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Abstract

Pre-trained language models (PLMs) have
consistently demonstrated outstanding perfor-
mance across a diverse spectrum of natural lan-
guage processing tasks. Nevertheless, despite
their success with unseen data, current PLM-
based representations often exhibit poor robust-
ness in adversarial settings. In this paper, we
introduce RobustSentEmbed, a self-supervised
sentence embedding framework designed to
improve both generalization and robustness in
diverse text representation tasks and against
a diverse set of adversarial attacks. Through
the generation of high-risk adversarial pertur-
bations and their utilization in a novel objec-
tive function, RobustSentEmbed adeptly learns
high-quality and robust sentence embeddings.
Our experiments confirm the superiority of Ro-
bustSentEmbed over state-of-the-art represen-
tations. Specifically, Our framework achieves a
significant reduction in the success rate of var-
ious adversarial attacks, notably reducing the
BERTAttack success rate by almost half (from
75.51% to 38.81%). The framework also yields
improvements of 1.59% and 0.23% in seman-
tic textual similarity tasks and various transfer
tasks, respectively.

1 Introduction

Pre-trained Language Models (PLMs) have demon-
strated state-of-the-art performance in learning con-
textual word embeddings (Devlin et al., 2019), con-
tributing to significant advancements in various
Natural Language Processing (NLP) tasks (Yang
et al., 2019; He et al., 2021; Ding et al., 2023).
PLMs, including prominent models like BERT (De-
vlin et al., 2019) and GPT-3 (Brown et al., 2020),
have revolutionized text classification, sentence
representation, and machine translation among a
plethora of diverse NLP tasks. While PLMs have
expanded their focus to include universal sentence
embeddings, which effectively capture the seman-
tic representation of input text, PLM-based sen-

tence representations lack two crucial characteris-
tics: generalization and robustness.

Extensive research efforts have been dedicated
to the development of universal sentence embed-
dings employing PLMs (Reimers and Gurevych,
2019; Zhang et al., 2020; Neelakantan et al., 2022;
Wang et al., 2023). Although these embeddings
have demonstrated proficiency in generalization
across various downstream tasks (Sun et al., 2019;
Gao et al., 2021), they exhibit limitations when
subjected to adversarial settings and remain vulner-
able to adversarial attacks (Nie et al., 2020; Wang
et al., 2021). Existing research has highlighted
the limited robustness of PLM-based representa-
tions (Garg and Ramakrishnan, 2020; Wu et al.,
2023; Hauser et al., 2023). The vulnerability arises
when these representations can be easily deceived
by making small, imperceptible modifications to
the input text.

To address these limitations, we propose a
method to obtain robust sentence embeddings
called RobustSentEmbed. The main idea is to gen-
erate small adversarial perturbations and employ an
efficient contrastive objective (Chen et al., 2020).
The goal is to enhance the adversarial resilience of
the sentence embeddings. Specifically, our frame-
work involves an iterative collaboration between
an adversarial perturbation generator and the PLM-
based encoder to generate high-risk perturbations
in both token-level and sentence-level embedding
spaces. RobustSentEmbed then employs a con-
trastive learning objective in conjunction with a
token replacement detection objective to maximize
the similarity between the embedding of the orig-
inal sentence and the adversarial embedding of a
positive pair (the former objective) as well as its
edited sentence (the latter objective).

We have conducted comprehensive experiments
to substantiate the efficacy of the RobustSentEm-
bed framework. The tasks encompass TextAt-
tack (Morris et al., 2020) assessments, adversar-
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ial Semantic Textual Similarity (STS) tasks, Non-
adversarial STS tasks (Conneau and Kiela, 2018),
and transfer tasks (Conneau and Kiela, 2018). Two
initial series of experiments were designed to eval-
uate the robustness of our sentence embeddings
against various adversarial attacks and tasks. Sub-
sequently, we conducted two final series of exper-
iments to assess the quality of our embeddings
in the contexts of semantic similarity and natu-
ral language understanding. RobustSentEmbed
demonstrates significant improvements in robust-
ness, reducing the attack success rate from 75.51%
to 38.81% against the BERTAttack attack and from
71.86% to 12.80% on adversarial STS. Moreover,
the framework outperforms existing methods in ten
out of thirteen tasks while obtaining comparable
results with the other three, showcasing improve-
ments of 1.59% and 0.23% on STS tasks and NLP
transfer tasks, respectively.

Contributions. Our main contributions are sum-
marized as follows:

• We introduce RobustSentEmbed, an innova-
tive framework designed for generating sen-
tence embeddings that are robust against ad-
versarial attacks. Existing methods are vul-
nerable to such adversarial challenges. Ro-
bustSentEmbed fills this gap by generating
high-risk perturbations and utilizing an effi-
cient adversarial objective function.1

• We conduct comprehensive experiments to
empirically evaluate the effectiveness of the
RobustSentEmbed framework. The empiri-
cal findings substantiate the efficacy of our
framework, as demonstrated by its superior
performance in both robustness and general-
ization benchmarks.

2 Related Work

Recently, self-supervised methods using con-
trastive objectives have become prominent for
learning effective and robust text representations:
SimCSE, as outlined by Gao et al. (2021), intro-
duced a minimal augmentation method involving
the application of two distinct dropout masks to
predict the input sentence. The ConSERT model
(Yan et al., 2021) employed four unique data aug-
mentation techniques, namely adversarial attacks,
token shuffling, cut-off, and dropout, to generate

1Our code are publicly available at https://github.com/
jasl1/RobustSentEmbed

a variety of perspectives in order to carry out a
contrastive objective. Miao et al. (2021) utilized
adversarial training to improve the robustness of
contrastive learning. They achieved this by incor-
porating regularization into their learning objective,
combining benign contrastive learning with an ad-
versarial contrastive scenario. Rima et al. (2022)
proposed a novel method for training language pro-
cessing models, combining adversarial training and
contrastive learning. Their approach incorporates
linear perturbations to input embeddings and uses
contrastive learning to minimize the distance be-
tween the original and perturbed representations.
Pan et al. (2022) introduced a simple technique to
improve the fine-tuning of Transformer-based en-
coders. Their method involves regularization by
generating adversarial examples through word em-
bedding perturbations and using contrastive learn-
ing to obtain noise-invariant representations.

Unlike existing approaches for training text rep-
resentation through contrastive adversarial learning
(Yan et al., 2021; Miao et al., 2021; Rima et al.,
2022; Pan et al., 2022), our framework generates
more efficient, high-risk perturbations at both the
token-level and sentence-level within the embed-
ding space. Furthermore, our framework utilizes
a robust contrastive objective and incorporates an
adversarial replaced token detection method, lead-
ing to high-quality text representations that yield
improved generalization and robustness character-
istics.

3 The Proposed Framework

We extended our previous robust text representa-
tion (i.e., RobustEmbed, see (Asl et al., 2023)) by
utilizing adversarial perturbation at various levels,
including token-level and sentence-level. We in-
troduce RobustSentEmbed, a straightforward yet
highly effective method for generating robust text
representation. Given a PLM fθ(.) as the encoder
and a raw dataset D, our framework aims to pre-
train fθ(·) on D to enhance the efficacy of sentence
embeddings across a wide range of NLP tasks (im-
proved generalization) and to fortify its resilience
against various adversarial attacks (improved ro-
bustness). Figure 1 presents an overview of our
framework. The framework involves an iterative
interaction between the perturbation generator and
the fθ(.) encoder to produce high-risk adversarial
perturbations in both token-level and sentence-level
embedding spaces. These perturbations provide the
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Figure 1: The general architecture of the RobustSentEmbed framework.

essential adversarial examples required for adver-
sarial training by both the fθ(.) encoder and a PLM-
based discriminator. The subsequent sections will
delve into the main components of our framework.

3.1 Perturbation Generator

Adversarial perturbation involves adding mali-
ciously crafted perturbations into benign data, with
the objective of misleading Machine Learning
(ML) models (Goodfellow et al., 2015). A highly
effective and broadly applicable method for gener-
ating adversarial perturbations is to apply a small
noise δ within a norm-constraint ball, aiming to
maximize the adversarial loss function:

arg max
||δ||≤ϵ

L(fθ(X + δ), y), (1)

where fθ(.) denotes an ML model parameterized
with X as the sub-word embeddings. There are
numerous gradient-based algorithms designed to
address this optimization problem. Our framework
extends the token-level perturbation method pro-
posed by Li and Qiu (2021) by complementing the
perturbation with an innovative sentence-level per-
turbation generator in order to generate worst-case
adversarial examples. The main idea is to train a
PLM-based model to withstand a broad spectrum
of adversarial attacks, spanning both word and in-
stance levels.

Recognizing the different roles that individual to-
kens play within a sentence, the RobustSentEmbed
framework incorporates a scaling index to allow
larger perturbations for tokens exhibiting larger
gradients during the normalization of token-level
perturbations:

ni =
∥ηt

i∥P
maxj∥ηt

j∥P
, (2)

where ηt
i represents the token-level perturbation

for word i at step t of the gradient ascent, and P de-
notes the type of norm constraint. Considering the
encoder fθ(.) and an input sentence x, RobustSen-
tEmbed passes the sentence through fθ(.) by apply-
ing standard dropout twice. This process yields two
different embeddings, denoted as "positive pairs"
and represented as (X,X+). Finally, the newly
adjusted token-level perturbation is formulated as:

ηt+1
i = ni ∗ (ηt

i + γ
gηi

∥gηi∥P )
, (3)

ηt+1 ← Π∥η∥P≤ϵ(η
t), (4)

where gηi = ∇ηLcon,θ(X + δt−1 + ηt−1, {X+})
is the gradient of the contrastive learning loss with
respect to η. The perturbation is generated by the
ℓ∞ norm-ball with radius ϵ, and Π projects the
perturbation onto the ϵ-ball.

To generate adversarial perturbations at the
sentence-level, RobustSentEmbed employs a com-
bination of the Fast Gradient Sign Method (FGSM)
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(Goodfellow et al., 2015) and the Projected Gradi-
ent Descent (PGD) technique (Madry et al., 2018).
The framework iterates using this combination,
specifically T-step FGSM and K-step PGD, to sys-
tematically reinforce invariance within the embed-
ding space. Ultimately, this strategy leads to en-
hanced generalization and robustness. It proceeds
with the following steps to update the perturbation
for PGD in iteration k + 1 and FGSM in iteration
t+ 1:

δk+1
pgd = Π∥δ∥P≤ϵ(δ

k + αg(δk)/∥g(δk)∥P ), (5)

δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt))), (6)

where g(δn) = ∇δLcon,θ(X + δn, {X+}) with
n = t or k represents the gradient of the con-
trastive learning loss with respect to δ. The vari-
ables α and β denote the step sizes for the attacks,
while sign(.) yields the vector’s sign. The final
perturbation is obtained by employing a practical
combination of T-step FGSM and K-step PGD:

δfinal = ρδKpgd + (1− ρ)δTfgsm, (7)

where 0 ≤ ρ ≤ 1 modulates the relative impor-
tance of each separate perturbation in the formation
of the final perturbation.

3.2 Robust Contrastive Learning
To achieve robust text representations through ad-
versarial learning, we employ a straightforward
approach that can be described as the combination
of a Replaced Token Detection (RTD) objective
(Figure 1, right) with a novel self-supervised con-
trastive learning objective (Figure 1, left).

Our framework extends an adversarial version
of the RTD task used in ELECTRA (Clark et al.,
2020). In this approach, given an input sentence
x, ELECTRA utilizes a pre-trained masked lan-
guage model as the generator G to recover ran-
domly masked tokens in x

′
= Mask(x), resulting

in the edited sentence x
′′
= G(x

′
). Subsequently,

a discriminator D is tasked with predicting whether
token replacements have occurred, which consti-
tutes the RTD task. As illustrated in Figure 1, the
perturbation generator module introduces token-
aware perturbations into the embedding of each
individual token, making it more challenging for
discriminator D to perform the RTD task effec-
tively. The gradient of D can be back-propagated
into f through h = fθ(x). This mechanism en-
courages f to make vector h sufficiently informa-
tive, enhancing its resilience against token-level

adversarial attacks. Consequently, our framework
employs the following adversarial objective for a
single sentence x:

Lx
RTD =

|x|∑

j=1

[−1(Xadv
j = Xj) logD(Xadv, h, j)

−1(Xadv
j ̸= Xj) log (1−D(Xadv, h, j))], (8)

where Xadv = X
′′
+ η

max(K, T )
i represent the

ith perturbed token in x. The training objective
for the batch B is LRTD, θ =

∑|B|
i=1 Lxi

RTD. Fur-
thermore, we use self-supervised contrastive learn-
ing to acquire effective low-dimensional represen-
tations by bringing semantically similar samples
closer and pushing dissimilar ones further apart.
Let {(xi, x+i )}Ni=1 denote a set of N positive pairs,
where xi and x+i are semantically correlated and
(zi, z

+
i ) represents the corresponding embedding

vectors for the positive pair (xi, x+i ). We define
zi’s positive set as zposi = {z+i }, while the nega-
tive set znegi = {z−i } is the set of positive pairs
from other sentences in the same batch. Then, the
contrastive training objective is defined as follows:

Lcon,θ(zi, z
pos
i , zneg

i ) =

− log(

∑
z
pos
i

exp(sim(zi, z
+
i )/τ)

∑
(z

pos
i ∪ z

neg
i ) exp(sim(zi, z

+ or−
i )/τ)

), (9)

where τ denotes a temperature hyperparameter
and sim(u, v) = u⊤v

∥u∥.∥v∥ is the cosine similarity
between two representations. Our framework uti-
lizes contrastive learning to maximize the similarity
between clean examples and their adversarial per-
turbation by incorporating the adversarial example
as an additional element within the positive set:

LRobustSentEmbed, θ := Lcon,θ(z, {zpos, zadv}, {zneg}).
Ltotal :=LRobustSentEmbed, θ + λ1 · Lcon, θ(zadv, {zpos}, {zneg})

+ λ2 · LRTD, θ,

(10)
where zadv = z + δfinal represents the adversarial
perturbation of the input sample x in the embed-
ding space, and λ1, λ2 denote weighting coeffi-
cients. The first component of the total contrastive
loss (Eq. 10) is designed to optimize the sentence-
level similarity between the input sample x, its
positive pair, and its adversarial perturbation, while
the second component serves to regularize the loss
by encouraging the convergence of the adversarial
perturbation and the positive pair of x. The final
component introduces the adversarial Replaced To-
ken Detection (RTD) objective into the total con-
trastive loss.
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Adversarial Attack Model IMDB MR SST2 YELP MRPC SNLI MNLI-Mismatched Avg.

TextFooler

SimCSE-BERTbase 75.32 65.53 71.49 79.67 80.07 72.65 68.54 72.61
USCAL-BERTbase 61.94 48.71 55.38 62.30 60.18 54.82 53.74 56.72

RobustEmbed-BERTbase 40.55 32.69 36.17 44.25 38.88 37.61 35.63 37.97
RobustSentEmbed-BERTbase 40.02 31.39 35.83 43.78 37.54 36.99 34.15 37.10

TextBugger

SimCSE-BERTbase 52.21 42.04 49.67 56.19 56.73 45.39 40.16 48.91
USCAL-BERTbase 39.16 27.37 31.90 41.25 37.86 30.79 25.45 33.40

RobustEmbed-BERTbase 23.70 18.03 20.24 28.58 20.89 19.07 16.33 20.98
RobustSentEmbed-BERTbase 23.16 17.49 19.62 27.93 19.37 18.05 15.51 20.16

PWWS

SimCSE-BERTbase 64.41 55.73 60.48 67.54 68.15 56.09 52.58 60.71
USCAL-BERTbase 51.95 40.67 45.29 52.30 46.86 50.92 39.37 46.77

RobustEmbed-BERTbase 33.63 28.15 30.56 29.94 25.51 27.16 28.49 29.06
RobustSentEmbed-BERTbase 32.94 28.05 29.28 29.14 24.72 26.28 27.90 28.33

BAE

SimCSE-BERTbase 73.50 61.83 68.27 75.15 77.84 69.06 65.43 70.15
USCAL-BERTbase 58.57 46.19 51.72 59.49 58.38 50.90 51.16 53.77

RobustEmbed-BERTbase 37.35 29.82 32.08 41.66 36.45 34.17 31.98 34.79
RobustSentEmbed-BERTbase 37.16 29.12 31.43 40.96 35.53 33.87 31.85 34.27

BERTAttack

SimCSE-BERTbase 78.42 66.94 73.59 80.87 82.16 74.35 72.22 75.51
USCAL-BERTbase 63.23 51.08 57.73 63.96 63.05 55.41 55.86 58.62

RobustEmbed-BERTbase 42.30 34.76 38.81 45.15 39.97 39.08 37.24 39.62
RobustSentEmbed-BERTbase 41.51 34.19 38.16 44.96 38.26 38.60 35.98 38.81

Table 1: Attack success rates (lower is better) of various adversarial attacks applied to four sentence embeddings
(SimCSE, USCAL, RobustEmbed, and RobustSentEmbed) across five text classification and two natural language
inference tasks. RobustSentEmbed reduces the attack success rate to less than half across all attacks.

4 Evaluation and Experimental Results

This section presents a comprehensive set of exper-
iments conducted to validate the proposed frame-
work’s effectiveness in terms of robustness and
generalization metrics. To evaluate robustness, the
experiments include adversarial attacks and adver-
sarial Semantic Textual Similarity (STS) tasks. To
evaluate generalization, the experiments include
non-adversarial STS and transfer tasks within the
SentEval framework.2 Appendices A and B pro-
vide training details and ablation studies that illus-
trate the effects of hyperparameter tuning.

4.1 Adversarial Attacks
We evaluate the robustness of our framework
against various adversarial attacks, comparing it
with two state-of-the-art sentence embedding mod-
els: SimSCE (Gao et al., 2021) and USCAL (Miao
et al., 2021). We fine-tuned the BERT-based PLM
across seven text classification and natural lan-
guage inference tasks, specifically MRPC (Dolan
and Brockett, 2005), YELP (Zhang et al., 2015),
IMDb (Maas et al., 2011), Movie Reviews (MR)
(Pang and Lee, 2005), SST2 (Socher et al., 2013),
Stanford NLI (SNLI) (Bowman et al., 2015), and
Multi-NLI (MNLI) (Williams et al., 2018). To as-

2https://github.com/facebookresearch/SentEval

sess the robustness of our fine-tuned model, we
investigated the impact of five popular adversarial
attacks: TextBugger (Li et al., 2019), PWWS (Ren
et al., 2019), TextFooler (Jin et al., 2020), BAE
(Garg and Ramakrishnan, 2020), and BERTAttack
(Li et al., 2020b). Additional information of these
attacks is provided in Appendix C. To ensure sta-
tistical validity, we conducted each experiment five
times, with each iteration comprising 1000 adver-
sarial attack samples.

Table 1 presents the average attack success rates
of five adversarial attacks applied to four sentence
embeddings including our previous RobustEm-
bed method (Asl et al., 2023). Notably, our em-
bedding framework consistently outperforms the
other two embedding methods (i.e. SimSCE and
USCA), demonstrating significantly lower attack
success rates (less than half) across all text classifi-
cation and natural language inference tasks. Con-
sequently, RobustSentEmbed achieves the lowest
average attack success rate against all adversar-
ial attack techniques. Moreover, our framework
achieves slightly better performance compared to
our previous RobustEmbed framework. These find-
ings substantiate the robustness of our embedding
framework and highlight the vulnerabilities of other
state-of-the-art sentence embeddings when con-
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Adversarial Attack Model AdvSTS-B AdvSICK-R Avg.

TextFooler
SimCSE-BERTbase 21.07 24.17 22.62
USCAL-BERTbase 16.52 18.71 17.62

RobustEmbed-BERTbase 7.48 8.95 8.22
RobustSentEmbed-BERTbase 7.18 8.53 7.86

TextBugger
SimCSE-BERTbase 27.49 28.34 27.91
USCAL-BERTbase 21.52 24.88 23.20

RobustEmbed-BERTbase 11.76 13.01 12.39
RobustSentEmbed-BERTbase 11.32 12.94 12.13

PWWS
SimCSE-BERTbase 24.15 26.82 25.49
USCAL-BERTbase 21.28 23.65 22.47

RobustEmbed-BERTbase 13.56 14.44 14.00
RobustSentEmbed-BERTbase 12.68 13.90 13.29

BAE
SimCSE-BERTbase 26.92 28.81 27.86
USCAL-BERTbase 22.92 25.48 24.20

RobustEmbed-BERTbase 11.13 12.82 11.98
RobustSentEmbed-BERTbase 10.53 12.09 11.31

BERTAttack
SimCSE-BERTbase 31.60 32.85 32.23
USCAL-BERTbase 26.02 28.51 27.26

RobustEmbed-BERTbase 12.99 13.18 13.09
RobustSentEmbed-BERTbase 12.58 13.02 12.80

Table 2: Attack success rates (lower is better) of five adversarial attack techniques applied to four sentence
embeddings (SimCSE, USCAL, RobustEmbed, and RobustSentEmbed) across two Adversarial Semantic Textual
Similarity (AdvSTS) tasks (i.e. AdvSTS-B and AdvSICK-R). RobustSentEmbed reduces the attack success rate to
less than half across all attacks.

fronted with various adversarial attacks.
Figure 2 presents the results of 1000 attacks con-

ducted on two fine-tuned sentence embeddings, as-
sessing the average number of queries required
and the resulting accuracy reduction. Attacks on
the RobustSentEmbed framework are represented
by green data points, while red points denote at-
tacks on the USCAL approach (Miao et al., 2021).
Each pair of connected points corresponds to a spe-
cific attack. Ideally, a robust sentence embedding
should be positioned in the top-left region of the
graph, indicating that it necessitates a higher num-
ber of queries for an attack to deceive the model
while causing minimal performance degradation.
Across all adversarial attacks, RobustSentEmbed
consistently exhibits greater stability compared to
the USCAL method. In other words, a larger num-
ber of queries is required for RobustSentEmbed,
resulting in a lower accuracy reduction (i.e., better
performance) compared to USCAL.

4.2 Robust Embeddings

We introduce a new task named Adversarial Se-
mantic Textual Similarity (AdvSTS) to assess the
robustness of sentence embeddings. AdvSTS

Figure 2: Average number of queries and the resulting
accuracy reduction for two fine-tuned embeddings.

leverages an efficient adversarial technique, like
TextFooler, to manipulate an input sentence pair of
a non-adversarial STS task in a manner that leads
the target model to generate a regression score that
maximally deviates from the actual score (truth la-
bel). As a result, we generate an adversarial STS
dataset by transforming all benign instances from
the original (i.e. non-adversarial) dataset into ad-
versarial examples. Table 2 presents the attack suc-
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cess rates of five adversarial attacks applied to four
sentence embeddings, including our framework in-
cluding our previous RobustEmbed method (Asl
et al., 2023). These evaluations are conducted for
two AdvSTS tasks, specifically AdvSTS-B (origi-
nated from STS Benchmark (Cer et al., 2017)) and
AdvSICK-R (originated from SICK-Relatedness
(Marelli et al., 2014)). Notably, our framework
consistently outperforms the other two sentence
embedding methods, exhibiting significantly lower
attack success rates across both AdvSTS tasks and
all employed adversarial attacks. Our framework
also demonstrates a slightly enhanced performance
in comparison to our earlier RobustEmbed frame-
work. These results provide additional evidence
supporting the notion that RobustSentEmbed gen-
erates robust text representation.

4.3 Semantic Textual Similarity (STS) Tasks

In this section, we assess the performance of our
framework across seven Semantic Textual Similar-
ity (STS) tasks encompassing STS datasets from
2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark, and SICK-Relatedness. To
benchmark our framework’s effectiveness, we con-
ducted a comparative analysis against a range of
unsupervised sentence embedding approaches, in-
cluding: 1) baseline methods such as GloVe (Pen-
nington et al., 2014) and average BERT embed-
dings; 2) post-processing methods like BERT-flow
(Li et al., 2020a) and BERT-whitening (Su et al.,
2021); and 3) state-of-the-art methods such as Sim-
CSE (Gao et al., 2021), USCAL (Miao et al., 2021),
and also our RobustEmbed framework (Asl et al.,
2023). We validate the findings of the SimCSE,
ConSERT, and USCAL frameworks by replicat-
ing their results. The empirical outcomes, as pre-
sented in Table 3, consistently establish the supe-
rior performance of our RobustSentEmbed frame-
work in contrast to various other sentence embed-
dings. Our framework achieves the highest aver-
age Spearman’s correlation score when compared
to state-of-the-art approaches. Specifically, utiliz-
ing the BERT encoder, our framework surpasses
the second-best embedding method, USCAL, by
a margin of 1.59%. Moreover, RobustSentEmbed
achieves the highest score in the majority of indi-
vidual STS tasks, outperforming other embedding
methods in 6 out of 7 tasks. Moreover, Our frame-
work exhibits marginally enhanced performance in
comparison to our prior RobustEmbed framework.
For the RoBERTa encoder, RobustSentEmbed out-

performs the state-of-the-art embeddings in five out
of seven STS tasks and attains the highest average
Spearman’s correlation score.

4.4 Transfer Tasks
We leveraged transfer tasks to assess the per-
formance of our framework, RobustSentEmbed,
across a diverse range of text classification tasks,
including sentiment analysis and paraphrase iden-
tification. Our evaluation encompassed six trans-
fer tasks: CR (Hu and Liu, 2004), SUBJ (Pang
and Lee, 2004), MPQA (Wiebe et al., 2005), SST2
(Socher et al., 2013), and MRPC (Dolan and Brock-
ett, 2005). We trained a logistic regression classifier
on top of the fixed sentence embeddings. To ensure
the reliability of our findings, we replicated the
SimCSE, ConSERT, and USCAL frameworks. The
outcomes, as presented in Table 4, demonstrate the
superior performance of our framework in terms of
average accuracy when compared to other sentence
embeddings. Specifically, when utilizing the BERT
encoder, our framework outperforms the second-
best embedding method by a margin of 0.23%. Fur-
thermore, RobustSentEmbed achieves the highest
score in four out of six text classification tasks. Our
framework also achieves similar performance com-
pared to our prior RobustEmbed framework. A
similar trend is observed for the RoBERTa encoder.
Overall, based on the results presented in Tables 3
and 4, we conclude that RobustSentEmbed gener-
ates general sentence representation in addition to
robust representation (4.1 and section 4.2 ).

In conclusion, the comprehensive experiments,
as indicated by the outcomes in Tables 1, 2, 3, and
4, along with Figure 2, confirm the exceptional
performance of RobustSentEmbed in text repre-
sentation and resilience against adversarial attacks
and adversarial tasks. These findings highlight the
framework’s outstanding robustness and general-
ization capabilities, underscoring its potential as a
versatile method for generating high-quality sen-
tence embeddings.

4.5 Distribution of Sentence Embeddings
We employed two critical metrics, alignment and
uniformity (Wang and Isola, 2020), for evaluating
the quality of our representations. With a distri-
bution of positive pairs ppos, alignment computes
the expected distance between the embeddings of
paired instances:

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2 (11)
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe embeddings (avg.) ♡ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow ♣ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening ♣ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
ConSERT-BERTbase 64.56 78.55 69.16 79.74 76.00 73.91 67.35 72.75
ATCL-BERTbase 67.14 80.86 71.73 79.50 76.72 79.31 70.49 75.11
SimCSE-BERTbase 68.66 81.73 72.04 80.53 78.09 79.94 71.42 76.06
USCAL-BERTbase 69.30 80.85 72.19 81.04 77.52 81.28 71.98 76.31
RobustEmbed-BERTbase 70.52 82.13 73.56 82.38 77.72 82.97 73.24 77.51
RobustSentEmbed-BERTbase 71.90 81.12 74.92 82.38 79.43 82.02 73.53 77.90
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
ConSERT-RoBERTabase 66.90 79.31 70.33 80.57 77.95 81.42 68.16 74.95
SimCSE-RoBERTabase 68.75 80.81 71.19 81.79 79.35 82.62 69.56 76.30
USCAL-RoBERTabase 69.28 81.15 72.81 81.47 80.55 83.34 70.94 77.08
RobustEmbed-RoBERTabase 69.71 81.77 73.34 81.98 79.74 83.70 71.10 77.33
RobustSentEmbed-RoBERTabase 70.03 82.15 73.27 82.48 79.61 83.82 71.66 77.57
USCAL-RoBERTalarge 68.70 81.84 74.26 82.52 80.01 83.14 76.30 78.11
RobustEmbed-RoBERTalarge 68.92 81.53 74.35 82.91 79.98 83.93 76.93 78.36
RobustSentEmbed-RoBERTalarge 69.30 81.76 75.14 83.57 79.74 83.90 77.08 78.64

Table 3: Semantic Similarity performance on STS tasks (Spearman’s correlation, “all” setting) for sentence
embedding models. We emphasize the top-performing numbers among models that share the same pre-trained
encoder. ♡: results from Reimers and Gurevych (2019); ♣: results from (Gao et al., 2021); All remaining results
have been reproduced and reevaluated by our team. RobustSentEmbed produces the most effective sentence
representations that are more general in addition to robust representation (section 4.2 and 4.1).

Model MR CR SUBJ MPQA SST2 MRPC Avg.
GloVe embeddings (avg.) ♣ 77.25 78.30 91.17 87.85 80.18 72.87 81.27
Skip-thought ♡ 76.50 80.10 93.60 87.10 82.00 73.00 82.05
BERT-[CLS] embedding ♣ 78.68 84.85 94.21 88.23 84.13 71.13 83.54
ConSERT-BERTbase 79.52 87.05 94.32 88.47 85.46 72.54 84.56
SimCSE-BERTbase 81.29 86.94 94.72 89.49 86.70 75.13 85.71
USCAL-BERTbase 81.54 87.12 95.24 89.34 85.71 75.84 85.80
RobustEmbed-BERTbase 81.94 87.45 95.04 89.88 86.47 76.40 86.20
RobustSentEmbed-BERTbase 82.06 86.28 95.42 89.61 86.12 76.69 86.03
SimCSE-RoBERTabase 81.15 87.15 92.38 86.79 86.24 75.49 84.87
USCAL-RoBERTabase 82.15 87.22 92.76 87.74 84.39 76.20 85.08
RobustEmbed-RoBERTabase 81.49 87.54 93.37 87.95 84.63 76.62 85.27
RobustSentEmbed-RoBERTabase 81.57 87.66 93.51 87.94 85.04 76.89 85.44
USCAL-RoBERTalarge 82.84 87.97 93.12 88.48 86.28 76.41 85.85
RobustEmbed-RoBERTalarge 82.38 88.27 93.91 88.79 86.01 77.11 86.08
RobustSentEmbed-RoBERTalarge 82.56 88.51 93.84 88.65 86.18 77.01 86.13

Table 4: Results of transfer tasks for different sentence embedding models. ♣: results from Reimers and Gurevych
(2019); ♡: results from Zhang et al. (2020); We emphasize the top-performing numbers among models that share
the same pre-trained encoder. All remaining results have been reproduced and reevaluated by our team. RobustSen-
tEmbed outperforms all other methods, regardless of the pre-trained language model (BERTbase, RoBERTabase, or
RoBERTalarge).
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Figure 3: ℓalign − ℓuniform plot of models based on
BERTbase. Lower uniformity and alignment is better.

Uniformity measures how well the embeddings are
uniformly distributed in the representation space:

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 (12)

Figure 3 shows the uniformity and alignment of dif-
ferent sentence embedding models. Smaller values
indicate better performance. In comparison to the
other representations, RobustSentEmbed achieves
a similar level of uniformity (-2.295 vs. -2.305)
but exhibits superior alignment (0.051 vs. 0.073).
This demonstrates that our framework is more effi-
cient in optimizing the representation space in two
different directions.

5 Conclusion and Future Work

This paper introduces RobustSentEmbed, a self-
supervised sentence embedding framework enhanc-
ing robustness against adversarial attacks while
achieving state-of-the-art performance in text repre-
sentation and NLP tasks. Current sentence embed-
dings are vulnerable to attacks, and RobustSentEm-
bed addresses this by generating high-risk pertur-
bations at token and sentence levels. These pertur-
bations are incorporated into novel contrastive and
difference prediction objectives. The framework
is validated through comprehensive experiments
on semantic textual similarity and transfer learning
tasks, confirming its robustness against adversar-
ial attacks and semantic similarity tasks. In future
research, we aim to investigate the use of hard neg-
ative examples to further enhance the effectiveness
of text representations.

6 Limitations

Despite the effectiveness of our approach and its
notable performance, there are potential limitations
to our framework:

• The framework is primarily tailored for de-
scriptive models like BERT, adept at language
understanding and representation, including
tasks such as text classification. However, its
direct application to generative models like
GPT, focused on generating coherent and con-
textually relevant text, may pose challenges.
Thus, applying our methodology to enhance
generalization and robustness in generative
pre-trained models might have limitations.

• Utilizing substantial GPU resources is neces-
sary for pre-training large-scale models like
RoBERTalarge in our framework. Due to lim-
ited GPU availability, we had to use smaller
batch sizes during pre-training. Although
larger batch sizes typically result in better per-
formance, our experiments had to compro-
mise and use smaller batch sizes to efficiently
generate sentence embeddings within GPU
constraints.
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A Training Details

we initialize our sentence encoder using the check-
points obtained from BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019). RobustSentEm-
bed utilizes the representation of the [CLS] token
as the starting point and incorporates a pooler layer
on top of the [CLS] representations to facilitate con-
trastive learning objectives. The training process
of RobustSentEmbed involves 4 epochs. The best
checkpoint, determined by the highest average STS
score, is selected for final evaluation. To train the
model, we utilize a dataset consisting of 106 ran-
domly sampled sentences from English Wikipedia,
as provided by the SimCSE framework (Gao et al.,
2021). The average training time for RobustSen-
tEmbed is 2-4 hours. As our framework is ini-
tialized with pre-trained checkpoints, it exhibits
robustness that is not sensitive to batch sizes, thus
enabling us to employ batch sizes of either 64 or
128.

B Ablation Studies

In this section, we conduct an analysis of the im-
pact of five critical hyperparameters employed in
the RobustSentEmbed framework on its overall per-
formance. BERTbase is employed as the encoder,
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Figure 4: The impact of step sizes in perturbation gener-
ation on the average performance of STS tasks.

and the assessment of hyperparameters is carried
out using the development set of STS tasks.

B.1 Step Sizes in Perturbation Generator

The RobustSentEmbed framework integrates two
step sizes, denoted as α and β, to conduct iterative
updates during the PGD and FGSM perturbation
generation processes, respectively. Figure 4 shows
the cooperative impact of adjusting the ranges for
these two step sizes in generating high-risk per-
turbations, a crucial aspect for achieving an effec-
tive contrastive learning objective. The outcomes
demonstrate more substantial improvements when
β is fine-tuned to a lower bound, coupled with α
set to an upper bound. More precisely, enhanced
performance is evident when α and β are allocated
ranges of [1e-4, 1e-6] and [1e-3, 1e-4], respectively.
Consequently, we employ α = 1e-5 and β = 1e-3
for our experiments, as this configuration yields the
optimal results among the different configurations.

B.2 Step Numbers in Perturbation Generator

RobustSentEmbed employs T-step FGSM and K-
step PGD iterations to acquire high-risk adversarial
perturbations for the contrastive learning objective.
For simplicity in perturbation generation analysis,
we establish K = T. The influence of varying step
numbers (N = K or T) on effectiveness is illustrated
in Figure 5. A gradual improvement is observed as
N increases from 1 to 12; however, beyond N=12,
the improvement becomes negligible. Addition-
ally, higher N results in longer running time and
inequitable resource allocation. Consequently, we
opt for N=5 in our experiments.

Figure 5: The impact of the step number (represented
by N = K or T) in the T-step FGSM and K-step PGD
methods on the averaged correlation of the STS tasks.

B.3 Norm Constraint

To ensure imperceptibility in the generated adver-
sarial examples, RobustSentEmbed regulates the
magnitude of the perturbation vectors (whether δ
or η). This control is achieved through the utiliza-
tion of three commonly employed norm functions:
L1, L2, and L∞, to restrict the magnitude of the
perturbation to small values. The averaged Spear-
man’s correlation of these norm functions across
different Semantic Textual Similarity tasks is pre-
sented in Table 5. The L∞ norm exhibits superior
correlation in comparison to the other two norms,
thus warranting its selection as the norm function
for our experimental assessment.

Norm Correlation
L∞ 77.90
L2 76.84
L1 76.52

Table 5: The impact of the norm constraint on perturba-
tion generation on the average performance of various
STS tasks.

B.4 Contrastive Learning Loss

The first part of the total loss function (Equation
10) is dedicated to optimizing the similarity be-
tween the input instance x and its positive pair
(xpos), as well as the similarity between x and its
adversarial perturbation (xadv). While this indi-
rectly brings xpos and xadv closer, our findings in-
dicate that incorporating direct contrastive learning
between xpos and xadv (the second part of Equa-
tion 10) through the regularization of the objective
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Figure 6: The impact of weighting coefficients in the
total loss function on the average performance of STS
tasks.

function in the first part helps us achieve enhanced
clean accuracy and robustness. Additionally, the
third part of the total loss function introduces the
adversarial replaced token detection objective into
the loss function, making it more challenging for
adversarial training to converge. Figure 6 illustrates
the impact of different values of the weighting co-
efficients (i.e., λ1, λ2) on the final performance of
our framework. As illustrated, when λ1 = 1/128
and λ2 = 0.005, the framework achieves the high-
est average accuracy for semantic textual similarity
tasks. We utilize λ1 = 1/128 and λ2 = 0.005 for
all other experiments.

B.5 Modulation Factor
RobustSentEmbed includes a modulation factor,
represented as 0 ≤ ρ ≤ 1, to adjust the relative
importance of each individual perturbation (PGD
and FGSM) in the formation of the sentence-level
perturbation. The efficacy of different values of this
modulation factor on semantic textual similarity
tasks is detailed in Table 6. The findings reveal that
ρ = 0.5 yields the highest averaged correlation
across the examined magnitudes, underscoring its
capability to generate more powerful perturbations.
Consequently, we employ this configuration in the
setup of our framework.

C Adversarial Attack Methods

This section provides additional details regarding
the various adversarial attacks. The TextBugger
method (Li et al., 2019) identifies crucial words by
analyzing the Jacobian matrix of the target model
and selects the optimal perturbation from a set of
five generated perturbations. The PWWS (Ren

ρ Correlation
0 76.06
0.25 76.85
0.5 77.90
0.75 77.34
1 76.34

Table 6: The impact of the modulation factor on the
average performance of different Semantic Textual Sim-
ilarity (STS) tasks in generating the final perturbation.

et al., 2019) employs a synonym-swap technique
based on a combination of word saliency scores and
maximum word-swap effectiveness. TextFooler
(Jin et al., 2020) identifies significant words, gath-
ers synonyms, and replaces each such word with
the most semantically similar and grammatically
correct synonym. The BAE (Garg and Ramakrish-
nan, 2020) employs four adversarial attack strate-
gies involving word replacement and/or word in-
sertion operations to generate substitutions. The
BERTAttack (Li et al., 2020b) comprises two steps:
(a) identifying vulnerable words/sub-words and
(b) utilizing BERT MLM to generate semantic-
preserving substitutes for the vulnerable tokens.

D RobustSentEmbed Algorithm

Algorithm 1 illustrates our framework’s approach
to generating a norm-bounded perturbation at both
the token-level and sentence-level using an iterative
process. It confuses the fθ(·) encoder by treating
the perturbed embeddings as different instances.
Our framework then utilizes a contrastive learn-
ing objective in conjunction with a replaced token
detection objective to maximize the similarity be-
tween the embedding of the input sentence and
the adversarial embedding of its positive pair (for-
mer objective), as well as its edited sentence (latter
objective).
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Algorithm 1: RobustSentEmbed Algo-
rithm

Input: Epoch number E, PLM Encoder fθ , dataset of
raw sentences D , embedding perturbation {δ,
η}, dropout masks m1 and m2, perturbation
bound ϵ, adversarial step sizes {α, β, γ},
learning rate ξ, perturbation modulator ρ,
weighting coefficients {λ1, λ2}, adversarial
steps {K, T}, contrastive learning objective
Lcon,θ (eq. 9), ELECTRA generator G(.) and
discriminator D(.)

Output: Robust Sentence Representation
V ∈ RN∗D ← 1√

D
U(−σ, σ)

for epoch = 1, ..., E do
for minibatch B ⊂ D do

δ0 ← 1√
D
U(−σ, σ) , η0

i ← V[wi]

X = fθ.embedding(B, m1)
X+ = fθ.embedding(B, m2)
for t = 1, ...,max(K, T ) do

gδ =
∇δLcon,θ(X + δt−1 + ηt−1, {X+})
if t ≤ K then

δt
pgd = Π∥δ∥P≤ϵ(δ

t−1 +

αg(δt−1)/∥g(δt−1)∥P )
end
if t ≤ T then

δt
fgsm = Π∥δ∥P≤ϵ(δ

t−1 +

βsign(g(δt−1)))
end
gηi =
∇ηLcon,θ(X + δt−1 + ηt−1, {X+})
ηt
i = ni ∗ (ηt

i−1 + γgηi/∥gηi∥P )
ηt ← Π∥η∥P≤ϵ(η

t)
end
V[wi]← η

max(K, T )
i

δf = ρδK
pgd + (1− ρ)δT

fgsm

for x ∈ B do
x

′′
= G(MLM(x))

Xadv = X
′′
+ η

max(K, T )
i

Lx
RTD, θ =

∑|x|
j=1[−1(Xadv

j = Xj) logD(Xadv, fθ(x), j)

−1(Xadv
j ̸= Xj) log (1−D(Xadv, fθ(x), j))]

end
LRTD, θ =

∑|B|
i=1 L

xi
RTD

LRobustEmbed, θ :=

Lcon, θ(X, {X+, X + δf})

Ltotal := LRobustEmbed,θ + λ1 · Lcon,θ(X + δf , {X+})
+ λ2 · LRTD,θ

θ = θ − ξ∇θLtotal

end
end
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