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Abstract

This study investigates the consequences of
training language models on synthetic data gen-
erated by their predecessors, an increasingly
prevalent practice given the prominence of pow-
erful generative models. Diverging from the
usual emphasis on performance metrics, we
focus on the impact of this training method-
ology on linguistic diversity, especially when
conducted recursively over time. To assess this,
we adapt and develop a set of novel metrics
targeting lexical, syntactic, and semantic di-
versity, applying them in recursive finetuning
experiments across various natural language
generation tasks in English. Our findings re-
veal a consistent decrease in the diversity of the
model outputs through successive iterations, es-
pecially remarkable for tasks demanding high
levels of creativity. This trend underscores
the potential risks of training language mod-
els on synthetic text, particularly concerning
the preservation of linguistic richness. Our
study highlights the need for careful consid-
eration of the long-term effects of such training
approaches on the linguistic capabilities of lan-
guage models.

1 Introduction

The scaling law reveals a predictable smooth in-
crease in model performance as the amount of
data, compute power, and model parameters are
increased in tandem (Ganguli et al., 2022). Even as-
suming that we can boost the other two ingredients
indefinitely, the amount of data is limited. By one
estimate, the world’s entire supply of high-quality
text ranges up to 17 trillion tokens, with a 4-5%
yearly growth rate (Villalobos et al., 2022). This in-
cludes all the world’s books, scientific papers, news
articles, Wikipedia pages, available code, and the
rest of filtered web content. Meta’s Llama 2, one
of today’s leading LLMs, was trained on around
2 trillion tokens (Touvron et al., 2023). In other
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words, we might be approaching the exhaustion of
the world’s entire stock of usable language training
data, potentially within an order of magnitude.

Is it possible for language models to train on self-
generated samples, thereby offering a solution to
the looming data shortage? In fact, whether inten-
tionally or unintentionally, this would happen with
the widespread recognition and usage of LLMs.
Regarding pretraining data, which is often sourced
from the Internet, a significant trend is occurring:
an increasing volume of online content is either
generated or assisted by models, and such content
is nearly indistinguishable from data produced by
humans (Uchendu et al., 2023). Consequently, the
subsequent generations of models will inevitably
be pretrained on deeply blended data. Regarding
finetuning data, employing LLM-generated exam-
ples is already a widely adopted data augmentation
approach in the NLP community. The work of
self-instruct (Wang et al., 2023) prompts language
models to solicit synthetic multi-task instruction-
tuning data in an iterative bootstrapping way, start-
ing with a seed set of manually-written instructions.
Concerning single-task training, Zhou et al. (2023)
build a large-scale dialogue summary corpus anno-
tated by ChatGPT (Ouyang et al., 2022) to enhance
their pretrained dialogue summarization model.

However, recent studies raise concerns that
the above approach of training on predecessor-
generated text—language models are trained on
the synthetic data produced by previous models—
is not a panacea without side effects, especially
when conducted recursively over time. This would
introduce a new set of challenging issues, a phe-
nomenon described as model collapse (Shumailov
et al., 2023; Alemohammad et al., 2024). On one
hand, incorporating model-generated content in
training may lead to irreversible flaws in the result-
ing models, where tails of the original distribution
of genuine human content disappear (Shumailov
et al., 2023). On the other hand, even when these
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models remain free of defects, they could converge
to excessively uniform behaviours, with very small
variance, due to the recursive sampling of only high
probability events.

In this study, rather than focusing on shifts in
task-solving performance, our primary interest lies
in exploring changes in language variation caused
by the degenerative recursive training process. We
target linguistic diversity, a fundamentally impor-
tant but significantly overlooked aspect of language
usage. Our work is motivated by and contributes
to, answering the following two key research ques-
tions: First, how can linguistic diversity be quan-
tified effectively? Second, does recursive training
on synthetic text result in a reduction of linguistic
diversity in model outputs?

To address these questions, we first develop a
comprehensive set of metrics1 assessing at three
different aspects of linguistic diversity: lexical, se-
mantic, and syntactic. Subsequently, we proceed
to conduct a series of recursive finetuning experi-
ments spanning three natural language generation
tasks, each demanding varying levels of creativity:
news summarization (Hasan et al., 2021), scien-
tific abstract generation, and story generation (Fan
et al., 2018). Our results indicate a notable trend:
with the progression of recursive finetuning itera-
tions, there is indeed a remarkable decrease in the
diversity of the generated outputs. This observation
highlights the significant impact that training on
text generated by predecessors has on the linguistic
diversity of language models.

2 Related Work

In this section, we explore two avenues of related
work: current approaches to evaluate linguistic di-
versity and recent research on training with syn-
thetic data generated by language models.

2.1 Evaluating Linguistic Diversity

Efforts to evaluate language models predominantly
concentrate on their performance in task-solving.
While some studies extend their scope to include
aspects like factual consistency (Guo et al., 2022),
reasoning capability (Helwe et al., 2021), and ro-
bustness (Chang et al., 2023), there is a notable
lack of attention paid to linguistic diversity.

Furthermore, the existing studies that do address
the diversity issue typically focus on lexical diver-

1Code available at https://github.com/YanzhuGuo/
linguistic-diversity

sity alone. For example, in quantifying diversity,
research on decoding strategies (Li et al., 2023;
Vijayakumar et al., 2018; Ippolito et al., 2019) usu-
ally considers the proportion between the number
of unique n-grams and total number of n-grams in
generated text, known as distinct-n metric (Li et al.,
2016). This very approach can also be found in the
literature related to specific NLG tasks, especially
those studying creative text generation, such as po-
etry (Chakrabarty et al., 2022), lyric (Tian et al.,
2023), and pun (Mittal et al., 2022) generation.

Alternatively, Zhang et al. (2021) propose to use
Shannon entropy to quantify diversity. However,
such an approach is still calculated on tokens (i.e.,
lexical level), demonstrating a strong correlation
with distinct-n. Zhu et al. (2018) introduce Self-
BLEU which calculates the BLEU similarity score
(Papineni et al., 2002) between different sentences
of the same document, with higher Self-BLEU im-
plying lower diversity. This metric is adopted as
a proxy for diversity in evaluating the capability
of LLMs in the context of producing content for
disinformation operations (Liang et al., 2022). Nev-
ertheless, the BLEU score is based on n-gram over-
lap and thus also represents diversity solely from
the lexical aspect.

Few works study diversity beyond the lexical
level. Recently, Padmakumar and He (2023) bring
up the semantic aspect of diversity and define the
average pairwise BERTScore among a set of doc-
uments as the homogenization index. They also
use ChatGPT to annotate key points on a small set
of documents, counting the percentage of unique
key points as content diversity. Stasaski and Hearst
(2022) hypothesize that the semantic diversity can
be reflected by the contradictory level—measured
by a natural language inference model—among
different generation samples given the same input
context, while Tevet and Berant (2021) consider
it as the negation of the semantic similarity. As
an exploratory approach to quantify syntactic di-
versity, Clercq and Housen (2017) first manually
annotate a small corpus of texts produced by sec-
ond language learners for syntactic features such as
syntactic length and clause types, whose variation
is then viewed as a diversity index. Huang et al.
(2023a) define the syntactic diversity as the editing
distance between the constituency parse trees of
two sentences in the context of paraphrase genera-
tion. McCoy et al. (2023) investigate linguistic nov-
elty, in a sense of language generation not simply
copies training text, in terms of sequential structure
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(n-grams) and syntactic structure (constituency and
dependency).

Our work is the first to comprehensively evaluate
text generation on all three aspects of linguistic di-
versity: lexical, syntactic and semantic, with novel
automatic metrics.

2.2 Training with Synthetic Text

Ever since the introduction of generative adversar-
ial networks (Goodfellow et al., 2014), training
new models with synthetic data produced by var-
ious generators has become a means of data aug-
mentation (Li et al., 2022), a practice that has been
expanding to all modalities of machine learning
research, including image, audio, and text.

However, the large-scale usage of this approach,
particularly employing tremendous quantities of
synthetic text to train generative models, is a more
recent trend (Dai et al., 2023; Marwala et al., 2023).
To name a few, the self-instruct study by Wang
et al. (2023) guides a language model to iteratively
generate synthetic multi-task instruct-tuning data,
beginning with an initial set of manually-written
instructions. Huang et al. (2022) demonstrate that
LLMs are capable of self-improving their reason-
ing abilities, with generated high-quality answers
for unlabeled questions, using chain-of-thought
(Wei et al., 2022) and self-consistency (Wang et al.,
2022) prompting techniques. Meanwhile, Xu et al.
(2023) introduce a pipeline that autonomously gen-
erates a high-quality, multi-turn chat corpus by en-
abling ChatGPT to converse with itself, which is
then used to enhance a LLaMA model.

As already mentioned in Section 1, studies show
that this training methodology will eventually lead
to model collapse (Shumailov et al., 2023) when
conducted recursively, causing performance degen-
eration, regardless of potential data filtering or re-
finement (Alemohammad et al., 2024). Our re-
search is motivated by the same concept, but we
focus on investigating the impact of recursive train-
ing on linguistic diversity instead of performance.
To the best of our knowledge, our work is the first
to address this issue.

3 Methodology

This section introduces our recursive training
methodology and outlines the linguistic diversity
metrics.

3.1 Recursive Training Simulation

Following the work of Shumailov et al. (2023),
we simulate the process of recursively training lan-
guage models on predecessor-generated text, under
a finetuning setting. As illustrated in Figure 1, we
begin with human-generated task-finetuning Data
(0), which is used to train Base (1) model to create
a task-specialized version, referred to as Model (1).
After that, we use Model (1) to produce synthetic
task-finetuning Data (1), which serves to train the
next generation, Model (2), built upon Base (2)
model. This procedure is repeated n times.

For the sake of simplicity, we start from a new
instance of the same base model across different
generations, i.e., Base (1) = Base (2) = , ..., = Base
(n). In addition, we only use Data (n− 1) to train
Model (n), whereas in a setting closer to the real-
life scenario, we have access to the accumulated
data ensemble of all predecessors, i.e., Data {(0),
(1) , ..., (n−1)}. This simplification draws from the
results of Shumailov et al. (2023), which indicates
that model collapse is unavoidable, even when the
training involves the full ensemble of accumulated
data, though the effect is somewhat attenuated.

In terms of finetuning tasks, we chose three dis-
tinct natural language generation tasks, each char-
acterized by varying degrees of constraint, from
the most restrictive to the least: news summariza-
tion, where summaries must closely align with the
original content; scientific abstract generation, with
some initial context provided, but room for creative
expansion; and story generation, which allows for
the most creativity and freedom in expression.

In the end, we conduct our linguistic diversity
research with the finetuned Model {(1), (2) , ...,
(n)} for each task, subjecting them to evaluation
on the test set of the corresponding task.

3.2 Perplexity

Our research primarily focuses on linguistic diver-
sity, yet we also require a reliable metric to verify
that our finetuned models are well-aligned with
the training data. Perplexity, a standard metric for
assessing language modeling, evaluates a model’s
level of “surprise” or “confusion” when encoun-
tering a given sequence of tokens. Models that
more accurately mirror the training data’s distri-
bution exhibit lower perplexity. While useful for
model comparison, perplexity doesn’t fully reflect
text quality (Meister et al., 2023). A low perplex-
ity score suggests higher predictive precision, but
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Figure 1: Our recursive tuning-generation process. Beginning with authentic, human-curated Data (0), Base (1)
model undergoes finetuning to develop Model (1), which is the first model subject to our language diversity research.
Subsequently, we use Model (1) to create synthetic Data (1) to train a successor Model (2) of the next generation,
on the basis of Base (2) model. The process continues for n iterations. Base (1), Base (2), ..., Base (n) follow the
same model architecture but are independently initialized instances.

texts can be grammatically sound and contextually
coherent yet still score high in perplexity if they in-
clude unusual or creative language not included in
the model’s training data (Basu et al., 2021). In our
study, a model with lower perplexity is not deemed
superior by default. Our aim is to ensure that the
perplexity remains within a reasonable limit, pro-
ducing texts of sufficient quality for our linguistic
diversity evaluation.

3.3 Linguistic Diversity Metrics
We approach the evaluation of linguistic diversity
from three different perspectives: lexical diversity,
semantic diversity and syntactic diversity.

3.3.1 Lexical Diversity
Lexical diversity metrics are used to measure the
variety of words used in a text, which is contended
to mirror the extent of vocabulary possessed by
a writer or speaker. We believe a degenerated
language model, which presumably has a smaller
vocabulary, will use a narrower variety of lexical
items than non-degenerated language models. We
select different metrics operating at different levels
of textual granularity: word, n-gram, and sentence.

Type-Token Ratio (TTR) (Johnson, 1944; Tem-
plin, 1957), the most well-known metric, which is
calculated as the number of unique words (types) t
divided by the number of running words (tokens)
c, i.e., TTR = t/c. This metric was used to study
the language development in child language re-
search, a low value is probably indicative of a
language-specific deficiency (Miller, 1981). The
length of a text inherently skews vanilla TTR val-
ues, with longer texts generally yielding lower TTR
scores due to an inexorably decreased occurrence
of unique novel words (drawn from a limited vo-
cabulary) as the text lengthens (Richards, 1987).

Following common practice (Shaib et al., 2024),
we truncate all texts to a fixed length before com-
puting the TTR 2.

Distinct-n (Li et al., 2016), which equals the pro-
portion between the number of unique n-grams
and total number of n-grams in tested text (Xing
et al., 2017). This metric is originally introduced
in the context of enhancing the response diversity
of conversational agents, which frequently produce
safe and fluent but dull and uninformative generic
responses at time (e.g., I don’t know) (Han et al.,
2022). Similar to naive TTR, distinct-n varies as
a function of text length, so we report the results
at fixed sizes for n = 2 and n = 3 (distinct-1 is
equivalent to TTR).

Self-BLEU (Zhu et al., 2018), a recently developed
method for evaluating the diversity of synthetic text.
This method assesses the similarity between one
sentence and the rest in a group of generated sen-
tences. It treats one sentence as the hypothesis
and the others as references to calculate BLEU
scores (Papineni et al., 2002). The final Self-BLEU
score averages these BLEU scores across all gen-
erated sentences. We report 1 − Self-BLEU, so a
higher value reflects richer diversity of the genera-
tion (Palumbo et al., 2020).

3.3.2 Semantic Diversity
According to recent studies (Tevet and Berant,
2021; Stasaski and Hearst, 2022), the above lexical-
level metrics often fail to capture semantic diversity,
since texts including similar words can have differ-
ent semantics and texts with different words can
have similar semantics (Yarats and Lewis, 2018).
We tackle this problem by transforming sentences

2Details on the truncation lengths can be found in Ap-
pendix B.
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into semantically meaningful sentence embeddings
using Sentence-BERT (Reimers and Gurevych,
2019). We quantify semantic diversity as the dis-
persion of sentence embeddings over the semantic
space. The dispersion is measured by the average
pairwise cosine-distance of all embedding vectors
(Div_sem).

3.3.3 Syntactic Diversity
The significance of syntactic diversity is often un-
derestimated in NLP, despite its importance. For
language learners (as well as language models),
exposure to a wide range of syntactic structures is
beneficial for developing a more comprehensive un-
derstanding of the language (Aggarwal et al., 2022).
Moreover, a range of syntactic forms enhances ex-
pressiveness and subtlety in writing, influencing the
style and tone of a text (Edwards and Bastiaanse,
1998). While linguistic and language acquisition
research (Clercq and Housen, 2017) has explored
this aspect, these studies typically rely on manual
annotation of features, a process that can be costly
and prone to human error.

We introduce the first graph-based metric to
quantify syntactic diversity. We use a neural parser
(Qi et al., 2020) to construct dependency trees from
sentences, following the universal dependencies
formalism. These trees are then transformed into
graph representations, with nodes representing the
words and edges indicating the dependency rela-
tionships between them. Subsequently, we employ
the Weisfeiler-Lehman graph kernel (Shervashidze
et al., 2011; Siglidis et al., 2020) to map these
graphs into a vector space. This kernel, rooted
in the Weisfeiler-Lehman isomorphism test, effec-
tively positions graphs that are structurally alike
closer to each other in the embedding space. To
assess syntactic diversity, we calculate it similarly
to semantic diversity, using the average pairwise
distance (Div_syn).

4 Experiments and Results

We conduct our experiments on three generative
tasks, as introduced in Section 3.1, with decreasing
degrees of constraint and increasing degrees of cre-
ativity: abstractive news summarization, scientific
abstract generation, and story generation.

4.1 Experimental Setup
For each task, we simulate 6 iterations of the re-
cursive training chain, i.e., n = 6 in Figure 1. Fol-
lowing previous work (Shumailov et al., 2023), we

select OPT (Zhang et al., 2022) as our base model,
and each iteration begins with a new instance of the
base model. Different from Shumailov et al. (2023),
we use OPT-350M instead of OPT-125M to main-
tain higher generation quality over iterations, avoid-
ing excessive noise. Model (1) is finetuned on Data
(0)—the training set of the finetuning task—which
is human-authored. From Model (2) to Model (6),
they are finetuned on synthetic Data (n − 1) gen-
erated by their predecessor Model (n − 1). We
go through all of the original training examples in
Data (0) to produce a comparable synthetic dataset
of the same number of samples. The models are
finetuned for 5 epochs using the AdamW optimizer
(Loshchilov and Hutter, 2019) on a cluster of two
NVIDIA RTX A6000 GPUs.

In the following, we explain each of the three
tasks in detail.

Task1: Abstractive News Summarization

For abstractive news summarization, we use the
XL-SUM (Hasan et al., 2021), one of the most
recently proposed datasets. In comparison to the
other prominent news summarization datasets, XL-
SUM is more abstractive than CNN/DailyMail
(Hermann et al., 2015; Cheng and Lapata, 2016)
and more factual than XSUM (Narayan et al., 2018;
Guo et al., 2022). It is also larger in scale, con-
sisting of 306,522 samples in the training set and
11,535 samples in the test set. The average length
of the news articles is 386 tokens, while the aver-
age length of the summaries is 28 tokens. This is a
generation task with “low entropy” since there is
abundant context and the content is restricted.

Task2: Scientific Abstract Generation

For scientific abstract generation, we parse the bib-
liography database (BibTeX) file with abstracts of
ACL Anthology3 in June, 2023. ACL Anthology
hosts papers published at computational linguistics
or natural language processing venues since 1965.
We split the bibliography entries into the training
and the test set, resulting in 40,512 samples for
train and 2,132 samples for test. We use the title of
the paper and the first sentence of the abstract as
the prompt, asking the model to finish generating
the rest of the abstract. The prompt (title + first
sentence) is 42 tokens long on average, while the
mean of the full abstract length is 145 tokens. This
is a task of “medium entropy”, the provided title

3https://aclanthology.org
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Prompt: The title of the paper is: CASIA’s System for IWSLT 2020 Open Domain Translation.The abstract of the paper is:
This paper describes the CASIA’s system for the IWSLT 2020 open domain translation task.
Human: This year we participate in both Chinese→Japanese and Japanese→Chinese translation tasks. Our system is neural
machine translation system based on Transformer model. We augment the training data with knowledge distillation and
back translation to improve the translation performance. Domain data classification and weighted domain model ensemble
are introduced to generate the final translation result. We compare and analyze the performance on development data with
different model settings and different data processing techniques..
Iteration 1: We participated in all language directions, namely Chinese ↔ English, Japanese↔ English and German ↔
English. Our system mainly focuses on data selection, data preprocessing and data filtering to improve the quality of the
generated translations..
Iteration 3: We participated in all three language pairs, namely Chinese↔English, Japanese→Chinese and German↔French.
Our systems are based on Transformer architecture with a simple but effective method to improve the translation quality by
reusing monolingual data from other languages.. The source code can be obtained from https://github.com/csebuetnlp/
acl2021/opendomaintranslate..The blind test set will be released upon the acceptance of the report..The full results
can also be found at https://competitions.codalab.org/competitions/26153.. The leaderboard can be found at
https://competitions.codalab.org/page/view/11650..The dataset used in this work has been released under CC BY
4.0 license..The experimental results show that our proposed methods significantly outperform the baseline models..
Iteration 5: We participated in all three language pairs, namely Chinese↔English (Chinese→German), Japanese→Czech
and German↔French.. Our approach relies on a Transformer model trained with in-domain data only; it also incorporates
a novel method to improve the quality by leveraging parallel corpora from other domains such as TED Talks. The code
used in this work has been released under CC BY 4.0 license at https://github.com/czyssrs/ibm_nlp2020/. For
further information about our systems please see http://www.csse.unige.edu/research/demo/.. The full text of this
report can be obtained via https://competitions.codalab.org/page/view/11153.. The codes for our experiments
are available online at https://codebenchmark.io/, too....... Finally, we provide some insights into how our systems
perform when translating into low resource conditions...... The source code for our systems is publicly available through
https://github.com/czeneva/acl2022tasks2/.

Table 1: An example of model outputs over iterations. Since diversity is a holistic concept observed among the
entire set of documents, it is non evident to demonstrate the loss of diversity through a single example. However, for
the scientific abstract generation task in this example, there are some obvious patterns. Abstracts found in the ACL
anthology often contain URLs linking to data, code or demos. After a few iterations of training on synthetic text,
the model picked up this high probability event and starts to generate such links repeatedly in an unnatural manner.

already lays out the general idea of the paper and
the first sentence provides a fair amount of context.

Task3: Story Generation
For story generation, we use the WritingPrompts
dataset (Fan et al., 2018). It is made up of human
written stories paired with writing prompts from
Reddit’s WritingPrompts forum. There are 272,600
samples in the training set and 15,138 samples in
the test set. The writing prompts consist of 30
tokens on average and the resulting stories have a
mean of 389 tokens. The prompts are generally
short and in most cases do not contain a plot (i.e.
narrative structure), making this a “high-entropy”
generation task with limited context.

Decoding Strategy.
We use a combination of nucleus sampling (p) and
temperature sampling (τ ) to achieve nuanced con-
trol over the language model’s outputs (Holtzman
et al., 2020). Nucleus sampling, also known as
top-p sampling, is used to generate text by select-
ing the most probable words from a distribution of
words. It ensures that the cumulative probability
of the chosen words exceeds a certain threshold

(p). Higher values of p lead to more deterministic
text. Temperature sampling involves dividing the
output logits by a temperature parameter (τ ) before
sampling from the distribution. Higher values of τ
make the distribution more uniform and increase
randomness.

We adapt the specific parameters to the charac-
teristic of each task (Amini et al., 2023). For news
summarization, we emphasize precision and set
p = 0.1, τ = 0.3. For story generation, we care
more about creativity and set p = 0.9, τ = 0.7.
For scientific abstract generation, we search some-
thing in between and set p = 0.5, τ = 0.5. The
max_new_tokens value is chosen according to the
length of human-written references for each task:
50 for news summarization, 500 for story gener-
ation and 300 for scientific abstract generation.
While the decoding strategy has influence over di-
versity metrics, it is not the determinant factor (Giu-
lianelli et al., 2023). We aim to draw generalizable
conclusions by experimenting across three distinct
sets of decoding strategies.
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Iter PPL TTR Distinct-2 Distinct-3 1-Self-BLEU Div_syn Div_sem

Human – 7.36 48.1 81.1 73.3 3.17 46.6
1 12.5 5.99 (↓) 37.9 (↓) 68.5 (↓) 74.6 (↑) 1.65 (↓) 47.2 (↑)
2 3.42 5.55 (↓) 35.5 (↓) 64.1 (↓) 74.2 (↓) 1.76 (↑) 47.2 (→)
3 3.09 4.99 (↓) 32.6 (↓) 59.3 (↓) 72.6 (↓) 1.95 (↑) 46.8 (↓)
4 2.86 4.46 (↓) 29.2 (↓) 54.5 (↓) 69.7 (↓) 1.85 (↓) 46.6 (↓)
5 2.62 3.92 (↓) 25.8 (↓) 49.5 (↓) 68.0 (↓) 1.62 (↓) 46.0 (↓)

News
Summarization

6 2.48 3.66 (↓) 25.6 (↓) 49.2 (↓) 65.3 (↓) 0.82 (↓) 46.6 (↑)

Human – 3.09 35.4 75.0 71.0 4.52 40.4
1 13.4 2.06 (↓) 20.7 (↓) 48.3 (↓) 64.2 (↓) 3.80 (↓) 39.4 (↓)
2 3.87 1.96 (↓) 17.4 (↓) 39.8 (↓) 60.4 (↓) 4.06 (↑) 38.6 (↓)
3 2.59 1.90 (↓) 16.1 (↓) 36.0 (↓) 59.2 (↓) 4.94 (↑) 38.6 (→)
4 2.31 1.82 (↓) 15.3 (↓) 34.0 (↓) 58.7 (↓) 4.60 (↓) 37.6 (↓)
5 2.24 1.77 (↓) 14.2 (↓) 31.6 (↓) 58.2 (↓) 4.41 (↓) 37.5 (↓)

Scientific
Abstract
Generation

6 2.17 1.69 (↓) 13.3 (↓) 29.5 (↓) 57.5 (↓) 4.10 (↓) 37.1 (↓)

Human – 2.23 30.5 70.6 67.0 4.84 43.7
1 14.1 0.84 (↓) 13.8 (↓) 44.2 (↓) 61.6 (↓) 4.23 (↓) 41.4 (↓)
2 4.41 0.72 (↓) 13.3 (↓) 43.1 (↓) 61.0 (↓) 3.41 (↓) 42.5 (↑)
3 3.37 0.68 (↓) 12.8 (↓) 42.0 (↓) 60.6 (↓) 2.99 (↓) 43.3 (↑)
4 2.99 0.65 (↓) 12.3 (↓) 40.9 (↓) 60.5 (↓) 2.50 (↓) 43.3 (→)
5 2.82 0.63 (↓) 11.8 (↓) 39.7 (↓) 60.5 (→) 2.14 (↓) 42.7 (↓)

Story
Generation

6 2.70 0.61 (↓) 11.4 (↓) 38.6 (↓) 60.3 (↓) 1.96 (↓) 42.5 (↓)

Table 2: Perplexity (PPL) and linguistic diversity metrics for texts generated over different iterations (iter). All
diversity metrics range from 0 to 1 and are reported as percentages (cosine distances are halved to maintain this
range). Typical values are suggested by the results obtained on human written texts. The arrows in parentheses
indicate the direction of variation compared to the previous iteration. In the case of iteration 1, the comparison is
against human reference text.

4.2 Results

In Table 2, we display the perplexity and linguistic
diversity metrics for texts generated across various
iterations. We also show an example of generated
texts across iterations in Table 1.

Our findings indicate that the perplexity values
fall within an acceptable range (< 20) (Holtzman
et al., 2020), indicating that models effectively as-
similate training data and generate texts of a quality
viable for diversity analysis. The decrease of per-
plexity over iterations suggest that the model might
be more prone to over-fitting when trained on syn-
thetic text, losing the tail of the original distribution
(visualized in Appendix A, Figure 3). A general
decline in the majority of linguistic diversity met-
rics underscores the pressing issue of diminishing
linguistic diversity. We highlight some key obser-
vations in below.

The decline of diversity is greater for “high en-
tropy” tasks. We deliberately select three gener-
ation tasks of varying “entropy”, which is reflected
by the amount and nature of given context, i.e.,
constraint. News summarization involves a lengthy
context with the summary confined to a very lim-
ited space, whereas story generation is character-
ized by brief prompts and a vast array of poten-

tial narrative directions. In the “highest entropy”
task, story generation, the gap in linguistic diver-
sity between human-written and model-generated
texts is the most pronounced, and the decline over
iterations is the fastest. The significant gap be-
tween humans and models is expected, given that
story generation demands substantial creativity, a
domain where language models are known to fall
short (Chakrabarty et al., 2023). The rapid decrease
in diversity can also be explained by the creative na-
ture of the task. Models initially learn from diverse
original human-written stories but suffer greatly
when later exposed solely to synthetic data, which
already exhibits a notable loss in diversity.

Even for “lower entropy” tasks, training on syn-
thetic texts will eventually lead to vanishing di-
versity. In tasks like news summarization and
scientific abstract generation, which have “lower
entropy” compared to story generation, there is
still a noticeable decrease in linguistic diversity
over iterations. Consider the task of generating
scientific abstracts: initially, the syntactic diver-
sity in texts created by Models (2) and (3) shows
an increase compared to those written by humans.
This might be because scientific abstracts inher-
ently possess less varied syntactic structures than
the broader range of texts in the pretraining data
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(b) Syntactic diversity.

Figure 2: Illustration of linguistic diversity variation for the story generation task under different recursion settings.
Since there is a strong correlation between different diversity metrics of the same aspect, we only report one per
aspect: Distinct-3 for lexical diversity and D_syn_c for syntactic diversity.

of OPT-350M. However, as the iterations advance,
the syntactic diversity scores of the texts produced
by the models eventually decline, dropping below
those of human-written abstracts. This trend might
be partly attributed to catastrophic forgetting (Mc-
Closkey and Cohen, 1989). Additionally, while
human-written abstracts may have limited syntactic
diversity, their structure is markedly different from
the pretraining data, thus introducing new learning
elements for the model. In contrast, the synthetic
data produced by Model (2), despite its marginally
higher internal syntactic diversity, closely mirrors
the model’s own training distribution. This lack of
novel information leads to a subsequent reduction
in variation.

Syntactic diversity suffers remarkably. We no-
tice that syntactic diversity manifests a decreasing
trend, especially for creative tasks, comparable to
the decline in lexical diversity and to a greater ex-
tent than in semantic diversity (also visualized in
Appendix A, Figure 4 and Figure 5). While the re-
duction in lexical diversity is well-researched and
somewhat anticipated, our study is the first to high-
light the decrease in syntactic diversity. Syntax is
more implicit but equally important as vocabulary
in maintaining linguistic richness. The important
yet overlooked decline in syntactic diversity em-
phasizes the need for future NLG research to in-
clude syntactic diversity measurements alongside
the commonly reported lexical diversity metrics.

Semantic diversity is the most stable. Semantic
diversity remains more stable compared to lexi-
cal diversity and syntactic diversity. We believe
that synthetic training data have more impact on
the diversity of form than the diversity of content.

The main issue in the semantic aspect is coherence
rather than diversity. We find that the generated
texts remain rather diverse in meaning throughout
the iterations whereas the coherence between sen-
tences drops. This finding also corresponds to the
well-known fact that language models are prone to
hallucination (Huang et al., 2023b).

4.3 Playing with Recursion Settings

We perform further analysis to understand how dif-
ferent factors influence outputs of the recursive
tuning-generation process. We introduce two set-
tings to approximate the real-life scenario. We
focus our analysis on the story generation task as it
shows the most pronounced diversity decline.

Filtering Synthetic Data. Instead of using the
full set of synthetic samples, it is a common choice
to filter out invalid samples before training (Wang
et al., 2023). In our case, we use a linguistic accept-
ability filter to discard the noisy samples generated
in each iteration. The filter is a RoBERTa model 4

(Morris et al., 2020) trained on the COLA corpus
(Warstadt et al., 2019). We do generation on the full
training set and discard the 20% of synthetic data
with the lowest linguistic acceptability score before
using them to train the next iteration’s model.

Mixing Fresh Human Data. To approximate the
most realistic scenario, we consider mixing human
data with synthetic data for training. We separate
the training data into a 40% set reserved for syn-
thetic data generation and a 60% set used only as
human data. The 60% set of human data is fur-
ther split into six subsets each containing 10% of

4textattack/roberta-base-CoLA
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the human data. For each of the 6 training itera-
tions, one of these six 10% subsets are mixed into
the synthetic data as “fresh human data”. These
data are considered “fresh” because they were held
out at the beginning and not seen by models from
previous iterations.

The results are displayed in Figure 2. We do
not show semantic diversity as it remains relatively
stable across all settings. The introduction of fresh
human data only minimally mitigates the observed
decrease, while filtering significantly amplifies the
decline. This outcome is unsurprising, as quality
filters typically favor more common and less in-
ventive samples. Consequently, in practice, the
linguistic diversity decline might be even more sub-
stantial than suggested by our previous findings.

5 Conclusion

Our study provides critical insights into the im-
plications of recursively training language models
on synthetic data generated by their predecessors.
Through our innovative approach, focusing on lin-
guistic diversity measures rather than traditional
performance metrics, across various NLG tasks, we
have uncovered a noticeable reduction in lexical
and syntactic diversity in language model outputs
over successive iterations of recursive training on
synthetic text. These findings highlight a concern-
ing trend: as language models increasingly rely
on predecessor-generated text for training, there
is a tangible risk of diminishing linguistic rich-
ness and variety in their outputs. Our research
underscores the necessity for a more nuanced and
forward-thinking approach in the development of
language models, emphasizing the importance of
preserving linguistic diversity alongside improving
technical performance.

Limitations

Language diversity. Our work investigates lin-
guistic diversity in a monolingual context. Our
experiments are exclusively conducted in the En-
glish language. While the main research idea is
readily adaptable, the specific methodologies re-
quire adjustments when applied to other languages.
It’s worth noting that our linguistic diversity met-
rics may not perform optimally for languages apart
from English. These metrics rely on language-
specific tokenization/segmentation, dependency
parsing, and sentence embeddings, which pose
challenges for languages with limited resources.

However, it would be interesting future work to
overcome these obstacles and investigate linguistic
diversity in a multilingual setting.

Resource constraint. Due to resource limita-
tions, we could not perform experiments on an
extensive range of models. We opted for the mod-
erately large decoder-only model OPT-350M, strik-
ing a balance between generation quality and pa-
rameter scale. Our analysis involves recursive
model training across six iterations, for three tasks
and under various settings, demanding significant
computational resources. For instance, complet-
ing all six iterations for the story generation task
under the full synthetic setting alone consumes ap-
proximately 700 GPU hours on the NVIDIA RTX
A6000 48G GPU. In this study, our primary fo-
cus is on comparing different tasks and settings
rather than across various models. Nevertheless,
we anticipate that the decline in linguistic diversity
is a recurring phenomenon in different language
models. In future research, we intend to explore
quantization and parameter-efficient fine-tuning ap-
proaches with larger-scale language models.

Realistic Web Setting. Our paper is partially mo-
tivated by the fact that LMs are trained on web
content that increasingly contains synthetic text.
However, after careful considerations, it is impos-
sible to conduct experiments under a realistic web
setting. To simulate a realistic setting, we would
need a dataset of synthetic text posted on the web
by real users. We initially thought about using data
from ShareGPT where users upload their conver-
sations with ChatGPT but then realized that this
would pose copyright issues. It is thus not feasible
to construct a realistic dataset for unconditional
language modeling with synthetic content. In ad-
dition, there currently exists no algorithm that can
reliably detect LM generated text and we cannot es-
timate the amount of synthetic information online.
We have already proposed experiments with mixed
settings, which demonstrated that the reduction in
diversity only marginally lowered when mixing in
a fixed percentage of human data. It would be inter-
esting to conduct further experiments with varying
combinations, potentially increasing the proportion
of human data. Nevertheless, we anticipate that our
research findings will continue to hold, given the
minimal attenuation observed when experimenting
with the current mixed setting.
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Ethical Considerations

Usage of scientific artifacts. We employ three
datasets in our research: XL-SUM (Hasan et al.,
2021), ACL Anthology5, and WritingPrompts (Fan
et al., 2018). XL-SUM and ACL Anthology are
made available under the CC BY-NC-SA 4.0 li-
cense, while the WritingPrompts dataset is dis-
tributed under the MIT license. None of these
datasets contains any information that can be linked
to private individuals in a harmful way. Further-
more, we utilize the OPT model (Zhang et al.,
2022), which is subject to the “OPT-175B License
Agreement”6. Our use of these resources aligns
with their designated research purposes.

Potential risks. Our research focuses on the anal-
ysis of language models and is not specifically
linked to any particular application. Its positive
social impact lies in identifying and bringing to
light overlooked issues in the usage of language
models, thereby alerting both developers and users
to exercise more deliberate considerations. How-
ever, it’s important to recognize that there may be
potential risks arising from the way our findings are
interpreted by the general public, especially if they
are exaggerated or overgeneralized. We want to
stress that our conclusions are rigorously validated
based on specific datasets and within a particular
context. It is necessary to explicitly acknowledge
these limitations when discussing our research dur-
ing scientific dissemination.
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A Visualization of Diversity Metrics
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Figure 3: Histograms illustrating word frequency in texts produced across various iterations for the story generation
task. For visual clarity, the x-axis, representing word frequency, is truncated at 100, though the actual distribution
extends further. A noticeable trend is the diminishing presence of low-frequency, “unique” words in the synthetic
text relative to human-generated text, a pattern that intensifies with each iteration. This trend highlights a progressive
decline of lexical diversity in the generated text.
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Figure 4: T-SNE visualization of dependency tree embeddings derived from sentences generated in successive
iterations of our tuning-generation process. The visualization clearly depicts how, over time, the spatial distribution
of the embeddings becomes increasingly compact. This decreasing spread is indicative of declining syntactic
diversity.
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Figure 5: T-SNE visualization of sentence embeddings from text generated across different iterations. There is a
noticeable decrease in dispersion over iterations, indicating a reduction in semantic diversity, though this change is
less pronounced compared to that of syntactic diversity.

B Implementation of Diversity Metrics

B.1 Preprocessing
We apply preprocessing to the generated texts before computing the diversity metrics. For all three tasks,
we remove the prompts from the generated texts. We remove <newline> tokens for story generation and
replace URL links with WEBSITE for scientific abstract generation. We remove all punctuation marks for
the calculation of lexical diversity metrics, but not for semantic diversity or syntactic diversity.

B.2 Lexical Diversity Metrics

Iteration Human 1 2 3 4 5 6

News Summarization 18.89 18.21 18.42 18.75 19.01 19.25 19.71
Scientific Abstract Generation 49.35 48.80 49.61 49.60 49.64 49.60 49.50
Story Generation 148.77 149.77 149.92 149.92 149.91 149.96 149.84

Table 3: Average text lengths for post-truncation generations. Text lengths are measured by the number of words.

The distinct-n metric varies as a function of text length, so we compute results at fixed lengths. We
apply truncation to the generated texts, using different thresholds for each task: 20 for news summarization,
50 for scientific abstract generation and 150 for story generation. The average text lengths after truncation
are presented in Table 3. We observe that all lengths consistently fall within a narrow range, allowing for
fair comparison of distinct-n results across iterations.

For Self-BLEU, we use a publicly available implementation7. We take the mean value of Self-BLEU-2
and Self-BLEU-3.

B.3 Semantic Diversity Metrics
For sentence splitting, we use the NLTK sentence tokenizer. For Sentence-BERT, we use the all-mpnet-
base-v2 model on huggingface. For the pairwise cosine distances, we randomly draw 2000 sentences for

7https://github.com/Danial-Alh/fast-bleu
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each calculation and report the mean value over 5 randomizations.

B.4 Syntactic Diversity Metrics
We construct the dependency graphs with the Stanza Dependency Parser8. We employ a publicly available
implementation of the Weisfeiler-Lehman graph kernel9. We set the number of iterations to 2. The
pairwise cosine distances are calculated in the same way as for semantic diversity.

8https://stanfordnlp.github.io/stanza/depparse.html
9https://github.com/ysig/GraKeL
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