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Abstract
The capability of intelligent models to extrapo-
late and comprehend changes in object states is
a crucial yet demanding aspect of AI research,
particularly through the lens of human interac-
tion in real-world settings. This task involves
describing complex visual environments, iden-
tifying active objects, and interpreting their
changes as conveyed through language. Tradi-
tional methods, which isolate object captioning
and state change detection, offer a limited view
of dynamic environments. Moreover, relying
on a small set of symbolic words to represent
changes has restricted the expressiveness of
language. To address these challenges, in this
paper, we introduce the Object State Caption-
ing and State Change Representation (OSCaR)
dataset and benchmark. OSCaR consists of
14,084 annotated video segments with nearly
1,000 unique objects from various egocentric
video collections. It sets a new testbed for
evaluating Multimodal Large Language Mod-
els (MLLMs). Our experiments demonstrate
that while MLLMs show some skill, they lack a
full understanding of object state changes. The
benchmark includes a fine-tuned model that, de-
spite initial capabilities, requires significant im-
provements in accuracy and generalization abil-
ity for effective understanding of these changes.
Our code and dataset are available at https:
//github.com/nguyennm1024/OSCaR.

1 Introduction

The field of Natural Language Processing (NLP)
has evolved beyond mere text interpretation and
generation, advancing into realms where under-
standing and interacting with the physical world
becomes imperative. From studying causal reason-
ing (Gao et al., 2018) to building a world model for
cause-effect prediction (Gao et al., 2016; Alayrac
et al., 2017), researchers have been working on the
problem of causation in the physical world.

In this paper, we investigate the very basic causal
relations between a concrete action and the change
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Figure 1: Surpassing prior models in aligning with
human judgements. Our method achieves near parity
with GPT-4V ratings across helpfulness, accuracy, rea-
soning, and other key metrics.

of the object state caused by this action. For ex-
ample, given an image as shown in Figure 2, we,
as humans, would have no problem understanding
which object is being actively interacted with. Fur-
thermore, given the statement "cutting the bread",
we would naturally imagine what state change may
happen. However, Despite tremendous progress
in knowledge representation, automated reasoning,
and machine learning, artificial agents still lack the
understanding of naive causal relations regarding
the physical world (Gao et al., 2018).

Imagining a scenario where artificial agents col-
laborate with humans in the physical world, they
will need to understand the physical action effect
to reason, learn, and assist humans (Bi et al., 2023).
To empower machines with such capabilities, this
paper introduces a novel benchmark focusing on
understanding object state changes from egocentric
visual inputs, which has the advantage of the lens
of human eyes.

Understanding object state change is not only a
complex task but also practical and foundational
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Question: What does the sequence of 

movements of the pear slice across the cutting 

board indicate about the method of 

preparation?

Question: What does the positioning of the 

pear slice near the edge of the cutting 

board, and the trail it has left, suggest about 

its handling and the preparation process?

Question: Describe state of the pearl in 

detail way.

Question: What details about the pear 

slice's appearance give insight into the 

preparation method and the fruit's natural 

texture?

Answer: A slice of pear rests on a white 
cutting board, its surface a palimpsest of knife 
marks that speak to the act of peeling and 
cutting. The pear's flesh is a creamy white 
with a slightly granular texture, typical of this 
fruit, and it has a subtle sheen, suggesting 
juiciness. The edges where the skin has been 
removed are slightly ragged, revealing the 
methodical but imperfect passage of a blade. 
The pear's shape is irregular, with curves that 
follow the natural form of the fruit, and the 
remnants of the stem cavity indicate it has 
been sliced from top to bottom.

Answer: The same pear slice appears 
slightly shifted from its original position, 
indicating movement. The hand that guides it is 
out of view, but the influence of human touch 
is evident in the changed orientation of the 
slice. It reveals a new angle of the pale flesh, 
and the shadow cast upon the board shifts 
accordingly, altering the visual texture. There's 
a hint of pressure at the bottom of the slice, 
where it might have been held, compressing 
the delicate flesh slightly and bringing out a bit 
more of the pear's inherent moisture on its 
surface.

Answer: The pear slice has been moved 
further, and now it's clear that it's in the 
process of being shifted to the side, likely to 
make room for further cutting or to group it 
with other slices. This movement has exposed 
more of the cutting board, and the pear's trail is 
marked by a faint residue of juice left behind. 
The slice is almost at the edge of the cutting 
board, suggesting the next move could be off 
the board entirely. The light reflects differently 
on the juicy trail than on the drier surface of 
the cutting board, creating a contrast in textures 
and colors.

Answer: Over the sequence of these three 
frames, the pear slice undergoes a subtle but 
telling transformation through human 
intervention. Initially at rest, it is then picked 
up and moved, each action causing a change in 
its position and the way it interacts with its 
environment. The movement is gentle but 
purposeful, and the slight compressions and 
shifts reveal not just the hand's manipulation, 
but also the pear's textural responses to being 
handled. The progression shows a 
choreography of culinary preparation, where 
each slice is moved in turn, suggesting a 
rhythm and method to the task at hand. The 
final frame indicates the continuation of this 
process beyond the captured moment, as the 
slice approaches the edge of the board, ready 
for the next step in its journey from whole fruit 
to ingredient.

Figure 2: OSCaR’s description of state, state change, and illustration of reasoning. State description involves
the characterization of a specific region of interest within the video and the associated activity. State change entails
the description of the evolution of a system over a defined temporal sequence. Furthermore, the analysis of the state
of an object is centered on comprehending and elucidating the mechanisms underlying the object’s evolution.

for many other tasks, such as helping intelligent
agents to understand the environment dynamics
and complete task (Padmakumar et al., 2023; Sarch
et al., 2023; Merullo et al., 2022), tracking the state
of dialog(Le et al., 2022), creating causal graphs
for knowledge representation for complex question
and answering (Ates et al., 2020).

Modeling object state change requires two abili-
ties: 1) scene understanding, which involves pars-
ing the world through an object-centric lens, and 2)
causal-effect understanding, which entails identi-
fying likely actions and their effects by observing
images before, during, and after an action.

Previous research efforts have concentrated
on building symbolic representations to ground
changes and states (Wu et al., 2023; Zellers et al.,
2021; Nagarajan and Grauman, 2018). However,
given the diversity and complexity of objects and
their states, influenced by contextual and temporal
factors, symbolic representation alone falls short.
This paper proposes the use of natural language as a
more expressive and intuitive medium for this task.
This approach not only aligns the understanding
of visual content between humans and AI systems
but also enhances communication between them,
providing a richer context than unimodal models.

Essentially, we form the scene understanding as
an object-centric visual captioning problem. We
can utilize natural language to describe the objects
and any changes that may occur. On the other hand,
the ability to understand the causal effect is formed
as a visual question-answering problem based on
3 images: before, during, and after the action. Our
dataset and experiments exhibit considerable poten-

tial for scalable application across various domains
in future research. While conducting this study,
another research was also conducted to understand
object state change with a different approach (Xue
et al., 2024). That shows the importance and sig-
nificant potential of this research direction.

In summary, our contributions are threefold:

• We introduce a new problem to understand
states and state changes of object through nat-
ural language.

• We present a method to generate good-quality
visual instructions guided by simple annota-
tions, applicable to both images and videos,
advancing future research in visual instruction
tuning. Our pipeline provides a good starting
point for the data collection process.

• Our paper introduces OSCaR, a novel dataset
and a benchmark leveraged by the power of
GPT-4V that contains different tasks for ob-
ject state understanding, including visual cap-
tioning, visual question answering visual dia-
log, and reasoning.

2 Related Works

Object state change: Localizing and recognizing
changes of object states, play a key role in applica-
tions such as procedural planning (Bi et al., 2021),
robotics, and video action understanding (Du et al.,
2023; Zhong et al., 2023; Tang et al., 2023b; Wang
et al., 2023; Song et al.). Recognizing object
state changes necessitates the joint discovery of
states and actions through an understanding of their
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causal relationship, as discussed in prior works
(Alayrac et al., 2017; Liu et al., 2017; Souček
et al., 2022; Naeem et al., 2021). Recently, a self-
supervised method has been proposed to jointly
localize action and state changes temporally from
noisy untrimmed long videos (Souček et al., 2022).
Moreover, (Saini et al., 2023) introduces a novel
benchmark for the generation of object states, yet
their focus is very limited to only the cutting ac-
tion and a small dataset. However, previous stud-
ies often separate scene understanding from object
state change recognition and tend to operate under
a closed-world assumption, which limits their ap-
plicability in real-world scenarios. Our research
aims to bridge the gap between human and ma-
chine perception by integrating egocentric views
and language.

Multimodal Large Language Models: Re-
cent advancements in Large Language Models
(LLMs) (Ouyang et al., 2022; Touvron et al., 2023;
Chiang et al., 2023; Chung et al., 2022) have led to
significant achievements in language understand-
ing and generation. This progress has sparked an
interest in the creation of MLLMs that blend the
advanced linguistic processing of LLMs with ca-
pabilities for multi-modal perception (Zhang et al.,
2023a; Ye et al., 2023; Li et al., 2023a; Gao et al.,
2023; Peng et al., 2023; Tang et al., 2023a). The
core of this research is the fusion of pre-training
visual encoder representations with the input em-
bedding space of LLMs, achieved by pretraining
with datasets that interleave images and text. (Li
et al., 2023c; Zhu et al., 2023a; Liu et al., 2023a).
In this paper, we aim to provide a comprehensive
evaluation of these models, particularly focusing
on their performance in object state change recog-
nition.

3 The OSCaR Dataset

This section outlines our pipeline for creating vi-
sual instructions on object states. We begin with
the process of collecting diverse visual data from
public sources, detailed in section 3.1. Following
this, section 3.2 describes our approach to enhanc-
ing data quality using simple human annotations
across various tasks, facilitating a deeper under-
standing of object states. Our method enables the
generation of detailed captions, visual question an-
swering, and visual dialogue.

3.1 Video Collections

OSCaR is a curated compilation of videos
sourced from two distinct datasets: EPIC-
KITCHENS (Damen et al., 2018) and
Ego4D (Grauman et al., 2021). Acknowl-
edging that changes in object states occur
progressively over time rather than abruptly within
a single frame, we have selectively included
video clips that effectively illustrate these state
transitions. Our selection process ensures that
these videos depict the dynamic changes in object
states and capture moments where the objects
remain stationary for short enough durations. This
approach enabled us to compile a comprehensive
visual dataset encompassing the object’s static and
transitional states.

We initially analyzed the verbs from the origi-
nal videos of the EPIC-KITCHENS dataset to en-
sure that the videos highlighted objects undergoing
state changes. We categorized these verbs into
three groups: change, not sure, and not change.
The change group consists of verbs likely to alter
the state of objects, including actions like Open,
Close, Wash, Cut, and Mix. Conversely, the not
change group encompasses verbs with a minimal
likelihood of inducing state changes, such as Take,
Put, Move, Check, etc. Lastly, the not sure group
includes verbs with ambiguous potential for state
change, covering actions like Shake, Flip, Use, Pull,
and others. After filtering the EPIC-KITCHENS
dataset, we were able to identify 69 verb classes
that consisted of a total of 650 verbs. Using this
verb list, we retrieved all video segments contain-
ing those actions.

Upon analyzing the videos, we discovered that
some objects only appeared in a few times. As a
result, we split the videos into two groups. The
first group comprises videos that focus on objects
that occurred more than ten times, and it will be
used to construct our training and testing set. The
second group includes videos with objects that oc-
curred less than ten times. These objects are rare in
EPIC-KITCHENS and can be used for open-world
evaluation, which will be discussed in section 4.2.
In the first group, we randomly selected 10 to 50
video segments per object, resulting in 7442 with
306 different objects from EPIC-KITCHENS.

We leveraged Ego4D, the largest egocentric
video dataset, selecting video segments tagged with
"object_of_change" to enhance our data’s diver-
sity. This tag highlighted videos showcasing object
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state changes. By gathering these specific videos,
along with details of the objects and their narra-
tions, we informed our data generation and com-
piled relevant statistics. From this dataset, we ex-
tracted 5942 segments featuring 296 unique objects
for our OSCaR project.

3.2 GPT-assisted Data Generation

Caption Generation: Captioning plays an impor-
tant role in visual understanding. Understanding
object states requires detailed and informative cap-
tions to capture the exact state of objects. To
achieve this goal, we generated captions for all
collected videos by leveraging GPT-4V and hu-
man’s weak annotations. This problem requires
two types of annotations, including 1) Start and
end frame ID in videos during the event to make
state changes and 2) A short description of what
happens in the video. The short description can be
a verb representing the action and a noun represent-
ing the object humans interact with (e.g., washing
tray). We designed adaptive prompts to inject this
annotation as context to guide GPT-4V to generate
high-quality captions. We found that GPT-4V of-
ten suffers from ambiguity without this guidance,
and the quality of generated captions is degraded.
With simple human guidance, GPT-4V can reduce
ambiguity and produce better-quality captions.
Multiple-choice QA Generation: The multiple-
choice question is a method of presenting a set of
answers, including incorrect options, to teach ma-
chine learning models how to distinguish between
correct and incorrect answers. This type of ques-
tion can also be used as a form of instruction, where
the question serves as the prompt, and the answer
serves as the response for the models. We created
multiple-choice question and answer sets based on
generated captions.
Conversation Generation: Visual dialog is a com-
plex task requiring understanding of visual content
and conversation context, and faces challenges in
data collection due to its need for natural dialogues
between two people viewing the same content. This
process is time-consuming and resource-intensive,
especially when involving reasoning and explana-
tions. With the growth of machine learning mod-
els, generating visual dialog data is increasingly
vital. We’ve developed a method that uses captions
to create visual conversation data, enhanced by
GPT-4V’s ability to provide explanations, offering
flexible and diverse data. This approach, labeling
input data for images and videos, is cost-effective

and faster than manual methods, generating vast
amounts of training data for future models.

4 OSCaR Benchmarks

4.1 Evaluation with Text Generation Metrics

The dataset we are providing consists of 500 videos
from the Ego4D and EPIC-KITCHENS datasets,
which are specifically designed for benchmarking
purposes. Each video is annotated by four detailed
captions, all of which have undergone rigorous hu-
man verification to ensure the quality and reliability
of this evaluation set. To ensure a comprehensive
and accurate assessment of performance, text gen-
eration metrics such as BLEU, Rouge, LSA, among
others, can be used for evaluation purposes.

4.2 Open-world Object State Understanding

Collecting data for all objects worldwide and then
training models is not feasible. However, humans
can describe new or unfamiliar objects, which
can be challenging for AI, especially when they
are in a new domain or serve a different purpose.
Fortunately, recent achievements in MLLMs have
opened up the potential for AI to have this abil-
ity. During pre-training with large amounts of data,
MLLMs can learn general knowledge about the
world. Besides, models will learn how to perform
tasks during the visual instruction tuning process.
In both processes, the models may or may not have
been exposed to objects not in the object state un-
derstanding training set. The question is whether
models can generalize to objects of this type. To
answer this question, we provide two evaluation
sets to test the generalizability of the models.
Cooking domain objects have not occurred in
the training set for object state understanding:
For this evaluation, we want to investigate the
model’s ability to understand objects that have not
appeared in the training set in a similar scenario
with the training domain. We provided a set of
2,485 videos with 1,024 objects that have not oc-
curred in the object state training set. This test-
ing set will evaluate how in-domain knowledge
can help models understand object states and state
changes. We used GPT-4V to annotate 344 videos
for evaluation purposes.
Out-of-domain objects state understanding:
This evaluation focuses on judging the ability of
models to understand objects beyond the training
domains. Our training set contains only the cook-
ing domain data, while this testing set has diverse
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domains, such as baker, household management,
cleaning/laundry, bike mechanic, etc. This set
was extracted from the Ego4D dataset and con-
tains 43,367 videos with more than 500 objects.
This testing not only can be used for evaluation
but also has the potential to scale up using our
pipeline for object state understanding in other spe-
cific domains. For this evaluation set, we selected
10 videos from each of the 51 different domains,
totaling 356 videos. Domains with fewer than 10
videos have all their videos included. This set is
also annotated by GPT-4V.

4.3 Data Quality Verification

We evaluated the quality of descriptions for object
states and activities across video frames using Ama-
zon MTurk for human feedback. Our assessment
framework included five guidelines for spotting in-
accuracies, focusing on frame-specific description
accuracy, two for assessing state change accuracy,
two for identifying hallucinations, and three for rec-
ognizing incomplete descriptions. Annotators were
asked to categorize each description under one of
four labels: 1) Fully Detailed and Comprehensive,
2) Generally Complete with Minor Omissions, 3)
Lacks Important Details or Contains Errors, or 4)
Incomplete, Misleading, or Hallucinating, and pro-
vide reasoning to discourage random responses.
This study utilized 500 samples from the EPIC-
KITCHENS and Ego4D datasets, leading to the
validation of 2000 natural language descriptions.

5 Data Statistics

In order to help models generate concise and infor-
mative answers, we have defined short answers as
those with less than ten words and long answers
as those with more than ten words. Short answers
provide brevity, while long answers offer detailed
and informative information. The distribution of
these two types of answers can be seen in Figure 3.
The average answer length in the dataset is 47.06
words. Long answers make up about 75% of the
data, with an average length of 63 words, while
short answers account for about 25% of the data,
with an average length of 3.32 words. By splitting
the data accordingly, future models can provide
short, direct, and informative answers with expla-
nations. To showcase the uniqueness of our OSCaR
dataset, we have presented a comparison between
OSCaR and other related datasets in Table 1. The
OSCaR dataset comprises a vast number of instruc-
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Figure 3: Distribution of answer lengths. The fig-
ure shows how answers are distributed by length in the
dataset. It separates short answers (1-9 words) from
long answers (≥ 10 words). The histogram displays
the number of answers on the y-axis based on increas-
ing answer lengths on the x-axis. There is a category
at 100 words for answers with lengths greater than or
equal to 100 words. This breakdown emphasizes the
balance between brief, direct answers and more detailed,
explanatory responses.
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Figure 4: Top 10 open-world domains (excluding
cooking). The figure shows non-cooking domains
present in the open-world test set used to assess model
generalization. By evaluating performance on house-
hold and occupational activities unseen during training,
we benchmark the trained models’ capacity to under-
stand new objects and actions beyond cooking tasks.

tions, along with images and videos. Additionally,
it also provides data for object state captioning and
object state change captioning.

In section 4.2, we discussed two types of open-
world datasets for object state understanding: in-
domain cooking and open domains. Although
we trained on videos with object state changes,
in open-world evaluation, we tested the models
on both types of videos, with and without object
state changes, to ensure their generalizability. The
in-domain evaluation set consists of 2,485 videos
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with 1,024 novel objects extracted from EPIC-
KITCHENS.

We have extracted an open-domain evaluation
set from the Ego4D dataset. The top 10 most
frequent domains in the open-world testing set
are shown in Figure 4. This evaluation set from
51 different domains, contains annotations for do-
main, action, object name, and action narrations
extracted from annotations of Ego4D. The set in-
cludes 43,367 open-world videos for which we
know their domains and 56,231 videos of unknown
domains, but we still have information about their
object names and action narrations. Thus, this set
can be utilized not only for open-world evaluation
but also for the advancement of general domain
object-state understanding in the future when ap-
plying our method to generate labels. This set of
data hasn’t been annotated, but the data we ex-
tracted from Ego4D are ready to use our pipeline
to scale up the data generation.

6 Experiments

In this section, we will discuss the experimental
design we used and how we trained our model.
Our fine-tuning process will be described in Sec-
tion 6.1. Additionally, we included other vision
language models such as BLIP (Li et al., 2023b)
, BLIP2 (Li et al., 2023c), LaViLa (Zhao et al.,
2022), and Video-LLaMA (Zhang et al., 2023b)
for comparison purposes. Firstly, we will evaluate
our model’s performance in the cooking domain in
Section 6.3. After that, we will also evaluate its per-
formance in an open-world setting in Section 6.4.

6.1 Model Training

We conducted extensive experiments to showcase
the effectiveness of our data generation pipeline
in solving object-state understanding problems. A
straightforward approach to solving these types of
problems is using a model with a text encoder to
encode prompts and a visual encoder to encode
visual content. After that, both of these inputs will
be used as conditions to generate text answers with
a text decoder. Ideally, this text decoder will be an
LLM.

We fine-tuned LLaVA, an open-source MLLM
featuring capabilities like visual dialogue,
question-answering (Agrawal et al., 2015), and
OCR (Nguyen et al., 2021, 2024), to achieve our
goals. Notably, the generated data can enhance
any future vision-language models beyond LLaVA.

Fully Detailed and 
Comprehensive

60%Generally Complete 
with Minor 
Omissions

11%

Lacks Important 
Details or Contains 

Errors
15%

Incomplete, 
Misleading, or 
Hallucinating

14%

Figure 5: GPT-4V zero-shot caption quality human
evaluation. The figure shows the distribution of quality
ratings assigned by human annotators evaluating frame
descriptions automatically generated by the GPT-4V
model under zero-shot conditions. Descriptions for 500
video frames were rated.

We experimented with LLaVA using Vicuna 7B
and 13B models under two conditions: with and
without its original visual instruction tuning data,
referring to the former as OSCaR.

For training, we employed Lora fine-tuning with
a configuration of rank 128 and alpha 256, us-
ing Vicuna 13B and 7B models alongside the
OpenAI/CLIP-ViT-Large-Patch14-336 vision en-
coder. A projector transformed visual features into
tokens. Our fine-tuning parameters included a sin-
gle epoch, a learning rate of 2e-4, a batch size of 16
per device, and a maximum model length of 2048.

6.2 Evaluating GPT-4V

Because our pipeline uses GPT-4V as the knowl-
edge model to annotate our data, evaluating GPT-
4V’s ability is crucial. Evaluating GPT-4V’s perfor-
mance has two purposes: 1) Understanding the per-
formance of GPT-4V on this task and 2) Producing
a clean benchmark beyond the ability of GPT-4V
for future research. As discussed in section 4.3, we
ask humans to check data quality and classify qual-
ity into four levels with text explanation. Figure 5
shows the distribution of data quality from 500
videos sampled from the dataset for benchmarking.

6.3 Evaluation on Cooking Domain Objects

Text Generation Metrics Evaluation: The table 2
in this document displays the results of two text
generation metrics, BLEU and ROUGE. As per the
table, LaViLa and BLIP1 models have scored very
low, whereas BLIP2, Video-LLaMA, and LLaVA
models, which are currently the most advanced
models, have achieved significant improvements.
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Table 1: Comparison of OSCaR dataset versus other related datasets. OSC and OSCC represented for Object State
Captioning and Object State Change Captioning, respectively.

Dataset Video #Clip #Instruction OSC OSCC

MiniGPT-4 (Zhu et al., 2023b) ✗ ✗ 5K ✗ ✗

Shikra-RD (Chen et al., 2023) ✗ ✗ 5.9K ✗ ✗

LLaVA (Liu et al., 2023b) ✗ ✗ 345K ✗ ✗

VideoChat (Li et al., 2023d) ✓ 11K 20.8K ✗ ✗

OSCaR ✓ 18K 400K ✓ ✓

Table 2: Performance comparison based on BLEU and ROUGE scores. OSCaR is LLaVA fine-tuned with
OSCaR data, mixed data is a combination of LLaVA data and OSCaR data.

Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

LaViLa (Zhao et al., 2022) 0.006 3.3 0.26 3.27
BLIP1 (Li et al., 2022) 0.008 1.38 0.08 1.35
BLIP2 (Li et al., 2023c) 0.1 11.53 2.12 10.51
Video-LLaMA (Zhang et al., 2023b) 1.0 17.75 2.69 16.02
LLaVA v1.5 13B (Liu et al., 2023b) 3.72 27.09 6.59 24.01
LLaVA v1.5 7B (Liu et al., 2023b) 3.23 25.37 6.22 22.60

OSCaR 13B (OSCaR data only) (Ours) 5.28 27.93 7.67 24.45
OSCaR 7B (OSCaR data only) (Ours) 5.1 28.27 7.42 24.77
OSCaR 13B (Mixed data) (Ours) 5.76 29.26 8.24 25.78
OSCaR 7B (Mixed data) (Ours) 5.79 29.94 8.34 26.24

Our proposal has surpassed every previous state-of-
the-art model by a large margin on these metrics.
GPT4 Evaluation: The experimental results of
evaluating LLaVA, OSCaR, and GPT-4V captions
on five criteria using GPT-4V are shown in Table 4.
According to the metric used, OSCaR performs
significantly better than LLaVA. Additionally, OS-
CaR achieved 88.19%, 87.01%, 90.81%, 89.21%,
and 97.94% in accuracy, helpfulness, detail level,
reasoning, and overall, respectively, compared to
GPT-4V. On average, OSCaR is 90% as good as
GPT-4V. The visualization can be seen at Figure 1.
Human Study: In our study to assess caption
quality from various models, seven evaluators re-
viewed five videos with four captions each (three
for frames, one for state changes), provided by
seven models. Each caption had seven different op-
tions generated by seven different models. Evalua-
tors could select up to two options per caption that
they think are the best. Figure 6 shows the results
of this experiment. We calculated the percentage
of times each model was selected and found that
OSCaR achieved 73.93%, which was only 8.57%
lower than GPT-4V. OSCaR significantly outper-
formed LLaVA by more than two times. These re-
sults demonstrate that OSCaR is a promising model
for generating high-quality captions.

6.4 Open-world Objects Evaluation

Evaluating the performance of machine learning
models solely based on objects seen during train-
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Figure 6: Human study results. The figure shows the
percentage that each model was selected by participants
as producing favorable descriptions in a human rating
study.

ing isn’t enough. To more thoroughly test their
effectiveness, we also evaluated them on objects
not included in the training set, representing the
open world. In this part of our study, we compare
the quality of text produced by our model and GPT-
4V for these open-world objects, using BLEU and
ROUGE scores as our metrics.

In-domain Objects Evaluation: The evaluation
results on objects in the cooking domain that were
not included in the instruction fine-tuning data
are presented in Table 3. When compared with
the results in Table 2, the overall performance is
better when testing with in-domain open-world
objects. One of the reasons for this is that the
evaluation set in Table 2 was corrected by humans,
while the data used in Table 3 was generated
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Table 3: Open-world performance comparison based on BLEU and ROUGE scores. OSCaR is LLaVA fine-
tuned with OSCaR data, mixed data is a combination of LLaVA data and OSCaR data.

Open World Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

In Domain

OSCaR 13B (OSCaR data only) 5.86 28.64 8.43 24.91
OSCaR 7B (OSCaR data only) 5.73 29.10 8.38 25.47
OSCaR 13B (Mixed data) 6.19 29.36 8.74 25.69
OSCaR 7B (Mixed data) 6.13 30.00 8.95 26.25

Out of Domain

OSCaR 13B (OSCaR data only) 5.32 27.20 7.62 23.67
OSCaR 7B (OSCaR data only) 5.18 27.07 7.50 23.65
OSCaR 13B (Mixed data) 5.24 26.18 7.36 23.09
OSCaR 7B (Mixed data) 5.69 28.99 8.29 25.38

Table 4: Evaluation scores using GPT-4V under differ-
ent criterion are listed in the table.

Criteria LLaVA OSCaR GPT-4V

Accuracy 53.60 82.93 94.04
Helpfulness51.63 80.78 92.83
Reasoning 53.64 79.20 87.22
Detail 40.56 87.30 89.14
Overall 51.96 80.92 90.72

from GPT-4V. Nevertheless, the outcomes of this
experiment indicate the generalizability of models
when dealing with new objects.
Objects Beyond Cooking Domain: Table 3
presents the open-world evaluation for various
domains. The dataset employed in this experiment
is discussed in section 4.2, which comprises 356
videos from 51 distinct domains. Compared to
the experiment in table 2, the outcomes of this
experiment are generally lower. Specifically, for
LLaVA 7B with mixed data, this experiment
shows a decline of 0.1, 0.95, 0.05, and 0.85 on
BLEU, ROUGE-1, ROUGE-2, and ROUGE-L,
respectively. This decline indicates two things:
1) the open domain is challenging and may
require domain-specific data for fine-tuning to
achieve better performance, and 2) even in the
absence of new domain data, the decrease in
performance is not too significant, and showing
the generalizability of our model.

6.5 Ablation Study
Our research also examined the accuracy of video
frame annotations in the EPIC-KITCHENS and
Ego4D datasets. We used Amazon Mechanical
Turk annotators to evaluate 500 video data points
for the precision and completeness of descriptions,
categorizing them into four classes. In addition, we
analyzed 100 samples from each setting of zero-
shot and two-shot to determine the best strategy for
scaling up data annotation. Our findings indicate

that zero-shot is the more effective approach for
annotating our task’s data.

Our findings, detailed in Table 5, compare zero-
shot and two-shot performance in aligning descrip-
tions with human standards of accuracy and rele-
vance, as derived from video frame analyses. This
table illustrates how well the GPT-4V model’s nat-
ural language descriptions, evaluated by Amazon
Mechanical Turk annotators in zero and two-shot
scenarios, match human judgment. The percent-
ages indicate the extent to which these descriptions
accurately and relevantly depict the video content,
based on a frame-by-frame review. Each descrip-
tion was judged for its thoroughness and relevance
in detailing the object and its activities. Annotators
followed established guidelines to determine the
quality of data in their assessments.

The results reveal a notable disparity in descrip-
tion quality between the zero-shot and two-shot
methods. The zero-shot approach yielded a higher
proportion of Fully Detailed and Comprehensive
descriptions, while the two-shots method indicated
a greater occurrence of descriptions with errors
or misleading content. This variation highlights
the differences in data quality and annotator per-
ceptions under varying evaluation conditions, un-
derscoring the importance of method selection in
annotation studies.

Table 5: The table lists the distribution of Amazon Me-
chanical Turk annotators’ choices of descriptions of
objects and object state changes in 0 and two-shot tests
by the GPT-4V model in %.

Satisfaction Class Zero-shot Two-shots

Fully Detailed 56.25 33.25
Minor Mistakes 16.75 28.25
Lacks Important Details 13.25 23.00
Hallucinating 13.75 15.50

In Table 6, we present the results of our exper-
iment where we evaluate various models in open-
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Table 6: Performance comparison based on BLEU and ROUGE scores in different domains. The table
compares various models with open-world benchmarks.

Domain Method BLEU ROUGE-1 ROUGE-2 ROUGE-L

Cooking Domain

LLaVA (Liu et al., 2023b) 2.56 23.77 5.64 21.08
BLIP1 (Li et al., 2022) 4.33× 10−5 0.75 0.026 0.73
BLIP2 (Li et al., 2023c) 0.043 8.2 1 7.4
LaViLa (Zhao et al., 2022) 4.34× 10−5 3.09 0.27 3.07

Other Domains

LLaVA (Liu et al., 2023b) 2.88 23.96 5.85 21.26
BLIP1 (Li et al., 2022) 7.39× 10−5 1.15 0.077 1.13
BLIP2 (Li et al., 2023c) 0.028 9.04 1.05 8.2
LaViLa (Zhao et al., 2022) 6.95× 10−5 3.1 0.29 3.07

world benchmarks, including the cooking domain
and other domains. We have observed that the
performance of other baselines has generally de-
creased in open-world benchmarks. These results
demonstrate the importance of building models that
can be generalized in the world. However, captur-
ing the state of objects while dealing with diverse
objects and domains is still a major challenge.

7 Conclusion

This paper presents a new task for comprehending
the state of objects and their changes using natu-
ral language. We also propose a data generation
pipeline that utilizes the capabilities of GPT-4V to
tackle this task. Furthermore, we introduce OSCaR,
a dataset that includes training data and a bench-
mark with various protocols. Our comprehensive
experiments not only demonstrate the superiority
of our methods in comparison to previous state-of-
the-art open-source solutions but also examine the
limitations of GPT-4V in addressing this challenge.

8 Limitations

This study explores a new research problem that
focuses on understanding the states of objects. Al-
though it has provided valuable insights, some lim-
itations and areas still require further investigation,
as outlined below.
Lack of audio integration: A limitation of this
work is the lack of audio data, which could be
useful in scenarios where sound is essential for
indicating changes or properties of objects.
Challenges in long-term state transition track-
ing: Tracking changes in object state over extended
periods is challenging because many current mod-
els, especially foundation models and models based
on LLMs, do not yet have the ability to capture
long-term information. This limitation highlights
the difficulty in understanding complex, long-term
transitions in object states, which is critical to com-

prehending object dynamics in various environ-
ments.
Reliance on GPT-4V’s imperfect outputs: Al-
though GPT-4V has shown strength in generating
data for this research problem, its outputs are imper-
fect. This limitation highlights the need for strate-
gies to efficiently learn from and improve upon the
imperfect data provided by GPT-4V.
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