PAELLAzh 65.0 49.9 1.4 130.6 0.4

PAELLAda 5.1 1.2 2.8 4.1 107.5

Table 3: CIDEr results for the mono variants on the
COCO-35L validation data. We denote in subscript and
in bold the language each variant was trained on.

the 4 core languages without retrieval (noRAG),
compared to PAELLA. We also ablate the visual
encoder by training on empty input images,11 and
we see again a loss of performance (i.e., 13.4
CIDEr over the 4 languages), confirming that
PAELLA does indeed attend to the image and not
merely rephrases the retrieved captions. Moreover,
we observe that the NoRAG model performs worse
than the image-blind approach with retrieved cap-
tions, reinforcing the benefit of training multilin-

11Setting the visual features from the encoder to zero.
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gual image captioning with retrieval-augmentation.
In Appendix F, we additionally discuss results for
PAELLAmono, where retrieval is shown to be cru-
cial to generate captions in languages that substan-
tially diverge from the English supervision. We
also discuss the importance of having the retrieved
captions in the target language, in Appendix H.

7 Conclusions and Future Work

We proposed PAELLA, an efficient multilin-
gual captioning model with retrieval-augmentation.
Contrary to previous studies, PAELLA is
lightweight to train, both in the number of parame-
ters and multilingual data demands. Results demon-
strate competitiveness across languages, including
low-resource languages. PAELLA also exhibits
strong zero-shot multilingual capabilities. In the
future, we plan to further investigate cross-lingual
transfer with monolingual supervision.
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Limitations

While our model aims to contribute to research be-
yond English-centric captioning, it has limitations
in that the results are conditioned on retrieved cap-
tions from machine translated data from COCO,
which is English-centric and lacks coverage of ge-
ographically diverse concepts (Liu et al., 2021).
Previous research has also shown that COCO has
significant gender imbalance, and using this data
can further amplify the bias (Zhao et al., 2017;
Hendricks et al., 2018). For instance, models can
become more prone to generate woman in kitchen
settings than man. For a better understanding of
the biases PAELLA exhibits, we suggest an analy-
sis of the retrieved captions used by the model, as
illustrated in the figures within Appendix H.

Another limitation relates to our models’ cov-
erage of languages and concepts. Expanding the
range of covered languages would be desirable to
accommodate more diverse speakers. Additionally,
our model was evaluated on a limited number of

datasets, similarly to other concurrent models, due
to the scarcity of multilingual resources for assess-
ing image captioning results.

PAELLA was only designed for the task of im-
age captioning. In future work, we would like to
investigate approaches to extend PAELLA to a
range of multilingual multimodal tasks, such as
those covered in IGLUE (Bugliarello et al., 2022).
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A Prompt

To generate captions across different languages, we
customize our prompt and the retrieved captions
to be in the selected language. In Figure 4, we
give examples in Spanish, Hindi, and Chinese,
respectively. The prompts for the other languages
are included in our code.

B Retrieval

Ramos et al. (2023b) has shown in the SmallCap
retrieval-augmented captioning model that CLIP-
ViT-B/32 is suitable as an encoder for text gen-
eration, but when used as a retrieval encoder it
performs poorly. We thus pick the state-of-the-art
version of CLIP, CLIP-ViT-bigG-14, for retrieval.
We refrain from using that larger version in the
model’s encoder too, since that would significantly
slow down training time.

C Standard Evaluation Metrics

For a more comprehensive evaluation, we re-
port the performance of our model with addi-
tional automatic metrics, including BLEU-1 (B-1),
BLEU-4 (B-4) (Papineni et al., 2002), ROGUE-
L (Lin, 2004), and METEOR (Denkowski and
Lavie, 2014). We report these metrics both for
the XM3600 dataset and the COCO-35L validation
split, as seen in Table 4 and Table 5, respectively.

B-1 B-4 ROGUE-L METEOR

en 45.1 10.3 34.6 14.5
es 43.2 7.8 30.1 15.1
hi 29.3 2.7 21.1 21.9
zh 32.1 6.9 24.6 10.9

Table 4: PAELLA performance on the XM3600 dataset,
across different evaluation metrics.

B-1 B-4 ROGUE-L METEOR

en 76.2 33.6 55.9 26.7
es 76.3 35.9 54.5 27.5
hi 74.9 26.5 51.0 33.7
zh 77.2 40.0 56.4 28.8

Table 5: PAELLA performance on the COCO-35L
validation split, across different evaluation metrics.

ऐसी ही तस्वीरें दखाती हैं

[retrieved caption1 in hindi]
…
[retrieved captionk in hindi]

इस छव का हदंी में वणर्णन करने के लए मैं एक कैप्शन तैयार कर सकता 
हंू:

Imágenes similares muestran

[retrieved caption1 in spanish]
…
[retrieved captionk in spanish]

Un título que puedo generar para describir esta imagen 
en español es:

类似图片显示

[retrieved caption1 in chinese]
…
[retrieved captionk in chinese]

我可以生成用中文描述该图像的标题：

Figure 4: Examples of prompts in Spanish, Hindi and
Chinese, respectively, shown from the top.

D Scalability

In Table 6, we see how PAELLA performs with
different XGLM versions in the decoder. The
larger-scale XGLM-2.9B has stronger performance,
which aligns with previous findings regarding the
scaling behaviour of LMs. Notwithstanding, the
XGLM-1.7B and XGLM-564M versions are viable
alternatives, considering that they can be trained in
even less time and occupy less GPU memory. We
also report performance on the validation split of
COCO-35L in Table 7.

XGLM Time RAM en es hi zh

2.9B 23h 46G 57.3 44.9 20.8 25.9
1.7B 14h 29G 55.8 41.0 20.1 24.6
564M 7h 19G 51.7 40.0 18.0 23.8

Table 6: CIDEr results on the XM3600 dataset. We
report performance for different XGLMs used in the
decoder component of PAELLA.

XGLM Time RAM en es hi zh

2.9B 23h 46G 113.6 113.9 86.2 123.3
1.7B 14h 29G 108.7 107.7 82.2 116.6
564M 7h 19G 103.2 103.1 76.6 111.2

Table 7: CIDEr results on the validation set of COCO-
35L, across the different decoders used in PAELLA.
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Figure 5: Ablation results on the COCO-35L dataset,
reported with the CIDEr metric for the mono variant.
We ablate the retrieval (NoRAG) and the visual encoder
(image-blind), and compare with PAELLAmono.

E Monolingual Retrieval

We study the behavior of our model when the re-
trieved captions are provided in English instead
of the target languague, as seen in Table 8. We
can see that our model benefits from having the
retrieved examples in the same language as the tar-
get output language. In this manner, the captions
can guide the process of generating content in the
target language, by providing a reference for what
the predicted caption should resemble.

RAG en es hi zh

Multi 113.6 113.9 86.2 123.3
En 114.1 103.8 76.8 121.3

Table 8: Performance of using either retrieved captions
in the target language (multi) or in English, measured
through CIDEr on the COCO validation set.

F Retrieval Impact on PAELLAmono

Similarly to the findings for PAELLA in Section
6.3, we observe in Fig 5 that retrieval augmentation
plays a key role in PAELLAmono as well. Indeed,
retrieval is especially important for the monolin-
gual variant. This happens because the model relies
even more on the retrived examples to generate cap-
tions in languages that significantly differ from the
English training data, as evidenced by the substan-
tial drop in performance with NoRAG for Hindi
and Chinese. We also see that the image-blind vari-
ant makes PAELLAmono’s performance decline,
demonstrating that our model uses not just the in-
formation from the retrieved captions, but also the

image itself. The image-blind variant has to gen-
erate captions solely with retrieved information,
which proves challenging for Hindi and Chinese.
It can be difficult to figure how to combine and
summarize the information from the four retrieved
captions into a cohesive single output, particularly
for these languages with very distinct characteris-
tics from the English supervision. Conversely, the
model effortlessly uses the retrieved information
for Spanish at inference, achieving better perfor-
mance through straightforward rephrasing. More-
over, the image-blind approach outperforms the
NoRAG model across all four languages, further
emphasizing the importance of conditioning gener-
ation with retrieved examples.

G Cross-attention

Our model has 34M trainable parameters corre-
sponding to the cross-attention layers. Here, we
provide insight into the cross-attention setup, fea-
turing an encoder hidden size of 768, and a decoder
hidden size of 2048, with 16 attention heads and
a stack of 48 layers. We reduce the size of the
cross-attention projection matrices, denoted as d,
from the standard 128 (2048/16) to 8, in order to
achieve parameter efficient training. Consequently,
the total parameter count is calculated as follows:

• Key Weight Matrix size: [768, 8] (i.e.,
enc_d× d)

• Value Weight Matrix size: [768, 8] (i.e.,
enc_d× d)

• Query Weight Matrix size: [2048, 8] (i.e.,
dec_d× d)

• Total parameters for one layer attention with
16 heads: 16× (2× 768× 8 + 2048× 8)

• Dense weight for projection after concatena-
tion of heads: [16× 8, 2048] (h× d× dec_d)

Total number of layers is 48.
Total number of parameters: 48 × (16 × (2 ×

768× 8 + 2048× 8) + 16× 8× 2048) ≈ 34M

H Qualitative Results

In Fig 6, we provide examples of captions gener-
ated by PAELLA, conditioned on both the image
and its retrieved captions, and captions generated
by the variant without retrieval (NoRAG). In the
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类似图片显示:

|| (retrieved captions in spanish)

Un título que puedo generar para describir esta imagen en español 
:

ऐसी ही तवीरें दखाती हैं:

|| (retrieved captions in spanish)

Un título que puedo generar para describir esta imagen en español :

Imágenes similares muestran:

|| (retrieved captions in spanish)

Un título que puedo generar para describir esta imagen en español 

Similar images show:

the owl is perched outside in front of the people
an owl sitting a top a table during the daytime
an owl is sitting on a perch at a camp site
the fuzzy owl is sitting on a tree branch

A caption I can generate to describe this image in 
english is:

en

en: “an owl sitting on top of a tree”

es: “un búho sentado en una rama de un árbol”
(an owl sitting on a tree branch)

hi: “एक उल्लू एक पेड़ की टहनी पर बैठा है”
(an owl is sitting on a tree branch)

zh: “一只 猫头鹰 站在 树上”
(an owl standing in a tree)

en: “a large black and white picture of a bird”

es: “un pájaro posado en la parte superior de un edificio”
(a bird perched on the top of a building)

hi: “एक पेड़ के पास खड़ा एक पक्षी”
(a bird standing near a tree)

zh: “一只 长颈鹿 坐在 树枝 上”
(a giraffe sitting on a branch)

PA
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A
G

类似图片显示:

|| (retrieved captions in spanish)

Un título que puedo generar para describir esta imagen en español 
:

ऐसी ही तवीरें दखाती हैं:

|| (retrieved captions in spanish)

Un título que puedo generar para describir esta imagen en español :

Imágenes similares muestran:

|| (retrieved captions in spanish)

Un título que puedo generar para describir esta imagen en español 

Similar images show:

an open swiss army knife rests on a table
a red swiss army knife on a table
a tiny swiss army knife with the scissors pulled out
the swiss army knife offers many practical options

A caption I can generate to describe this image in 
english is:

en

en: “a red swiss army knife sits on a table”

es: “una navaja suiza está sobre una mesa”
(a swiss army knife is on a table)

hi: “एक िवस सेना चाकू एक मेज पर बैठा है”
(a swiss army knife sitting on a table)

zh: “一把 红色 的 瑞士军刀 放在 桌子 上”
(a red swiss army knife on the table)

en: “a black and white picture of a cell phone”

es: “un par de gafas de sol en una mesa”
( a pair of sunglasses on a table)

hi: “एक लकड़ी की मेज पर बैठा एक लकड़ी का खलौना”
(a wooden toy sitting on a wooden table)

zh: “白色 的 蓝牙 耳机 放在 桌子 上”
(white bluetooth headphones on the table)

Figure 6: Qualitative examples for the captions generated by PAELLA, compared with the results generated with
an ablated model that does not use retrieval augmentation.

first image, our model correctly captures the con-
cept of owl across the different core languages, as
present in the retrieved captions. PAELLA also
demonstrates some robustness to potential misinfor-
mation that can occur in the retrieved captions (e.g.,
the second retrieved caption mentions an owl in a
table). In contrast, the NoRAG variant generates
incorrectly the captions for the 4 languages, strug-
gling with identifying the bird, even misclassifying
it as a giraffe for Chinese. On the second image, we
present a negative example where the retrieved cap-
tions can mislead our model. PAELLA generates
captions mentioning a red Swiss Army knife, likely
influenced by the color present in the retrieved cap-
tions (and partially in the knife itself, although it
is mainly white). Nonetheless, our model success-
fully generates the concept of a Swiss knife, while
the NoRAG variant encounters difficulty by gen-
erating unrelated objects (e.g., either a cell phone,
sunglasses, a toy or headphones for English, Span-

ish, Hindi, and Chinese, respectively).

I Performance Across the 36 Languages

In Table 9, we report XM3600 performance across
all the 36 languages. We show results for our model
and its variants, together with state-of-art multilin-
gual models that have the performance for each
language in the respective publications too.
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Lang. mBLIP mT0-XL BB+CC Lg Mono Core PAELLA

en 80.2 58.4 34.3 58.2 58.2 57.3
ru 27.3 19.4 8.9 21.4 20.9 20.7
zh 13.5 20.2 9.9 23.5 25.4 25.9
de 32.5 22.4 13.0 21.7 22.1 21.5
es 62.6 42.5 22.0 42.2 45.0 44.9
fr 57.6 41.0 21.7 36.1 38.9 40.6
ja 33.2 25.4 14.1 13.0 18.6 21.4
it 45.2 32.1 16.8 29.3 32.5 33.2
pt 53.1 38.0 20.2 38.7 40.0 41.0
el 23.4 19.9 10.1 23.3 21.7 24.6
ko 10.4 28.8 15.2 21.7 21.2 27.2
fi 16.8 17.7 8.9 15.6 16.9 18.1
id 38.5 30.7 16.7 34.0 34.3 31.6
tr 22.6 23.2 12.2 19.0 19.3 21.5
ar 21.1 22.7 10.6 17.3 19.0 21.8
vi 39.2 33.6 18.2 39.3 38.7 38.0
th 41.9 41.8 22.6 20.8 22.1 40.4
hi 16.1 19.7 11.1 17.1 20.4 20.8
bn 11.3 20.0 13.3 18.8 16.5 21.7
sw 11.8 31.9 15.1 23.0 22.8 28.5
te 11.2 19.6 9.9 17.2 15.3 19.9

quz 1.1 0.0 0.0 0.2 0.7 0.8

Languages not in XGLM pre-training data

cs 31.8 31.3 13.9 0.5 0.2 21.6
da 44.2 32.9 19.2 1.0 1.0 27.3
fa 0.0 31.1 15.5 1.5 1.5 24.7
fil 17.7 35.3 18.5 1.7 2.2 26.6
he 18.7 23.0 9.8 0.0 0.0 15.5
hr 5.2 22.4 8.5 0.3 0.2 16.0
hu 21.5 17.5 9.6 0.4 0.1 11.5
mi 4.1 40.5 24.3 1.1 3.6 33.4
nl 55.7 44.1 23.2 1.9 2.5 36.5
no 46.2 38.5 23.0 1.0 1.8 31.0
pl 31.2 23.6 10.8 0.4 0.2 17.9
ro 21.7 18.8 10.0 0.8 1.2 15.3
sv 48.4 37.0 22.5 1.0 2.0 31.6
uk 0.0 18.9 8.1 2.8 2.5 13.3

AVG 28.3 28.5 15.0 15.5 16.8 26.2
AVG⋆ 30.5 27.7 14.7 23.9 24.9 28.2

Table 9: CIDEr results on the XM3600 benchmark across the 36 languages, ordered by the pre-training language
ratio of the XGLM decoder. AVG indicates the average performance across the 36 languages, whereas AVG∗

indicates performance across the languages on which XGLM was pre-trained.
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