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Abstract
Modeling long-range dependencies in sequen-
tial data is a crucial step in sequence learning.
A recently developed model, the Structured
State Space (S4), demonstrated significant ef-
fectiveness in modeling long-range sequences.
However, It is unclear whether the success of
S4 can be attributed to its intricate parameteri-
zation and HiPPO initialization or simply due
to State Space Models (SSMs). To further in-
vestigate the potential of the deep SSMs, we
start with exponential smoothing (ETS), a sim-
ple SSM, and propose a stacked architecture by
directly incorporating it into an element-wise
MLP. We augment simple ETS with additional
parameters and complex field to reduce the in-
ductive bias. Despite increasing less than 1% of
parameters of element-wise MLP, our models
achieve comparable results to S4 on the LRA
benchmark.1

1 Introduction

Transformer (Vaswani et al., 2017) and its vari-
ants have been the most successful architecture in
various domains of deep learning. However, the
self-attention layer, which plays a crucial role in
contextualizing the input, poses a significant com-
putational and memory burden with a complexity
of O(L2). This limitation hinders the application
of the transformers in modeling long sequences,
particularly when operating under hardware con-
straints, which is a common scenario for large
language models. To alleviate this issue, several
models have been proposed to reduce the computa-
tional and memory requirements of the transform-
ers (Beltagy et al., 2020; Choromanski et al., 2020;
Kitaev et al., 2020; Wang et al., 2020; Guo et al.,
2021; Kasai et al., 2021; Peng et al., 2021; Dao
et al., 2022; Hua et al., 2022; Tay et al., 2022;
Fournier et al., 2023; Zandieh et al., 2023). De-
spite these efforts, all the models are only partial

1Our codes and scripts are available at https://
github.com/PKUAI-LINGroup/ETSMLP.

modifications of the attention mechanism and strug-
gle to perform well on long-range sequence bench-
marks such as Long Range Arena (LRA) (Tay et al.,
2020).

In a recent breakthrough result, (Gu et al., 2021)
introduced a novel framework called the "struc-
tured state space sequence" (S4) that leveraged
the State Space Models (SSMs). S4 builds upon
continuous-time SSMs and addresses the compu-
tational bottleneck of previous approaches by in-
troducing the Normal Plus Low-Rank (NPLR) de-
composition of the state matrices. Additionally, the
initialization of state matrices utilizes HiPPO matri-
ces which have been demonstrated to be effective in
sequence learning in (Gu et al., 2020). Notably, S4
exhibited exceptional performance across various
sequential tasks, particularly in the LRA, where it
outperformed the existing transformer variants by
an impressive accuracy.

Despite the impressive performance of S4, its
intricate parameterization and strict initialization
schemes impede researchers from fully compre-
hending, implementing, and analyzing the model.
Although there have been attempts to simplify the
S4 framework by (Smith et al., 2022; Gupta et al.,
2022), these models still required the HiPPO ini-
tialization process. Other studies have explored the
relationship between SSMs and recurrent units or
global convolutions and demonstrated strong per-
formance on various tasks (Li et al., 2022; Orvieto
et al., 2023). These works highlight the potential of
SSMs and suggest that simpler yet effective SSM
architectures may exist.

In our work, we deviate from the methodology
proposed by S4, which begins with the continu-
ous SSM and then simplifies the process. We ini-
tiate our approach with a discrete SSM, namely
Exponential Smoothing (ETS), and introduce ad-
ditional parameters to reduce the inductive bias.
This alternative approach offers two notable advan-
tages. Firstly, it circumvents the simplification of
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the continuous SSMs that need sophisticated math-
ematical derivations and thus enhances accessibil-
ity and comprehensibility. Secondly, it explores
the possibility of random initialization departing
from HiPPO initialization for continuous SSMs.
For the streamlining of the model, our architec-
ture directly integrates a parameterized ETS into
an element-wise Multi-Layer Perceptron (MLP).
By incorporating less than 3% of the total param-
eters after the initial linear layer of the MLP, we
successfully transform a channel-only MLP into a
sequence learner.

We conducted experiments on multiple datasets,
including the LRA and several Natural Language
Understanding (NLU) datasets. Despite its simplic-
ity, surprisingly, our model performs comparably to
S4. In all six tasks in the LRA, our results slightly
surpass the performance of S4 and DSS by 2.61
points on average and significantly outperform the
transformer variants by about 20 points. In addition,
we evaluated our model on seven NLU datasets
and consistently achieved comparable performance
with the transformer encoders. The findings of our
work shed light on the potential of SSMs from a
unique standpoint, where simply incorporating an
ETS into an MLP can achieve a similar effect as
the transformer model. A thorough examination
of the proposed model was undertaken through
an ablation study on the hyperparameters and an
evaluation of the initialization method. Additional
experiments were conducted to compare our model
with the transformer model for efficiency and mem-
ory utilization, especially in handling lengthy texts.
The results of these experiments provide evidence
of the advantages of our model over the transformer
model in terms of time and memory complexity.

In summary, our main contributions are as fol-
lows:

• We introduce the Exponential Smoothing
Multi-Layer Perceptron (ETSMLP) model.
We integrate the enhanced ETS module into
an element-wise MLP to create an effective
sequence model.

• We evaluate ETSMLP on the LRA and con-
duct comparative experiments with trans-
former encoders on various NLU datasets.
The empirical results demonstrate the effec-
tive capacity in long-range sequence model-
ing.

• We conduct ablation studies on the proposed

Figure 1: The relations among SSM, S4, DSS, and ETS.
The HiPPO initialization is pointed out in red while the
Skew-Hippo initialization is pointed out in orange.

parameters and initialization methods. Ad-
ditionally, we emphasize the advantages of
SSMs over the attention mechanism in speed
and memory efficiency.

2 Preliminaries

We introduce basic notations and briefly review
SSMs and ETS in this section. Focusing on time-
invariant sequence models, we aim to transform a
sequence of inputs X = {x1, . . . , xn} ∈ Rn×d

into a corresponding sequence of outputs Y =
{y1, . . . , yn} ∈ Rn×d with each output yi is ex-
clusively based on historical data x1, . . . , xi.

2.1 State space models
The continuous-time SSM is characterized by the
differential equation (1), which establishes the re-
lationship between a continuous-time scalar input
x(t) to a scalar output y(t) with the state matrix
A ∈ Rd×d and vectors B ∈ Rd×1, C ∈ R1×N :

dh

dt
(t) = Ah(x) +Bx(t) , y(t) = Ch(t).

(1)
If we set a sample time interval ∆ > 0, and as-
sume that the duration of sampling remains con-
stant ∆, we convert the continuous-time SSM into
a discrete-time one using a recursive equation in
the following:

hk = Āhk−1 + B̄xk , yk = C̄hk, (2)

where Ā = eA∆,B̄ = (Ā − I)A−1B and C̄ = C.
With x0 = 0, we unroll this recursion explicitly
as the equation (3) which can be vectorized into
a convolution in the equation (5) with the SSM
convolution kernel defined in the equation (4) as
follows:
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yk =
k∑

j=0

C̄ĀjB̄xk−j , (3)

K̄ ∈ RL = (C̄B̄, . . . , C̄ĀL−1B̄), (4)

y = K̄ ∗ x. (5)

If we obtain the kernel K̄, the convolution function
aforementioned can be efficiently computed with
Fast Fourier Transform (FFT) in O(L log(L)) (Cor-
men et al., 2022). Nevertheless, the main challenge
in the computation of SSMs is how to efficiently
compute K̄ from the matrices Ā, Ā and C̄. S4
proposes an effective parameterization through de-
composing matrix Ā to the NPLR matrices (Gu
et al., 2021), and diagonal state spaces (DSS) only
consider the circumstances when A is diagonaliz-
able over C (Gupta et al., 2022). Both methods
involve intricate mathematics, sophisticated param-
eterization, and strict initialization, all of which are
indispensable for achieving excellent performance.
Our method will start from a special SSM, namely
ETS, which gives a new insight into this problem,
and requires fewer mathematical operations, fewer
parameters, and more flexible initialization.

2.2 Exponential smoothing
ETS is a time series forecasting method that utilizes
a weighted average of past observations to predict
future values (Winters, 1960; Hunter, 1986; Hyn-
dman et al., 2008). The fundamental idea behind
ETS is to give more weight to recent observations
and less to older ones, with the weights decreasing
exponentially as the observations get older. The
core recursive equation for this method is the equa-
tion (6) with the smoothing factor λ in the range
(0, 1):

yt = λxt + (1− λ)yt−1. (6)

ETS is a special SSM, with the substitution
Ā = 1 − λ, B̄ = λ, C̄ = 1. However, compared
with SSMs, ETS cannot capture sequential informa-
tion effectively. Figure 1 illustrates the relationship
among SSMs, S4, DSS, and ETS. S4 and DSS are
derived from the continuous-time SSMs with the
difference that S4 decomposes the matrix A into
an NPLR matrix, while DSS assumes A to be diag-
onalizable. As a result, the HiPPO initialization in
S4 cannot directly adapt to DSS (Gu et al., 2020).
The initialization in DSS is skew-Hippo initializa-
tion which is the normal part of the HiPPO matrix.

ETS serves as a special case within the realm of
discrete-time SSM. In our approach, we incorpo-
rate parameters directly from ETS, distinguishing
ours from S4 and DSS methods that simplify equa-
tions based on continuous-time SSMs.

3 Exponential Smoothing Multi-layer
Perceptrons

In this section, we present our ETSMLP. We first in-
troduce a complex exponential smoothing module
which is the pivotal component of our architecture.
We then describe the full architecture with two pro-
posed versions, ESMLP and ESMLP-Gate.

3.1 Complex exponential smoothing module
Learnable damped factors. Damped factors are a
commonly used technique of ETS for attenuating
the influence of specific factors (Gardner Jr, 1985;
McKenzie and Gardner Jr, 2010). We introduce
two learnable damped factors α and β into sim-
ple ETS in equation (7). The factor α controls the
learning of λ in an exponential scalar. A small α
close to zero amplifies the impact of λ and results
in λα approximating 1 while a large α diminishes
its impact, driving the combination closer to 0. The
factor β serves as a multiplicative factor that con-
trols the influence of the current input xt. The
recursion can be unrolled in equation (8) with the
kernel defined by the equation (9) as follows:

yt = (1− λα)βxt + (λα)yt−1, (7)

yt =

t∑

i=0

(λα)i(1− λα)βxt−i, (8)

K = ((1− λα)β, . . . , (λα)L−1(1− λα)β). (9)

Complex parameters. Complex parameters in
ETS have been demonstrated to capture both level
and trend information in forecasting (Svetunkov
et al., 2022). By extending the learning capacity
and enlarging the parameter space, the transforma-
tion from real to complex numbers is beneficial.
Therefore, we treat α, λ, β as complex numbers,
and keep the input xt and the output yt real. Conse-
quently, only the real part of the kernel coefficients
is utilized, and the corresponding computation for-
mula is as follows:

yt =
t∑

i=0

ℜ((λα)i(1− λα)β)xt−i. (10)
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Figure 2: Overview of the ETSMLP architecture. The left is the pseudo-code of the complex exponential smoothing
(CES) module. The right is the entire architecture with a gate mechanism.

Exponential parameterization. Directly training
the parameters λ is infeasible, due to the rapid ex-
plosion of the gradient λ within a few steps. This
challenge becomes evident upon inspecting the
equation (6). Given the gradients of yt dL

dyt
, the gra-

dient of λ dL
dλ could be derived from the formulas

(11). This reveals that the gradients of λ are pro-
portional to 1

1−λ . Consequently, as λ approaches 1,
the gradients of λ will explode.

dL

dλ
=

N∑

t=1

dL

dyt

t∑

j=1

[
(t− j)

λ
− (t− j + 1)]λt−jxj

≈
N∑

t=1

dL

dyt

t∑

j=1

(−1 ∗ λt−jxj) = −
∑N

t=1(
dL
dyt

yt)

1− λ
(11)

To address this issue, we propose an exponential
transformation of the parameters. We trains the pa-
rameter λ′ = log log λ instead of the λ. We prove
that the stability of learning λ′ constrains the gradi-
ents of λ′ within a specified range, as described in
Proposition 1.
Proposition 1. Let λ ∈ C be within the inte-
rior of the hollow unit disc D◦(0, 1) = {z||z| <
1}/{(0, 0)}. We define λ′ = log log λ which sub-
stitutes λ in the equation (10). If the gradients
of yt satisfy

∑L
0

dL
dyt

yt < ∞, the gradients of the
real and imaginary parts of λ′ are bounded for all
λ ∈ D◦(0, 1).
The proof of Proposition 1 is elementary and is pro-
vided in the appendix A. This proposition proves

that the exponential parameterization λ′ gradients
are stable in the feasible region of λ.
Constraint function and shortcut. In addition to
the settings as aforementioned, λα must lie within
the feasible field D◦(0, 1). To address this, we in-
troduce a constraint function to enforce the validity
of these parameters, which can be formulated in
equation (12):

f(λ) =

{
λ, if |λ| < maxλ;
maxλ
|λ| λ, if |λ| ≥ maxλ.

(12)

Although this solution is simple, it yields re-
markably effective results. We also explored an
alternative approach inspired by the separation of
real and imaginary parts, as discussed in (Gu et al.,
2022; Orvieto et al., 2023). Unfortunately, its per-
formance is unsatisfactory, because the gradients of
imaginary parts appear unstable and may explode
in a few steps.

Moreover, we introduce a parameter ω to estab-
lish a shortcut from input to output, a commonly
used technique in deep learning. This parameter
serves as a gating unit that regulates the incom-
ing input. The final output of our model can be
described with the sigmoid function σ as follows:

o = σ(ω)x+ y. (13)

Bidirectional. We describe a bidirectional model
incorporating backward recursion as yt = (1 −
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λ2)xt + λ2yt+1. By employing a bidirectional
model, the influence of tokens is determined by
both preceding and succeeding tokens, resulting in
a wide-ranging receptive field. The kernel function
is formed by combining the forward and backward
kernels in equation (14). We employ the circular
convolution to compute the output with the input
being zero-padded on the right side to twice its
length.

K = (1− λ1, . . . , (1− λ1)λ
L−1
1 ,

(1− λ2)λ
L−1
2 , . . . , 1− λ2). (14)

A sketch of the full computation is presented
on the left of Figure 2. Initially, we calculate the
kernel corresponding to the sequence length and
subsequently apply FFT to compute the convolu-
tion of the inputs and the kernel. The Complex
Exponential Smoothing (CES) module produces
the final results by combining the shortcut and the
convolution outputs. Although the current code
is designed for a unidirectional kernel, a bidirec-
tional kernel can be easily achieved by connecting
two unidirectional kernels using the equations as
aforementioned.

3.2 ETSMLP blocks
We incorporate the CES module into the element-
wise MLP to learn token-level information. The
CES module facilitates the mix of input informa-
tion at the token level, resulting in a mixed output
containing sequence information. We integrated
the CES module just before the activation function
into the MLP in the full architecture, depicted in
Figure 2. The functions are described as follows:

X = LayerNorm(Xi) ∈ RL×d,

H = W1X ∈ RL×D,

Y = σ(CES(H)) ∈ RL×D,

Z = W2Y ∈ RL×d.

Compared to standard MLP, the increased param-
eters constitute only 3

d of the original MLP, where
d is the embedding dimension. For a typical model
with d = 512, a modest increase 0.58% parameters
enables channel-only MLP to learn sequence infor-
mation, which is previously unattainable. More-
over, the computational and memory complexity is
lower than that of the self-attention, as detailed in
Section 4.3.3

Gated architecture. To further enhance the expres-
sive capacity of our model, we add a gate mech-
anism like (Cho et al., 2014; Shazeer, 2020; Hua
et al., 2022). This gate unit controls the output
of each block. After obtaining the representation
after layernorm, we pass it through a linear layer,
derive the score using the sigmoid function, multi-
ply it with the output from the preceding module,
and obtain the output of our layer through a resid-
ual connection. As in Figure 2, we express these
processes as follows:

G = sigmoid(WgX) ∈ RL×d,

O = G⊗ Z ∈ RL×d,

Xi+1 = Xi +O ∈ RL×d.

4 Experiments

We present an empirical comparison between our
ETSMLP and other baseline models. Our experi-
ments encompass a set of sequence modeling tasks,
including LRA, MNLI, IMDB, etc. The main ex-
periment results are divided into two subsections:
LRA and NLU benchmarks. Furthermore, we con-
duct an ablation study to examine the influence of
hyperparameters. Additional information about the
experimental details and datasets can be found in
Appendix B.

4.1 LRA

The LRA benchmarks are a collection of long se-
quence modeling tasks ranging from 1024 to over
16000 (Tay et al., 2020). In Table 1, we compare
our models to several variants of SSM and Trans-
former. We observe that our model outperforms all
the Transformer variants and achieves the compa-
rable performance of S4 on average which is 83.09
vs 80.48. Although we don’t gain the highest av-
erage scores among all concurrent works, it still
produces comparable results without relying on the
attention in MEGA (Ma et al., 2022), or Hippo
initialization in S5 (Smith et al., 2022). When com-
paring the individual tasks horizontally, we observe
that our model performs significantly better in text
tasks such as ListOps and Text, while slightly un-
derperforming on image tasks like Image. This dis-
crepancy may be attributed to the weight decaying
exponentially with distance, which is unsuitable
for flattened patches.
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models ListOps Text Retrieval Image Pathfinder Path-X Avg.

Transformer 36.37 64.27 57.46 42.44 71.40 - 53.66
Reformer 37.27 56.10 53.40 38.07 68.50 - 50.36

Linear Trans 16.13 65.90 53.09 42.34 75.30 - 50.46
Performer 18.01 65.40 53.82 42.77 77.05 - 51.18

S4 58.35 76.02 87.09 87.26 86.05 88.10 80.48
DSSSOFTMAX 60.6 84.8 87.8 85.7 84.6 87.8 81.88

DSSEXP 59.7 84.6 87.6 84.9 84.7 85.6 81.18
S5 62.15 89.02 91.4 88.0 95.33 98.58 87.46

Mega-chunk 58.76 90.19 90.97 85.80 94.41 93.81 85.66

ETSMLP 61.35 87.2 85.78 78.14 85.86 87.21 80.92
ETSMLP-Gate 62.55 88.49 86.72 75.34 91.66 93.78 83.09

Table 1: Performance on the LRA benchmark tasks. We follow the procedure reported in (Ma et al., 2022), and
report means across three seeds for our methods. The Bold scores indicate the best performance between S4, DSS,
and our models. We also include and underline the state-of-art results of concurrent methods such as Mega and S5.

models
Classification Similarity Inference .

CoLA SST-2 IMDB QQP MRPC MNLI QNLI

transformer 69.2 81.7 88.2 80.6 71.1 58.7 61.2
ESMLP 69.2 81.3 87.1 81.6 71.6 60.6 64.5

ESMLP-Gate 69.3 81.2 87.1 82.3 70.3 61.3 64.8

Table 2: Performance on the several NLU tasks. We report accuracy scores averaged across three seeds for all the
datasets. All models are trained from scratch and are of a fairly similar size. The bold scores indicate the highest
performance of each dataset.

We provide the hyperparameters used in our ex-
periments in Appendix B.

4.2 NLU
The LRA results demonstrate the benefits of our
method in sequential text tasks. Furthermore, we
conduct experiments on various NLU tasks and
compare our models with a transformer encoder
architecture trained from scratch. Our experimen-
tal evaluations were divided into three categories:
sentence classification, including CoLA (Warstadt
et al., 2019), SST-2 (Socher et al., 2013), and IMDB
(Maas et al., 2011); sentence similarity, including
QQP, 2 and MRPC (Dolan and Brockett, 2005);
and natural language inference, including MNLI
(Williams et al., 2018) and QNLI (Rocktäschel
et al., 2015). We present the experiment results
in Table 2, which reveal that our architecture can
achieve comparable or even superior performance
to transformers on all the datasets. Considering the
simple computation and slight increase in parame-

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

ters on MLP, these results suggest that the ETS has
tremendous potential in sequence learning tasks.

4.3 Analysis

4.3.1 Role of damped factors and fields

The experimental results presented above are en-
couraging and demonstrate the effectiveness of the
ETS for sequence modeling tasks. It is proved em-
pirically that even the simplest SSM like ETS can
achieve a competitive result compared with other
state space model variants. To further consider if
we would simplify the ETS in fewer parameters, we
conducted ablation studies on the damped factors
and the number fields. Table 3 shows the accu-
racy results of Listops if we remove α, β, or ω or
change all parameters from complex to real fields.
We could observe that whether to remove the α
or β or ω or the complex field, the performance
of our method drops significantly, especially α, ω
and complex field. These experiments illustrate the
necessity of our architecture in sequence modeling
tasks.
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model Arch Acc

ETSMLP

Real 40.5
No α 41.5
No ω 40.75
No β 56.05

- 61.35

Table 3: Ablation analysis of the learnable parameters
α, β, ω on ListOps. "-" means the keeping all the param-
eters of our methods.

model Initialization Acc

ETSMLP

Stable(0.3,0) 52.4
Stable(0.7,0) 52.4
Stable(0.5,0) 52.95
Ring(0.1,0.6) 60.55
Ring(0.6,0.9) 58.95
Ring(0.1,0.9) 61.35

Table 4: Performance of ListOps with different initial-
ization. "Ring" means uniform sampling on a ring
{rmin ≤ |z| ≤ rmax|z ∈ C}. "Stable" means ini-
tialization λ′ on the same point.

4.3.2 Initialization of parameters
S4 and its variants conducted several experiments
on HiPPO initialization and concluded that ran-
dom initialization may hurt performance (Gu et al.,
2021, 2022). Because of the different computation
processes, HiPPO initialization doesn’t work in
our models. Therefore, we consider the ring initial-
ization method, which involves uniform sampling
on a ring defined by the range {rmin ≤ |z| ≤
rmax|z ∈ C}. By predefining values for rmin and
rmax, we uniformly sample λ along the ring, be-
tween circles with radii rmin and rmax. In addition
to examining the effects of different initializations,
we conducted experiments using fixed-value ini-
tialization operations. Our experimental results
on listops are displayed in Figure 4. It can be
observed that our model exhibits consistent per-
formance across rings of varying sizes. However,
when dealing with fixed points, the effectiveness
diminishes significantly.

4.3.3 Efficiency and memory analysis
To assess the speed and memory efficiency across
different lengths, we performed experiments us-
ing a synthetic dataset that combines multiple sen-
tences to achieve sufficient length. Our chosen
task is language modeling, as it allows us to seg-

ment sentences into desired lengths. The maximum
length of our synthetic dataset is 8192. We adjusted
the sample length within each batch to compare the
words per second (WPS) and memory usage (in
GB) between the transformer, S4, and our model at
comparable sizes. The batch size was uniformly set
to 1 to ensure accurate memory usage. All training
procedures are carried out on an NVIDIA GeForce
GTX 2080 GPU.

The comparison results are presented in Figure
3. Notice that our approach consistently achieves
the highest WPS for all the sequence lengths. The
slower performance of S4 can be attributed to its
complex calculations on the NPLR. Both our model
and S4 share a common characteristic: the WPS
remains constant as the sequence length increases,
while the transformer shows a decrease. Further-
more, the memory requirements of the transformer
exhibit an almost quadratic growth, whereas our
model and S4 demonstrate linear growth, with our
model having a lower slope. For sequence lengths
below 3072, there is minimal difference between
our model and the transformer. However, as the
training length increases, the undesirable quadratic
growth in computation and memory complexity
becomes apparent in the transformer, whereas our
method avoids this issue.

5 Related Works

Since the Transformer was introduced, the
quadratic time cost of the attention operation has
been numerously researched. Optimizing this op-
eration can improve the efficiency when training
and inferencing long context for large language
models (Xiao et al., 2023). Recently, many trans-
former variants have been introduced to reduce
the complexity of attentions (Tay et al., 2022), in-
cluding sparse attention (Beltagy et al., 2020; Ki-
taev et al., 2020; Guo et al., 2021), kernel-based
methods (Choromanski et al., 2020; Kasai et al.,
2021; Peng et al., 2021), chunked attention with
gating (Hua et al., 2022; Ma et al., 2022) and other
efficient methods (Wang et al., 2020; Dao et al.,
2022). Another line of research tries to replace the
attention mechanism with other modules for long
sequences and avoid quadratic time costs. A dizzy-
ing number of attention-free models have emerged,
where SSMs are becoming one of the most promis-
ing models among them.
SSMs. S4 first investigated the SSM for long se-
quence modeling (Gu et al., 2021). They showed
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Figure 3: A training speed and memory comparison between the transformer and ETSMLP. Both models have
approximately 30M parameters, and the batch size remains constant at 1 under all circumstances.

that naive instantiations of the SSM did not perform
well but HiPPO-LegS matrix did (Gu et al., 2020),
and hence introduced the DPLR that efficiently
computed the complex diagonal plus low-rank ma-
trix. DSS observed that a fully diagonal matrix
could preserve the performance of the original S4
(Gupta et al., 2022), and S4D (Gu et al., 2022)
then showed that the initialization is critical for
DSS. Inspired by S4, many SSM variants emerged
recently. S5 replaced single-input, single-output
(SISO) SSMs in S4 with multi-input, multi-output
(MIMO) (Smith et al., 2022). SGConv viewed the
SSM as a global convolution model and suggested
that the convolution kernel’s sub-linear decay in
sequence length is indispensable (Li et al., 2022).
Linear Recurrent Unit (LRU) explored the relation-
ship between the SSM and linear RNN and showed
the importance of initialization, exponential param-
eterization, and normalization for SSMs (Orvieto
et al., 2023). MEGA was the most similar approach
to ours and plugged exponential moving average
into the attention mechanism to improve position-
wise local dependency (Ma et al., 2022). Our CES
mechanism only considered a position-aware but
representation-agnostic dependency which is com-
pletely different from the attention mechanism but
matches the performance of the transformer.

Other attention free models. MLP-Mixer (Tol-
stikhin et al., 2021), and its variants proposed to
replace the attention with MLPs in computer vi-
sion task (Touvron et al., 2022; Yu et al., 2022;
Tatsunami and Taki, 2022). Another MLP-based
model gMLP showed the potential of MLPs to
model sequence dependency and achieved com-
parable results in pretraining and downstream NLP
tasks (Liu et al., 2021). The Attention Free Trans-
former (AFT) replaced the attention mechanism
with an element-wise multiplication and avoided
the quadratic computation burden of the attention

matrix (Zhai et al., 2021). Recurrent Memory
Transformer (RMT) added a special cache token
and utilized the recursive components to increase
the context length in the transformer (Bulatov et al.,
2022, 2023). Receptance Weighted Key Value
(RWKV) leveraged token shift for parallel training
a simple linear RNN (Peng et al., 2023). Our mod-
els do not conflict with those models in spirit. Our
CES modules can be integrated into their models
to improve their capabilities of sequence learning.

6 Conclusion

We proposed the ETSMLP model for long-range
sequence modeling. Our approach began with a
special SSM, namely ETS, and incorporated addi-
tional hyperparameters. Moreover, we proposed
an exponential parameterization and a constraint
function essential for stable training. The exper-
imental results demonstrated the effectiveness of
the ETSMLP in sequence learning. Our proposed
module could become a plug-in module on other
models to enhance their sequence learning capabil-
ities. We hope our research could provide valuable
insights into the application of SSMs and encour-
age further exploration in this area.

7 Limitations

Our approach focuses on evaluating datasets con-
taining fewer than 100,000 samples, where the
influence of prior knowledge on performance is
substantial. In the next phase, we aim to con-
duct experiments on pretraining. The considerable
disparity between pretraining and training from
scratch requires meticulous adjustment of exponen-
tial smoothing and ingenious design of the architec-
ture, something like Mamba (Gu and Dao, 2023).

Another limitation of our approach lies in the
empirical design of the constraint function. This
arises from the potential for lambda to surpass the
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precision of 32-bit floating point numbers if its
training range is not restricted, and leads to NaN
results during backpropagation. We believe that
a low granularity parameterization can effectively
mitigate this concern. Our future work will priori-
tize establishing a smooth training process on the
parameter space.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China under grant number
62076009.

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev.
2023. Scaling transformer to 1m tokens and beyond
with rmt. arXiv preprint arXiv:2304.11062.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079–
11091.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794.

Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. 2022. Introduction to
algorithms. MIT press.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Quentin Fournier, Gaétan Marceau Caron, and Daniel
Aloise. 2023. A practical survey on faster and lighter
transformers. ACM Comput. Surv., 55(14s).

Everette S Gardner Jr. 1985. Exponential smoothing:
The state of the art. Journal of forecasting, 4(1):1–
28.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2020. Hippo: Recurrent mem-
ory with optimal polynomial projections. Advances
in neural information processing systems, 33:1474–
1487.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher
Ré. 2022. On the parameterization and initialization
of diagonal state space models. Advances in Neural
Information Processing Systems, 35:35971–35983.

Albert Gu, Karan Goel, and Christopher Ré. 2021. Effi-
ciently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2021. Longt5: Efficient text-to-text transformer for
long sequences. arXiv preprint arXiv:2112.07916.

Ankit Gupta, Albert Gu, and Jonathan Berant. 2022. Di-
agonal state spaces are as effective as structured state
spaces. Advances in Neural Information Processing
Systems, 35:22982–22994.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le.
2022. Transformer quality in linear time. In Inter-
national Conference on Machine Learning, pages
9099–9117. PMLR.

J Stuart Hunter. 1986. The exponentially weighted
moving average. Journal of quality technology,
18(4):203–210.

Rob Hyndman, Anne B Koehler, J Keith Ord, and
Ralph D Snyder. 2008. Forecasting with exponen-
tial smoothing: the state space approach. Springer
Science & Business Media.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama,
Gabriel Ilharco, Nikolaos Pappas, Yi Mao, Weizhu
Chen, and Noah A Smith. 2021. Finetuning pre-
trained transformers into rnns. arXiv preprint
arXiv:2103.13076.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and
Debadeepta Dey. 2022. What makes convolutional
models great on long sequence modeling? arXiv
preprint arXiv:2210.09298.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le.
2021. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215.

334

https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.1145/3586074
https://doi.org/10.1145/3586074
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian
He, Liangke Gui, Graham Neubig, Jonathan May,
and Luke Zettlemoyer. 2022. Mega: moving av-
erage equipped gated attention. arXiv preprint
arXiv:2209.10655.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Eddie McKenzie and Everette S Gardner Jr. 2010.
Damped trend exponential smoothing: a modelling
viewpoint. International Journal of Forecasting,
26(4):661–665.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. 2023. Resurrecting recurrent neu-
ral networks for long sequences. arXiv preprint
arXiv:2303.06349.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Huanqi Cao, Xin Cheng,
Michael Chung, Matteo Grella, Kranthi Kiran GV,
et al. 2023. Rwkv: Reinventing rnns for the trans-
former era. arXiv preprint arXiv:2305.13048.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A Smith, and Lingpeng Kong.
2021. Random feature attention. arXiv preprint
arXiv:2103.02143.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
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A Proof of Proposition 1

We first restate Proposition 1 for the sake of conve-
nience.

Proposition. Let λ ∈ C be within the interior
of the hollow unit disc D◦(0, 1) = {z||z| <
1}/{(0, 0)}. We define λ′ = log log λ which sub-
stitutes λ in the equation (10). If the gradients
of yt satisfy

∑L
0

dL
dyt

yt < ∞, the gradients of the
real and imaginary parts of λ′ are bounded for all
λ ∈ D◦(0, 1).

Proof. Let the real and imaginary parts of λ′ be a
and b, thus λ′ = a+ bi.

We define intermediate variables y′t ∈ C for t in
range {0, 1, . . . , L} and

y′t =
t−1∑

j=0

(λα)j(1− λα)βxt−j .

Compared with the equation (10), we find that yt =
ℜ(y′t).

We have that if
∑L

0
dL
dyt

yt < ∞, then
∑L

0
dL
dyt

ℑ(y′t) < ∞. This is proved by the fol-
lowing:

ℜ(y′
t)

ℑ(y′
t)

=

∑t
j=0 ℜ(β(1− λα)λα∗j)xt−i∑t
j=0 ℑ(β(1− λα)λα∗j)xt−i

=

∑t
j=0 ℜ((β1 + iβ2)((λ

α)j − (λα)j+1))xt−i∑t
j=0 ℑ((β1 + iβ2)((λα)j − (λα)j+1))xt−i

=

∑t
j=0 |λα|j(β1(cos(jθ)− |λα| cos((j + 1)θ))−

∑t
j=0 |λα|j(β2(cos(jθ)− |λα| cos((j + 1)θ))+

β2(sin(jθ)− |λα| sin((j + 1)θ)))xt−i

β2(sin(jθ)− |λα| sin((j + 1)θ)))xt−i
.

It is obvious that the ratio ℜ(y′t)
ℑ(y′t)

is bounded for the

finite summation
∑L

0
dL
dyt

ℑ(y′t) is bounded too.
To compute the gradients of a and b, we consider

the gradients of λ′ for y′t. The function of y′t is
holomorphic function for λ′ thus the gradients is:

dy′
t

dλ′ =
t∑

j=0

βxt−j(αjλ
αj−1 − α(j + 1)λα(j+1)−1)ee

λ′
eλ

′

=
t∑

j=0

βxt−jαλ
αj(j − (j + 1)λα) log(λ)

=
t∑

j=0

βxt−jαλ
αj(j − (j + 1)λα) log(λ).

As y′t is a holomorphic function for λ′ and yt =
ℜ(y′t), we thus have:

dy′t
dλ′ =

dyt
da

− dyt
db

i.

Thus, the gradients of a and b is computed by the
chain rule in the following:

dL

da
=

L∑

t=1

dL

dyt

dyt
da

=
L∑

t=1

dL

dyt
ℜ(

t∑

j=0

βxt−jαλ
αj(j − (j + 1)λα) log(λ));

dL

db
=

L∑

t=1

dL

dyt

dyt
db

= −
L∑

t=1

dL

dyt
ℑ(

t∑

j=0

βxt−jαλ
αj(j − (j + 1)λα) log(λ)).

Obviously, dL
da and dL

db are continue on all λ ∈
D◦(0, 1).

We consider the boundary of D◦(0, 1). We
first take a look at the zero point. For
limλ→∞ λαj log(λ) = 0, we can easily compute
the limitation :

lim
λ→0

dL

da
=

L∑

t=1

dL

dyt
ℜ(

t∑

j=0

βxt−jαj ∗ (λαj log(λ)))

= 0.

For the point λ0 on the unit cycle, we can find
a constant C(λ0) ∈ D(0, 2L) which satisfies
ℜ(βαλαj

0 (j − (j + 1)λα
0 )) ≤ ℜ(βαλαj

0 ∗ C(λ0))
for all j ∈ {1, 2, . . . , L}. Therefore,

dL

da
=

L∑

t=1

dL

dyt

dyt
da

≤
L∑

t=1

dL

dyt
ℜ(

t∑

j=0

βxt−jαλ
αjC(λ0) log(λ))

=
L∑

t=1

dL

dyt
ℜ( y′t

1− λα
αC(λ0) log(λ)).
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Task D L H Norm LR WD DP

ListOps 160 12 160 layer 0.01 0.01 0.0
Text 160 4 160 layer 0.005 0.01 0.1

Retrieval 160 6 160 layer 0.005 0.01 0.1
Image 160 12 320 batch 0.01 0.01 0.0

Pathfinder 128 6 256 batch 0.01 0.01 0.0
Path-X 128 6 256 batch 0.05 0.01 0.0
CoLA 512 3 512 layer 1e-5 0.1 0.1
SST-2 512 12 512 layer 1e-5 0.1 0.1
iMDB 512 4 512 layer 1e-5 0.1 0.3
QQP 512 6 512 layer 1e-5 0.1 0.1

MRPC 512 6 512 layer 1e-5 0.1 0.1
MNLI 512 6 512 layer 1e-5 0.1 0.1
QNLI 512 6 512 layer 1e-5 0.1 0.1

Table 5: The hyperparameters of the ESMLP on LRA and NLU tasks. D is the embedding size, H is the hidden
features, and L is the number of layers. LR is the learning rate, WD is weight decay and DP is dropout. BN and
LN in the column Norm refer to Batch Normalization and Layer Normalization. For NLU tasks, the small and
base models have different model scales.

We know that log(λ)α
1−λα is finite on the unit cycle ex-

cept for 1 and the limλ→1
log(λ)α
1−λα = −1 is also

finite. As a result, we can find a constant D which
satisfies ℜ(y′t α log(λ0)

1−λα
0

C(λ0)) ≤ ℜ(y′t)D for all
t = {1, . . . , L} and λ0. Thus, for all λ0 on the
unit cycle we have:

dL

da
≤

L∑

t=1

dL

dyt
ℜ(y′t)D < ∞.

Similarly, we have:

dL

da
≤

L∑

t=1

dL

dyt
ℑ(y′t)D < ∞.

As the function dL
da and dL

db are continues and the
boundaries are finite, by the boundedness theo-
rem, we conclude that the gradients of a and b
are bounded for all λ ∈ D◦(0, 1).

B Experimental setup

Architecture. We present an overview of our ar-
chitecture in Figure 2. The ETSMLP architecture
contains L blocks and each block contains a nor-
malization, skip connection, and an MLP plus CES.
We use the ReLU activation function in MLPs. For
ETSMLP-Gate architecture, an extra gate mecha-
nism is added parallel to the original architecture.

For the sake of performance, we add extra normal-
ization like LRU (Orvieto et al., 2023). We use
bidirectional models for all datasets.
Experimental details. We use the Adam optimizer
(Kingma and Ba, 2017), with the hyperparameter
β1 = 0.9, β2 = 0.98. We use warmup for the
learning rate LR that we start from a value of 10−7

and increase the learning rate linearly up a specified
value for the first 10% of training. Then a linear
annealing schedule is conducted for the rest of the
training. All experiments except for Path-X were
carried out on an NVIDIA GeForce GTX 2080
GPU, while Path-X requires 8 NVIDIA GeForce
GTX 2080 GPUs.
Hyperparameters. We follow the general opti-
mization approach used by Mega (Ma et al., 2022).
Table 5 presents the main hyperparameters for each
experiment. For all the experiments, we tune the
embedding size D, the number of layers L, and
the hidden features H . We also tune the learning
rate LR and weight decay WD for all the datasets.
Besides, the maxλ of the constraint function is all
set to 0.9999.
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