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Abstract

While instruction-tuned models have shown re-
markable success in various natural language
processing tasks, accurately evaluating their
ability to follow instructions remains challeng-
ing. Existing benchmarks primarily focus on
common instructions that align well with what
the model learned during training. However,
proficiency in responding to these instructions
does not necessarily imply strong ability in in-
struction following. In this paper, we propose a
novel instruction-following evaluation protocol
called verbalizer manipulation. It instructs the
model to verbalize the task label with words
aligning with model priors to different extents,
adopting verbalizers from highly aligned (e.g.,
outputting “positive” for positive sentiment), to
minimally aligned (e.g., outputting “negative”
for positive sentiment). Verbalizer manipula-
tion can be seamlessly integrated with any clas-
sification benchmark to examine the model’s re-
liance on priors and its ability to override them
to accurately follow the instructions. We con-
duct a comprehensive evaluation of four major
model families across nine datasets, employ-
ing twelve sets of verbalizers for each of them.
We observe that the instruction-following abil-
ities of models, across different families and
scales, are significantly distinguished by their
performance on less natural verbalizers. Even
the strongest GPT-4 model struggles to per-
form better than random guessing on the most
challenging verbalizer, emphasizing the need
for continued advancements to improve their
instruction-following abilities.

1 Introduction

Large language models have achieved remarkable
success in zero-shot generalization for various natu-
ral language processing (NLP) tasks via instruction
tuning (Wei et al., 2022a; Ouyang et al., 2022; Sanh
et al., 2022; Iyer et al., 2022). One representative

∗ Work was done during Jun’s internship at Samsung
Research America.

model is ChatGPT1, which has shown promising re-
sults in text summarization (Yang et al., 2023), cod-
ing (Surameery and Shakor, 2023), healthcare (Sal-
lam, 2023; Zhang et al., 2024), education (Baidoo-
Anu and Owusu Ansah, 2023), finance (Dowling
and Lucey, 2023) and law (Choi et al., 2023). Ex-
isting benchmark datasets (Wang et al., 2019b,a;
Cobbe et al., 2021; Hendrycks et al., 2021; Li
et al., 2023) primarily focus on common instruc-
tions that align well with what models learned dur-
ing pre-training or instruction-tuning. However,
proficiency in responding to these instructions does
not necessarily imply strong ability in instruction
following as models may rely on memorization of
favorable responses rather than genuine generaliza-
tion due to the vast volume of data they see during
training (Tirumala et al., 2022). Nonetheless, in-
struction following capability plays an important
role in task generalization for real-world applica-
tions. For example, a user may want models to out-
put answers only when they are certain to reduce
hallucinations or control model response length or
assign models with specific roles (e.g. tax expert).
A natural question arises: How can we systemati-
cally and automatically evaluate instruction-tuned
models in terms of instruction-following capabil-
ity?

In this paper, we propose to evaluate the
instruction-following ability from the aspect of how
well models can follow instructions that may not
align with their priors and design a novel frame-
work to synthesize them. Specifically, we propose
verbalizer manipulation2 that can be used to con-
struct instructions aligning with model priors to
different extents, from natural, to neutral, to un-
natural, as shown in Figure 1. In natural instruc-
tions, we choose multiple verbalizers that align
with prior knowledge for each dataset. In neutral

1https://chat.openai.com
2Following Schick and Schütze (2021), we define a verbal-

izer as a mapping from golden label names to target ones.
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If a movie review is positive, you
need to output "positive". If a movie
review is negative, you need to
output "negative".

Movie review: lovely and poignant.

Answer:

Instruction-tuned Large 
Language Models

positive foo negative

✓ ✘ ✘

Input

Output

If a movie review is positive, you
need to output ”foo". If a movie
review is negative, you need to
output ”bar".

Movie review: lovely and poignant .

Answer:

Instruction-tuned Large 
Language Models

positive foo negative

✘ ✓ ✘

Input

Output

If a movie review is positive, you
need to output ”negative". If a movie
review is negative, you need to
output ”positive".

Movie review: lovely and poignant .

Answer:

Instruction-tuned Large 
Language Models

positive foo negative

✘ ✘ ✓

Input

Output

Natural Neutral Unnatural

Figure 1: An illustrative example to construct instructions aligning with model priors to different extents, from
natural (left), to neutral (middle), to unnatural (right) through verbalizer manipulation for movie review sentiment
classification. Levels in terms of aligning with prior knowledge are ranked as natural > neutral > unnatural.

instructions, we select multiple verbalizers that are
semantically irrelevant to given tasks. In unnatu-
ral instructions, verbalizers are flipped from their
counterparts in natural instructions and contradict
with prior knowledge. For example, in a movie
review sentiment analysis task, we can use verbal-
izer “positive|negative”, “1|0”3, “yes|no” for movie
review with positive/negative sentiment to create
three sub-evaluation sets for the same dataset in
natural instructions. The same method can be also
used to create multiple sub-evaluation sets for the
same dataset in neutral and unnatural instruction
as well. The levels in terms of aligning with prior
knowledge of these three instruction groups are
ranked as natural > neutral > unnatural. By con-
trolling the level of alignment with prior knowledge
and ruling out other factors, we are able to system-
atically and automatically evaluate the instruction-
following capabilities of instruction-tuned models
with minimal human efforts.

We evaluate four different model families across
various model sizes, namely, Flan-T5 (Wei et al.,
2022a), GPT-Series (Ouyang et al., 2022; OpenAI,
2023), Vicuna (Chiang et al., 2023) and OPT-IML
(Iyer et al., 2022), on nine benchmark datasets:
curated instruction evaluation sets via verbalizer
manipulation. First, we compare model perfor-
mance on natural, neutral and unnatural instruc-
tions. We find that larger instruction-tuned models
often perform better on both natural and neutral
instructions. Although performance on neutral in-
structions is worse than on natural instructions for

3Different from Wei et al. (2023b), we hypothesize that
“1”/“0” align more with “positive”/“negative”, respectively,
during pre-training or instruction-tuning. This hypothesis is
supported by our results on small models in Section 4.2.

small models, their performance gap tends to be
smaller when model scales and can be (almost)
closed for strong OpenAI davinci-003, ChatGPT
and GPT-4. On the contrary, the performance of
different model families diverge significantly on
unnatural instructions and there is no clear and
consistent trend across model families, showing
their significant differences in the ability to follow
instructions. Overall, these results indicate that
although scaling is an effective way to improve
instruction-following ability, it may not be enough
when instructions contradict prior knowledge.

Second, we examine verbalizers one by one
in both natural instructions and their verbalizer-
flipped counterparts in unnatural instructions. We
find that models are not sensitive to verbalizers
in natural instructions. However, in unnatural in-
structions, performance of the same model diverges
significantly and when model further scales, they
exhibit scaling-shape (Kaplan et al., 2020) or U-
shape (Wei et al., 2022b) or inverse scaling-shape
(McKenzie et al., 2022) depending on model family
and verbalizers. Even strong ChatGPT and GPT-4
only perform similarly to random guessing when
flipped golden label names are used as verlizers in
unnatural instructions, showing that there still exist
fundamental limitations of these models to follow
instructions when instructions contradict their prior
knowledge.

Finally, we explore whether zero-shot chain of
thought (zero-shot-CoT) prompting (Kojima et al.,
2022) can improve model performance in unnat-
ural instructions that utilize flipped golden label
names as verbalizers. We find that although it is
helpful when model scales, there still exist large
performance gaps compared to corresponding re-
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sults in natural instructions. Only strong Chat-
GPT and GPT-4 can outperform random guess-
ing while other three model families (Flan-T5, Vi-
cuna, OPT-IML) consistently perform worse than
random guessing baseline. In a nutshell, when
model scales to larger sizes, they still have dif-
ficulty in following instructions contradicting to
prior knowledge even though they are allowed to
output intermediate reasoning steps. We hope that
our work can inspire future research to focus more
on instruction-following capability.

2 Related Work

Instruction-tuned Large Language Models.
Large language models have revolutionized the
field of NLP and they can perform well in many
NLP tasks without any parameter update by only
being given several demonstrations in their prompts
(Brown et al., 2020). These models are pre-trained
with next token prediction or other pre-training ob-
jectives, and hence, may not be good at following
instructions from humans (Ouyang et al., 2022). To
bridge this gap, there have been growing interests
in NLP community to train models that can fol-
low human instructions. Mishra et al. (2022); Wei
et al. (2022a); Iyer et al. (2022); Sanh et al. (2022)
collect standard NLP datasets, write templates for
them and transform them into text-to-text format
(Raffel et al., 2020) and show that models can gen-
eralize to unseen tasks if they are trained on many
seen tasks. Chung et al. (2022) studies the scal-
ing effects of instruction-tuning and systematically
study what factors are important for unseen test
generalizations. Longpre et al. (2023) further finds
that task balancing and enrichment techniques are
important for instruction-tuning. This line of work
mainly focuses on standard NLP tasks and does not
reflect how language models are used in many real-
world applications (Ouyang et al., 2022). To bridge
this gap, Ouyang et al. (2022) collects instructions
from humans including their customers to train
an instruction-following models like ChatGPT and
has achieved remarkable successes. However, col-
lecting large-scaling instruction-following data is
time-consuming and expensive, and researchers
have been working on utilizing ChatGPT-like mod-
els as data generators or human-in-the-loop to
generate instruction-following data. Taori et al.
(2023) utilizes GPT 3.5 to generate 52K instruction-
following data and uses it to train Alpaca. Xu et al.
(2024) further explores to evolve instructions from

Alpaca (Taori et al., 2023) to generate more com-
plicated instruction-following data to train Wiz-
ardLM. However, both Alpaca and WizardLM only
utilize single-turn data. To alleviate this issue, Xu
et al. (2023) utilizes ChatGPT to chat with itself to
generate high-quality conversations to train Baize.
Chiang et al. (2023) train Vicuna with ShareGPT
dialogue data, which are multi-turn conversation
dialogues between human users and ChatGPT.

Language Model Evaluation. Language mod-
els before the era of instruction-tuning (Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020;
Brown et al., 2020) mainly focus on perplexity4

or results on standard benchmark datasets (Wang
et al., 2019b,a), as well as challenging test sets
focusing on robustness or generalization (Ribeiro
et al., 2020; Yan et al., 2022). However, as mod-
els become more and more capable in the era of
instruction-tuning, they become harder and harder
to evaluate. Hendrycks et al. (2021) collects
MMLU dataset including elementary mathematics,
US history, computer science, law, etc., to measure
knowledge and problem solving capabilities of lan-
guage models. Liang et al. (2023) instead proposes
HELM, a framework to comprehensively evalu-
ate their reasoning, knowledge, robustness, fair-
ness, etc. Chia et al. (2023) introduces InstructEval
to comprehensively evaluate instruction-tuned lan-
guage models. Recently, there have been growing
interests in leveraging GPT-4 to evaluate weaker
language models (Xu et al., 2024, 2023) although
it has been found to be unfair (Wang et al., 2023).
However, this line of work mainly focuses on eval-
uating their general capabilities. Instead, our work
focuses on automatic instruction-following evalua-
tion with minimum human efforts. There have been
several works sharing a similar focus as ours. Min
et al. (2022) finds demonstration with random la-
bels often have comparable performance than using
golden labels. We instead focus on instruction-only
setting without any demonstration where models
are instructed to output specific label names accord-
ing to their golden labels. Si et al. (2023) measures
the inductive biases of large language models via
different features, we instead focus on the same
task but manipulate different verbalizers to evalu-
ate their instruction-following capability. Webson
and Pavlick (2022) finds that models tend to be
sensitive to templates and verbalizes for natural

4https://paperswithcode.com/sota/
language-modelling-on-wikitext-2
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language inference (NLI) tasks for small models
while our work goes beyond NLI and finds suffi-
ciently large models can perform similarly under
different verbalizers. Even when label names are
flipped, they can still perform very well under cer-
tain tasks, e.g. sentiment classification. The closest
work to ours are probably Jang et al. (2023), Wei
et al. (2023b) and Wei et al. (2023a). Jang et al.
(2023) evaluates instruction-tuned language models
with negated prompts while our work utilizes ver-
balizer manipulations from different groups to con-
trol the level of alignment with prior knowledge to
follow instructions and have different conclusions.
Wei et al. (2023b) finds that large instruction-tuned
language models can strengthen their priors and
cannot effectively learn to flip labels from given
demonstrations. We instead show that if instruc-
tions are provided, they do have the ability to flip
labels for some tasks due to their strong instruction-
following capabilities. Wei et al. (2023a) proposes
symbol tuning to force models to learn in-context
by changing their label names with symbols to
better leverage examples in demonstrations while
our work aims to utilize verbalizer manipulation
to evaluate the instruction-following capabilities of
large language models. Contemporary to our work,
Wu et al. (2023) evaluates models’ task-level gen-
eralizablity by manually designing counterfactual
task variants. On the contrary, we propose verbal-
izer manipulation as a unified evaluation protocol
that can be applied to any classification tasks with
minimum human efforts.

3 Experimental Setup

3.1 Datasets

We conduct experiments on nine different binary
classification benchmark datasets5. Specifically,
we utilize SST-2 ((Socher et al., 2013); Movie re-
view sentiment classification), FP ((Malo et al.,
2014); Financial phrase sentiment classification),
EMOTION((Saravia et al., 2018); Twitter mes-
sage emotion classification), SNLI ((Bowman
et al., 2015); Stanford natural language inference),
SICK ((Marelli et al., 2014); Sentence pair en-
tailment analysis), RTE ((Dagan et al., 2006);
Textual entailment recognition), QQP ((Chen
et al., 2017); Quora question duplicate detection),

5Our method can also be used in multi-class classification
problems as long as one clarifies how golden labels are manip-
ulated in the instruction. For simplicity, we focus on binary
classification tasks in this work.

MRPC((Dolan and Brockett, 2005); Paraphrase
identification) and SUBJ ((Conneau and Kiela,
2018); Subjective/objective movie description clas-
sification). For each dataset and each verbalizer,
we use 100 examples to construct our evaluation
sets. We defer more details to Appendix B.

3.2 Verbalizer Manipulation

For each dataset, we have an instruction template
to manipulate its verbalizers. Our templates to ma-
nipulate labels for each dataset are deferred to Ap-
pendix C. Specifically, for each dataset in natural /
neutral / unnatural instructions, we have multiple
verbalizers, as shown in Table 1. For example, for
SST-2, golden label names are “positive”|“negative”
and in natural instructions, they will be mapped
to “positive”|“negative”, “1”|“0”, “yes|no”. In
neutral instructions, they will be mapped to
“foo”|“bar”, “bar”|“foo”, “sfo”|“lax”, “lax”|“sfo”,
“lake”|“river”,“river”|“lake”. In unnatural in-
structions, we map them to “negative”|“positive”,
“0”|“1”, “no”|“yes”. An illustrative example of
three different instruction groups to manipulate ver-
balizers for SST-2 dataset is shown in Figure 1.
For each dataset and each verbalizer (mapping),
we generate an evaluation set variant, leading to
2700 examples (9 datasets × 3 mappings × 100
examples/dataset) in both natural and unnatural
instructions, and 5400 examples (9 datasets × 6
mappings × 100 examples/dataset) in neutral in-
structions.

3.3 Instruction-tuned Models

We evaluate state-of-the-art instruction-tuned large
language models, namely Flan-T5, GPT-Series,
Vicuna and OPT-IML, on datasets in Section 3.1
via verbalizer manipulation in Section 3.2 across
various model sizes. For Flan-T5, we eval-
uate its small (80M), base (250M), large
(780M), xl (3B) and xxl (11B) versions. For
GPT-Series, we evaluate text-ada-001 (ada),
text-babbage-001 (babbage), text-curie-001
(curie), text-davinci-003 (davinci), ChatGPT
and GPT-4 via official OpenAI APIs6. For Vi-
cuna, we evaluate its 7B (vicuna-7b-1.1) and
13B (vicuna-13b-1.1) versions. For OPT-IML,
we utilize its 1.3B (opt-iml-max-1.3b) and 30B
(opt-iml-max-30b) versions (Iyer et al., 2022)).
Since our work focuses on evaluating instruction-

6For experiments in the main body of the paper, we
used gpt-3.5-turbo-0301 for ChatGPT and gpt-4-0314
for GPT-4, respectively.
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Dataset Golden label name Natural Neutral Unnatural

SST-2
positive positive, 1, yes foo, bar, sfo, lax, lake, river negative, 0, no
negative negative, 0, no bar, foo, lax, sfo, river, lake positive, 1, yes

FP
positive positive, 1, yes foo, bar, sfo, lax, lake, river negative, 0, no
negative negative, 0, no bar, foo, lax, sfo, river, lake positive, 1, yes

EMOTION
joy joy, 1, yes foo, bar, sfo, lax, lake, river sadness, 0, no

sadness sadness, 0, no bar, foo, lax, sfo, river, lake joy, 1, yes

SNLI
entailment entailment, 1, yes foo, bar, sfo, lax, lake, river contradiction, 0, no

contradiction contradiction, 0, no bar, foo, lax, sfo, river, lake entailment, 1, yes

SICK
entailment entailment, 1, yes foo, bar, sfo, lax, lake, river contradiction, 0, no

contradiction contradiction, 0, no bar, foo, lax, sfo, river, lake entailment, 1, yes

RTE
entailment entailment, 1, yes foo, bar, sfo, lax, lake, river not entailment, 0, no

not entailment not entailment, 0, no bar, foo, lax, sfo, river, lake entailment, 1, yes

QQP
duplicate duplicate, 1, yes foo, bar, sfo, lax, lake, river not duplicate, 0, no

not duplicate not duplicate, 0, no bar, foo, lax, sfo, river, lake duplicate, 1, yes

MRPC
equivalent equivalent, 1, yes foo, bar, sfo, lax, lake, river not equivalent, 0, no

not equivalent not equivalent, 0, no bar, foo, lax, sfo, river, lake equivalent, 1, yes

SUBJ
subjective subjective, 1, yes foo, bar, sfo, lax, lake, river objective, 0, no
objective objective, 0, no bar, foo, lax, sfo, river, lake subjective, 1, yes

Table 1: Golden label name mapping for verbalizer manipulation in three different groups.

following capability, we focus on instruction-only
setting without any demonstration. We explore the
effect of adding few-shot demonstrations in Ap-
pendix A. For all experiments, we set temperature
as 0 during decoding. We parse predictions from
decoded strings and use accuracy (%) as the evalu-
ation metric.

4 Experimental results

4.1 Results on Instructions with Different
Naturalness

We evaluate four model families in Section 3.3
on natural, neutral and unnatural instructions and
report results for each instruction group that are
averaged over datasets and verbalizers. Results are
shown in Figure 2.

Larger models generally perform better on both
natural and neutral instructions. For Flan-T5,
GPT-series7 and OPT-IML, we find that model per-
formance improves as they scale to larger sizes
on both natural and neutral instructions. These
results are encouraging since it seems that larger
models can have better instruction-following ca-
pabilities even though instructions do not align
with prior knowledge on neutral instructions. Fur-
ther comparing model performance on natural and
neutral instructions, we find that smaller models
(model size ≤ 30B) perform worse on neutral in-

7Since exact model sizes in GPT-Series are unknown for
some of them, we assume that ada ≤ babbage ≤ curie ≤
davinci ≤ ChatGPT ≤ GPT-4.

structions. These performance gaps indicate that
smaller models still have difficulty in following in-
structions. However, their performance gap tends
to be smaller when model scales and can be (al-
most) closed for strong OpenAI davinci, ChatGPT
and GPT-4, demonstrating their strong instruction-
following capabilities. These results show that sim-
ply scaling model size is an effective method to
improve model instruction-following capabilities.

Different model families diverge significantly on
unnatural instructions. Although larger mod-
els generally perform better on both natural and
neutral instructions, this is not true for unnatural
instructions. Different model families diverge sig-
nificantly on unnatural instructions and there is
no clear and consistent trend across model fami-
lies. For Flan-T5, results are U-shaped when model
scales (Wei et al., 2022b), while for OPT-IML,
results follows inverse scaling-shape (McKenzie
et al., 2022). In fact, results on these two model
families are significantly worse than random guess-
ing (50%). Although Vicuna and GPT-Series fol-
low scaling-shape (Kaplan et al., 2020), their per-
formance still has large gaps compared to results
on natural instructions, and these gaps seem not to
be smaller when they scale. For example, the per-
formance gap for ChatGPT is 11.8% while stronger
GPT-4 has 15.7%, making it unclear if further scal-
ing them can bridge this performance gap. This
is surprising since these clear and valid instruc-
tions can be easily followed by humans but remain
difficult for GPT-4, which has shown near human-
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Figure 2: Results comparison under natural, neutral and unnatural instructions across different model families.

level performance on many tasks (Bubeck et al.,
2023). Overall, these results indicate that although
scaling is an effective way to improve instruction-
following, it does not seem to be enough when
instructions contradict prior knowledge.

4.2 Results of Different Verbalizers in Natural
and Unnatural Instructions

Previous discussions focus on average results
across different verbalizers for each instruction
group. However, it is possible that verbalizers even
in the same instruction group align or contradict
with prior knowledge differently. For example, it is
hard to know if “yes” aligns with prior knowledge
more than “1” in SST-2 dataset for natural instruc-
tions with positive golden labels. Therefore, we
further delve into the results of different verbalizers
for natural instructions and its flipped version in
unnatural instructions. Average results over nine
different datasets are summarized in Figure 3.

Models perform similarly for different verbaliz-
ers in natural instructions. We find that models
across four families perform similarly for different
verbalizers in natural instructions and larger mod-
els often perform better than their smaller coun-
terparts. However, we do observe that verbaliz-
ers where models perform the best may change in
different model sizes and families. For example,
for Flan-T5 780M, natural-golden verbalizers >
natural-1|0 > natural-yes|no while for Flan-T5
11B, the order is reversed. In addition, for Vi-
cuna, the best performing verbalizer is natural-1|0,
while for OPT-IML, natural-golden verbalizers per-
forms better. These results show different models
can have different prior knowledge. However, for
strong davinci, ChatGPT and GPT-4, their differ-
ences are almost not noticeable. This is non-trivial
since larger models often have a better understand-
ing about world knowledge and hence store more

prior knowledge (Wei et al., 2023b). More con-
sistent results on larger models again show that
scaling is an very important factor for instruction-
following capability.

Models diverge significantly for different verbal-
izers in unnatural instructions. Although pre-
vious discussion has shown that models perform
similarly for different verbalizers in natural instruc-
tions, results on their flipped verbalizers in unnatu-
ral instructions show that they diverge significantly.
In Figure 3, we find that verbalizers in unnatural
group shows very different behaviors when they
scale and this behavior also changes in different
model families. For example, on unnatural-no|yes
and unnatural-0|1, Vicuna achieves better perfor-
mance when model sizes are larger but degrades
on unnatural-flipped golden verbalizers. However,
for OPT-IML on unnatural no|yes, model perfor-
mance decreases when it scales to be larger. These
results further strengths our finding that different
models can have different prior knowledge. On
the other hand, it also shows that scaling is not
the only factor influencing instruction following
although it is important. Further more, we find that
for the largest model in each family, performance
is ranked as unnatural 0|1 > unnatural no|yes >
unnatural-flipped golden verbalizers. These re-
sults show that although they may have different
prior knowledge, the difficulty level of overriding
their prior knowledge to follow instructions seems
consistent. Finally, we find that even the best Chat-
GPT and GPT-4 only perform similar to random
guessing, showing that these models still have fun-
damental limitations to follow instructions when
instructions contradict to their prior knowledge.
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Figure 3: Results of different verbalizers in natural and unnatural instructions.

4.3 Results Comparison between Direct and
Zero-Shot Chain-of-Thought Prompting

Previous results have shown that even the best Chat-
GPT and GPT-4 only perform similar to random
guessing on unnatural-flipped golden verbalizers
and these results are obtained via direct prompt-
ing. In this subsection, we further explore if out-
putting chain-of-thought (CoT) (Wei et al., 2022c)
on unnatural-flipped golden verbalizers evaluation
subset can make models perform better. There-
fore, we design another template for each dataset
and add Let’s think step by step. in the prompt
following Kojima et al. (2022). We summarize re-
sults on natural-golden verbalizers and unnatural-
flipped golden verbalizers via direct prompting, and
unnatural-flipped golden verbalizers via zero-shot
CoT in Figure 4.

For Vicuna and OPT-IML, inverse scaling-
curves in unnatural-direct prompting become scal-
ing curves in unnatural-zero shot CoT prompt-
ing. For Flan-T5, results are much more U-shaped
in unnatural-zero shot CoT compared to those in
unnatural-direct prompting. Further more, Chat-
GPT and GPT-4 can significantly outperform ran-
dom guessing in unnatural-zero shot CoT prompt-
ing while their counterparts in unnatural-direct
prompting only have similar performance to ran-
dom guessing. This is encouraging since it shows
that scaling is an effective method to improve
instruction-following capabilities along with more
advanced prompting techniques. However, they
still show large performance gaps compared to re-
sults under natural-direct prompting setting. For
example, Flan-T5 11B, Vicuna 13B and OPT-IML
30B still significantly underperform random guess-
ing. Even strong ChatGPT still has 16.8% accuracy
gap to natural-direct prompting and for GPT-4, this
gap is surprisingly larger and becomes 24.3%. In a
nutshell, zero-shot CoT prompting can make mod-
els better instruction-followers when instructions

contradict prior knowledge, but the models still
have a large performance gap with instructions that
align with prior knowledge.

4.4 Per Dataset Analysis

The previous subsection focuses on average results
across different datasets and only ChatGPT and
GPT-4 can outperform random guessing on unnat-
ural instructions with flipped golden verbalizers
in zero shot CoT prompting. In this subsection,
we further delve into each dataset by comparing
their results using direct prompting with golden
verbalizers in natural instructions, direct and zero
shot CoT prompting with flipped golden verbaliz-
ers on unnatural instructions. We group results of
datasets according to their tasks (e.g., EMOTION,
FP and SST-2 are sentiment classification datasets)
and results are shown in Figure 5.

ChatGPT and GPT-4 perform comparably on
majority of datasets in both natural and unnat-
ural instructions. ChatGPT performs similarly
on majority of datasets (6/9, 6/9) compared to GPT-
4 (≤ 10% performance gap) on both natural and
unnatural instructions, respectively. GPT-4 out-
performs ChatGPT > 10% on RTE and SUBJ in
natural settings but underperforms it in unnatural
setting. Another outlier dataset is MRPC, where
GPT-4 outperforms ChatGPT 13% and 53% in nat-
ural and unnatural setting, respectively. Overall,
these results show that they share more similarity
than difference via direct prompting.

ChatGPT and GPT-4 retain performance on
sentiment classification task in unnatural direct
prompting compared to natural counterpart but
drop significantly on natural language inference
task. Surprisingly, we find that ChatGPT and
GPT-4 can retain their performance on sentiment
classification task (FP, EMOTION, SST-2) but drop
significantly on natural language inference (NLI)
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Figure 5: Results comparison between natural-direct prompting with golden verbalizers, unnatural direct and
zero-shot chain-of-thought prompting with flipped golden verbalizers for each dataset on ChatGPT and GPT-4.

task (SNLI, SICK, RTE). As an example, on SST-
2, ChatGPT outperforms 1% and GPT-4 only de-
creases 5% with unnatural direct prompting while
for SICK, ChatGPT and GPT-4 decrease 96% and
99%, respectively. We hypothesize that the discrep-
ancy is because sentiment classification requires
less reasoning while NLI requires more, making
flipping golden verbalizers much more difficult.
One may wonder if they show similar trend on other
tasks. For paraphrase identification task, QQP has
similar performance after verbalizer flipping for
both ChatGPT and GPT-4 while for MRPC, only
ChatGPT drops a lot and GPT-4 retains its per-
formance. This result shows that task can be an
important factor but not the only one. Models can
be sensitive to data distribution.

ChatGPT and GPT-4 with unnatural-zero shot
CoT improve significantly in NLI task but it
has much less effect on sentiment classification.
Both ChatGPT and GPT-4 with unnatural-zero shot
CoT improve significantly in NLI datasets, and
ChatGPT can outperform GPT-4 after zero-shot
CoT. On the other hand, unnatural-zero shot CoT

has much less effect on sentiment classification task
and even hurts performance across three datasets
for ChatGPT. This is probably because unnatural-
zero shot CoT is mainly useful for reasoning tasks
and sentiment classification requires much less rea-
soning compared to NLI tasks, making zero shot
CoT less useful.

5 Conclusion

In this paper, we design a framework to evaluate
the instruction-following capabilities of instruction-
tuned language models via verbalizer manipula-
tions. We design three instruction-following eval-
uation sets, namely natural, neural and unnatural
instructions, which align with prior knowledge to
different extents. We evaluate four different model
families on nine datasets across scales. Our results
show that although larger instruction-tuned mod-
els generally perform better on both natural and
neutral instructions, their performance diverges sig-
nificantly in unnatural instructions. We further ex-
amine verbalizers one by one in unnatural instruc-
tions, and find that the same model family performs
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significantly different on instructions with differ-
ent verbalizers, even with more advanced zero shot
CoT prompting. These results show there still ex-
ist fundamental limitations within state-of-the-art
instruction-tuned large language models in follow-
ing human instructions. We hope that our work can
inspire future research to focus more on instruction-
following capabilities.

Limitations

This paper acknowledges certain constraints and
identifies avenues for subsequent research endeav-
ors. Firstly, while we aimed for comprehensive
assessments across all models, constraints in re-
sources prevented the examination of larger lan-
guage models like Llama 2 70B, Bard, and Claude.
Secondly, our current evaluations are centered on
classification tasks; future investigations may ex-
plore the application of verbalizer manipulation
within generative tasks. Thirdly, the present study
is limited to the English language; we intend to
broaden our analysis to include multiple languages
in future research. Lastly, the OpenAI API is non-
deterministic, which may lead to different results
for the same input.

Ethics Statement

For the acquisition of various verbalizers, our ap-
proach did not involve the utilization of human an-
notations; rather, we developed the mapping rules
ourselves. Although it is improbable, there is still a
chance that these self-devised mapping rules might
contain latent biases. During an initial analysis,
we detected no instances indicative of such biases.
Nevertheless, the possibility of these unintended
biases is significant and warrants attention for a
more meticulous and in-depth future analysis.
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A Results Comparison between
Zero-Shot and Few-Shot Prompting

Verbalizer Natural Unnatural

Prompting zero-shot 4-shot zero-shot 4-shot

ChatGPT 81.8 85.1(↑3.3) 52.1 56.4(↑4.3)
GPT-4 89.4 91.7(↑2.3) 58.4 88.4(↑30.0)

Table 2: Averaged accuracy comparison between zero-
shot prompting and 4-shot prompting with natural
golden verbalizers and unnatural flipped golden ver-
balizers for each dataset on ChatGPT and GPT-4.

Besides plain task instruction, in-context demon-
strations also help the model to understand the
task. In this section, we explore adding few-shot
demonstrations in addition to plain task instruc-
tion for improving the model performance in fol-
lowing instructions. Specifically, we evaluate the
best-performing ChatGPT and GPT-4 models8 with
natural-golden verbalizers and unnatural-flipped
golden verbalizers. We compare the model per-
formance using zero-shot prompting and 4-shot
prompting. The four demonstrations in 4-shot
prompting are drawn from corresponding training
sets and have balanced label distribution. They
demonstrate the expected behaviors of following
the specified verbalizers to complete the tasks. We
fix the demonstrations for each dataset. In Table 2,
we show the averaged accuracy across nine evalu-
ation datasets. We show the per-dataset results in
Figure 6. We find that on natural verbalizers, few-
shot prompting shows marginal improvement over
zero-shot prompting. On unnatural verbalizers,
ChatGPT benefits little from few-shot demonstra-
tions on most datasets. However few-shot demon-
strations significantly boost the performance of
GPT-4, almost closing the gap between natural and
unnatural verbalizers. This suggests that GPT-4 has
stronger in-context learning abilities than ChatGPT
under the unnatural verbalizers. It implies that the
in-context learning abilities of the models can also
be better distinguished when evaluating with tasks
that do not align with models’ prior knowledge.

B Dataset Preprocessing

For each dataset, we utilize their available ver-
sions in Huggingface Datasets (Lhoest et al., 2021).

8Due to the deprecations of old models by OpenAI,
the experiments in this section were performed with
gpt-3.5-turbo-0125 for ChatGPT and gpt-4-0613 for
GPT-4, respectively.

Specifically, for FP and EMOTION, we choose
their SENTENCES_ALLAGREE and SPLIT subsets,
respectively. For FP dataset, as it only has training
set, we randomly split it into 80/20 as our in-house
training/test set. In addition, for FP, EMOTION,
SICK and SNLI datasets, they have multiple classes
and we only choose examples whose correspond-
ing labels are shown in Table 1. For SST-2, QQP,
RTE and MRPC within GLUE benchmark (Wang
et al., 2019b), we randomly sample 100 examples
for each dataset from their validation sets while
for other five datasets, we randomly sample 100
examples for each dataset from their test sets.

C Prompt Template

Our instruction templates for verbalizer manipu-
lation in direct prompting setting and zero-shot
chain-of-thought prompting is shown in 7 and 8,
respectively. Fields with red colors are replaced
with verbalizers in Table 1 and fields with blue
color will be substituted with input examples in
each dataset in text format.
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Figure 6: Per-dataset accuracy comparison between zero-shot prompting and 4-shot prompting with natural golden
verbalizers and unnatural flipped golden verbalizers for each dataset on ChatGPT and GPT-4.

You are a helpful assistant judging the sentiment of a movie review. If 
the movie review is positive, you need to output "{positive}". If the 
movie review is negative, you need to output "{negative}". You are only 
allowed to output "{positive}" or "{negative}".\n\nMovie review: 
{input}\n\nAnswer:

You are a helpful assistant judging the sentiment of a financial 
phrase. If the financial phrase is positive, you need to output 
"{positive}". If the financial phrase is negative, you need to output 
"{negative}". You are only allowed to output "{positive}" or 
"{negative}".\n\nFinancial phrase: {input}\n\nAnswer:

You are a helpful assistant judging the emotion of a Twitter message. 
If the emotion of a Twitter message is joy, you need to output "{joy}". 
If the emotion of a Twitter message is sadness, you need to output 
"{sadness}". You are only allowed to output "{joy}" or 
"{sadness}".\n\nTwitter message: {input}\n\nAnswer:

(a) SST-2 (b) FP

(c) EMOTION

You are a helpful assistant judging if sentence 1 entails sentence 2. 
If sentence 1 entails sentence 2, you need to output "{entailment}". If 
sentence 1 contradicts sentence 2, you need to output 
"{contradiction}". You are only allowed to output "{entailment}" or 
"{contradiction}".\n\nSentence 1: {sentence_1}\nSentence 2: 
{sentence_2}\n\nAnswer:

(d) SNLI

You are a helpful assistant judging if sentence 1 entails sentence 2. 
If sentence 1 entails sentence 2, you need to output "{entailment}". If 
sentence 1 contradicts sentence 2, you need to output 
"{contradiction}". You are only allowed to output "{entailment}" or 
"{contradiction}".\n\nSentence 1: {sentence_1}\nSentence 2: 
{sentence_2}\n\nAnswer:

(e) SICK

You are a helpful assistant judging if sentence 1 entails sentence 2. 
If sentence 1 entails sentence 2, you need to output "{entailment}". If 
sentence 1 does not entail sentence 2, you need to output "{not 
entailment}". You are only allowed to output "{entailment}" or "{not 
entailment}".\n\nSentence 1: {sentence_1}\nSentence 2: 
{sentence_2}\n\nAnswer:

(f) RTE

You are a helpful assistant judging if two given questions from Quora 
are semantically equivalent. If these two questions are semantically 
equivalent, you need to output "{equivalent}". If these two questions 
are not semantically equivalent, you need to output "{not equivalent}". 
You are only allowed to output "{equivalent}" or "{not 
equivalent}".\n\nQuestion 1: {question_1}\nQuestion 2: 
{question_2}\n\nAnswer:

(g) QQP

You are a helpful assistant judging if two sentences from online news 
sources are semantically equivalent. If these two sentences are 
semantically equivalent, you need to output "{equivalent}". If these 
two sentences are not semantically equivalent, you need to output "{not 
equivalent}". You are only allowed to output "{equivalent}" or "{not 
equivalent}".\n\nSentence 1: {question_1}\nSentence 2: 
{question_2}\n\nAnswer:

(h) MRPC

You are a helpful assistant judging if the given input is a subjective 
or objective description of a movie. If the movie description is 
subjective, you need to output "{subjective}". If the movie description 
is objective, you need to output "{objective}". You are only allowed to 
output "{subjective}" or "{objective}".\n\nMovie description: 
{input}\n\nAnswer:

(i) SUBJ

Figure 7: Instruction templates for verbalizer manipulation in direct prompting.
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You are a helpful assistant judging the sentiment of a movie review. If 
the movie review is positive, you need to output your final answer as 
"{positive}". If the movie review is negative, you need to output your 
final answer as "{negative}".\n\nMovie review: {input}\n\nAnswer: Let's 
think step by step.

(a) SST-2

You are a helpful assistant judging the sentiment of a financial 
phrase. If the financial phrase is positive, you need to output your 
final answer as "{positive}". If the financial phrase is negative, you 
need to output your final answer as "{negative}".\n\nFinancial phrase: 
{input}\n\nAnswer: Let's think step by step.

(b) FP

You are a helpful assistant judging the emotion of a Twitter message. 
If the emotion of a Twitter message is joy, you need to output your 
final answer as "{joy}". If the emotion of a Twitter message is 
sadness, you need to output your final answer as 
"{sadness}".\n\nTwitter message: {input}\n\nAnswer: Let's think step by 
step.

(c) EMOTION

You are a helpful assistant judging if sentence 1 entails sentence 2. 
If sentence 1 entails sentence 2, you need to output your final answer 
as "{entailment}". If sentence 1 contradicts sentence 2, you need to 
output your final answer as "{contradiction}".\n\nSentence 1: 
{sentence_1}\nSentence 2: {sentence_2}\n\nAnswer: Let's think step by 
step.

(d) SNLI

You are a helpful assistant judging if sentence 1 entails sentence 2. 
If sentence 1 entails sentence 2, you need to output your final answer 
as "{entailment}". If sentence 1 contradicts sentence 2, you need to 
output your final answer as "{contradiction}".\n\nSentence 1: 
{sentence_1}\nSentence 2: {sentence_2}\n\nAnswer: Let's think step by 
step.

(e) SICK

You are a helpful assistant judging if sentence 1 entails sentence 2. 
If sentence 1 entails sentence 2, you need to output your final answer 
as "{entailment}". If sentence 1 does not entail sentence 2, you need 
to output your final answer as "{not entailment}".\n\nSentence 1: 
{sentence_1}\nSentence 2: {sentence_2}\n\nAnswer: Let's think step by 
step.

(f) RTE

You are a helpful assistant judging if two given questions from Quora 
are semantically equivalent. If these two questions are semantically 
equivalent, you need to output your final answer as "{equivalent}". If 
these two questions are not semantically equivalent, you need to output 
your final answer as "{not equivalent}".\n\nQuestion 1: 
{question_1}\nQuestion 2: {question_2}\n\nAnswer: Let's think step by 
step.

(g) QQP

You are a helpful assistant judging if two sentences from online news 
sources are semantically equivalent. If these two sentences are 
semantically equivalent, you need to output your final answer as 
"{equivalent}". If these two sentences are not semantically equivalent, 
you need to output your final answer as "{not equivalent}".\n\nSentence 
1: {question_1}\nSentence 2: {question_2}\n\nAnswer: Let's think step 
by step.

(h) MRPC

You are a helpful assistant judging if the given input is a subjective 
or objective description of a movie. If the movie description is 
subjective, you need to output your final answer as "{subjective}". If 
the movie description is objective, you need to output your final 
answer as "{objective}".\n\nMovie description: {input}\n\nAnswer: Let's 
think step by step.

(i) SUBJ

Figure 8: Instruction templates for verbalizer manipulation in zero-shot chain-of-thought prompting.
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