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Abstract
Recent advancements in large language mod-
els’ (LLMs) capabilities have yielded few-shot,
human-comparable performance on a range of
tasks. At the same time, researchers expend
significant effort and resources gathering hu-
man annotations. At some point, LLMs may be
able to perform some simple annotation tasks,
but studies of LLM annotation accuracy and
behavior are sparse. In this paper, we charac-
terize OpenAI’s GPT-3.5’s judgment on a be-
havioral task for implicit object categorization.
We characterize the embedding spaces of mod-
els trained on human vs. GPT responses and
give similarities and differences between them,
finding many similar dimensions. We also find
that despite these similar dimensions, augment-
ing humans’ responses with GPT ones drives
model divergence across the sizes of datasets
tested.

1 Introduction

Large language models (LLMs) are capable of ac-
complishing a variety of language-oriented tasks
in zero- or few-shot settings (Brown et al., 2020).
Examples include common natural-language un-
derstanding and processing (NLU/P) tasks such as
sentiment analysis and classification (Brown et al.,
2020), language translation (Hendy et al., 2023),
and named entity recognition (Ji, 2023); but also
applied domains such as text tagging (Gilardi et al.,
2023), multimodal tagging (Li et al., 2023), and
text sample augmentation (Dai et al., 2023).

Current LLM performance indicates we may be
able to use pre-trained high-resource LLMs to aug-
ment human annotations for tasks where data is
sparse or compute resources are low (Møller et al.,
2023). However, we do not currently know for
which domains it is appropriate to augment human
data with LLM-generated responses. This uncer-
tainty stems from a poor understanding of how
LLM and human annotation responses systemati-
cally differ. Thus, characterizing the ways in which

world knowledge manifests itself in the generations
of LLMs is crucial for incorporating LLMs into an-
notation workflows.1

The domain of object-similarity judgment is a
useful base-case for exploring the similarities and
substitutability of LLM for human responses. On
a human level, object-similarity judgment informs
how we interact with objects (Desmarais et al.,
2007), organize our world (Smith, 1981) and ac-
quire new concepts from a young age (Markman
and Hutchinson, 1984). Meanwhile, many corpus-
based computational models, including deep trans-
former models that leverage corpora such as Chat-
GPT, leverage lexical co-occurrence relations to
derive semantic meaning (i.e. the distributional hy-
pothesis). Despite differences in process, these
models’ representations display correspondences
with human judgment (Torabi Asr et al., 2018;
Chandrasekaran and Mago, 2022).

In this paper, we collect GPT-3.5 responses to
an object similarity task introduced by Hebart et al.
(2020). We reformat their image-based paradigm as
a chat-completion task for GPT.2 Like Hebart et al.,
we also train a sparse embedding model that can
predict object-similarity judgments. We annotate
the dimensions of the embedding model to provide
an interpretable characterization of the reasoning
behind such judgments. Finally, we compare the
GPT- and human-derived characterizations and em-
beddings. We also simulate the effects of GPT re-
sponse replacement and augmentation. To do this,
we train models on different mixtures and propor-
tions of human and GPT responses, then compare
their embedding spaces to baseline human-derived
ones.

1There is evidence that LLMs may already be incorporated
into annotation workflows without researcher knowledge, as
crowdworkers are already using LLMs to speed up their anno-
tation tasks (Veselovsky et al., 2023).

2At the time of our experimentation, the multimodal GPT-4
was not widely available.
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2 Methodology

The Odd-One-Out (OOO) Task To obtain
object-similarity responses from GPT, we used the
odd-one-out (OOO) task, wherein participants in-
dicate the least similar amongst three objects. For
example, we might ask, “Which of these concepts
is the odd one out: apple, banana, car?” and expect
factors such as edibility to affect the response. The
OOO task is well-established in the field of psy-
chology for eliciting concept-relational preferences
(Mirman et al., 2017; Valenti and Firestone, 2019).

Human OOO Responses Hebart et al. (2020)
used an image-based OOO task to collect mil-
lions of object-similarity judgements. They did
this in two rounds, first collecting 1.46M re-
sponses (Hebart et al., 2020), then creating a larger,
5M response dataset Hebart et al. (2023).3 We used
these two datasets to create two disjoint OOO re-
sponse sets of equal size (1.46M). We refer to the
first of these datasets as the full human dataset and
the second as the baseline dataset.

GPT OOO responses We then created a parallel
GPT-only dataset with answers to the OOO ques-
tions from the full human dataset. We reformatted
the original prompt from (Hebart et al., 2020) to
create a text completion task suitable for GPT. We
referred to these GPT prompts and answers as the
full GPT dataset.

For cost and task-efficacy reasons, we used Ope-
nAI’s GPT (GPT-3.5-Turbo-0613). Preliminary
analysis revealed that smaller models (Falcon-7B,
Alpaca-7B, Vicuna-7B) had difficulty answering
odd-one-out questions in a coherent manner with
simple prompting. Larger models, (e.g. Falcon-
40B), produced coherent responses, but not at the
scale afforded by GPT’s API.

Transformer models such as GPT incorporate
word position for next-word prediction, and GPT
demonstrated a strong positional preference (see
Appendix C). While humans situationally exhibit
ordered preferences, we found a roughly uniform
distribution for this task (see Appendix C). Thus,
to collect position-neutral responses, we permuted
the order of the three objects in the prompts to
create six total questions (3!). We then used relative
majority voting across the six questions to compute
GPT’s odd-one-out choice, breaking ties randomly.

3These datasets were collected before GPT existed and
thus are free of GPT-derived responses.

metallic food-related · · · cylindrical
aardvark a1,1 a1,2 · · · a1,49
abacus a2,1 a2,2 · · · a2,49

...
...

...
. . .

...
zucchini a1854,1 a1854,2 · · · a1854,49







︸ ︷︷ ︸
Learned object-similarity embeddings

Figure 1: An example embedding space with words as
rows and characterizing dimensions as columns.

See Supplementary Materials for API calls and a
formatted table of all responses.

Human–GPT Datasets We aimed to study the
effect of replacing only some human responses
with GPT responses. Thus, we created <1.46M
count partial human response sets by taking pro-
portions [0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and
0.875] of the 1.46M full human-only response set.
We then create a 1.46M-count mixed GPT–human
response set for each partial human set by consid-
ering each unused human response and including
the corresponding GPT response.

2.1 Model Details

We use the similarity-prediction model designed by
Hebart et al. (Hebart et al., 2020), which comprises
a shallow neural network consisting of a single
90 × 1854 embedding layer. Each object i has a
corresponding vector vi. In a triplet with objects i,
j, and k we compute zi = vj · vk (and do likewise
for zj and zk), then use it to estimate the probability
of object i being the odd one out:

P(i odd one out) = σ (z)k =
ezk

ezi + ezj + ezk
(1)

Model Training To train each model, we used
a cross-entropy loss with an ℓ1-norm penalty on
the embedding to encourage sparsity. Hebart et al.
(2020) found that training sparse models in this
manner resulted in an embedding space with inter-
pretable dimensions. We refer to these dimensions
as characterizing dimensions. We show an ex-
ample embedding matrix in Figure 1 wherein the
rows are the vector representations of the object-
concepts of the THINGS dataset, and the columns
are characterizing dimensions.

Using a set of odd-one-out responses S,
we took the average cross-entropy loss,
1
|S|

∑
s∈S H(q, p)|s. Here, H(q, p)|s is the
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cross-entropy of the model prediction probability
p for the odd-one-out question s relative to the
entry q in the actual one-hot response vector. We
incorporate an ℓ1-norm penalty on the embedding
space to encourage sparsity, weighted by a
hyperparameter λ. Elaborated loss details are
given in Appendix D.

For training, we assumed concavity of validation
accuracy on the choice of λ and performed a two-
tiered four-fold grid-search over 90–10 train–test
dataset splits: we started with λ = 0.0064 and took
steps of 0.0016 to find a coarse maximum, then
took steps of 0.0004 around that coarse maximum
to establish a finer maximum. We trained for a
fixed 1000 epochs for each model, mirroring the
setup of Zheng et al. (2019) to ensure convergence.
Further specifics are given in Appendix E.

We trained ten models each on the full human,
full GPT, and baseline human sets and four each on
the partial human and mixed human–GPT datasets
to produce full human, full GPT, partial human,
mixed human–GPT, and baseline models.

2.2 All-GPT Model Characterization

To better understand the basis for GPT responses
to OOO questions, we manually annotated each
dimension of the full GPT embedding space as in
Hebart et al. (2020). Annotators were presented
with images of objects at pre-determined intervals
along a dimension’s range (e.g., Appendix F). Six
respondents gave up to three descriptors for each di-
mension. We iteratively generated aggregate labels
for each annotation until none were ungrouped,
then chose the aggregate labels that covered the
most participants. We call this the labelled GPT
model, and we compare it to a previous labelled hu-
man model produced with the full human dataset
from Hebart et al. (2020).

The labels for the nine dimensions with the high-
est means are given in Figure 2, while those for the
39 dimensions with max value above 0.1 are given
in Appendix G; see Supplementary Materials for
raw responses and coding.

Labelled Correlations We computed the corre-
lations of each of these GPT-derived dimensions
with dimensions from the labelled human model.
The correlations of the top 9 dimensions (by col-
umn mean) from each labelled model are shown in
Figure 2; the full 39-by-49 correlation matrix, as
well as correlation matrices ordered by maximal
correlation matching, appear in Appendix H.

Figure 2: Correlation heatmap between the first 9 dimen-
sions of the labelled GPT model and the labelled human
model (all-dimension version located in Appendix H ).
Note the strong correlations between similarly labelled
dimensions. The similar labels indicate agreement con-
cerning what the dimensions convey in their scores for
concepts, while the correlations indicate that the dimen-
sions have statistical agreement.

We also performed PCA and UMAP (McInnes
et al., 2018) on the labelled dimensions, which are
displayed in Appendix J.

2.3 GPT–Human Response Substitutability

To determine the impact of augmenting human re-
sponses with GPT responses, we compared em-
bedding spaces trained on datasets with varying
amounts of each. For this comparison, we used rep-
resentational similarity analysis (RSA) (Kriegesko-
rte, 2008) with a linear kernel.

Given two embeddings X1 and X2, we obtained
their respective Gram matrices sim(X) = X⊤X.
These are the representational similarity matrices,
or RSMs, of each space. Then, we calculated the
Pearson correlation between the upper triangle of
each RSM. The result is the RSA correlation, and
we report an RSA score, the average RSA correla-
tion of a model with the baseline human models.

GPT Response Substitution Given a full human
dataset, if we replace some of the human responses
with GPT responses, how does that affect the RSA
score? Here, we are comparing the purple pluses
with the large red circle in Figure 4. To examine
the effects of mixing GPT completion-driven re-
sponses into a human dataset, we computed the
RSA scores of the mixed human–GPT embeddings.
These results are given in Figure 4. A table of
these values can be found in Appendix K. Even
though the datasets were larger, the mixed GPT–
human embeddings each have lower RSA scores
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Figure 3: Differences: maximal correlations of the labelled human characterizing dimensions with any dimension
of a full GPT model and with any dimension of a full human model (the full GPT correlations minus the full human
correlations) over 8 such models of each. For the correlations in isolation, see Appendix I.

Figure 4: Average RSA scores for full GPT (blue),
mixed GPT-human (purple), and full human (large red)
models. Also plotted are the scores for the smaller,
partial human (small red) models. The x-axis is the pro-
portion of the original human dataset in each model’s
training set. The RSA score for a no-data, random em-
bedding (small hollow red) is given for comparison. A
table of these results is located in Appendix K.

than the corresponding partial human embeddings.
The scores trend downward in a sigmoid fashion as
the proportion of human data decreases, with the
most noticeable effects happening after .25 of the
human data has been replaced.

GPT Response Augmentation Next, we com-
pared models trained on the same amount of human
data, but with differing amounts of GPT augmen-
tation. In contrast to the previous paragraph, in
this situation we are comparing models trained on
datasets of differing size. Comparing these models
tells us whether adding GPT data hindered, facili-

tated, or neutrally impacted the final model’s ability
to represent human similarity judgment. To make
this comparison, consider the small red circles and
the corresponding purple plusses in Figure 4. We
found that for all tested ratios, augmenting with
GPT data results in lower RSA scores even though
the resulting dataset size has increased.

Individual Dimension Capturing Finally, we
explored the correspondence of dimensions from
the labelled all-human model to those of the full
GPT embeddings. To do this, we started with a
full GPT embedding and full human embedding.
For each labelled human dimension, we found the
dimension of maximal correlation in the full GPT
embedding and the dimension of maximal corre-
lation in the full human embedding. These corre-
lations signify the full GPT and full human em-
beddings’ ability to reproduce each labelled human
dimension. We then subtracted the full human cor-
relations from the full GPT correlations to deter-
mine how much worse one was at capturing the
labelled human dimensions (more negative corre-
sponds with the full GPT embedding doing worse).
We did this 8 times; the results are given in Figure 3.
The correlations themselves, as well as graphs for
the same process but with labelled GPT dimensions,
are given in Appendix I.

3 Conclusions

Our work illustrates GPT’s judgment in an odd-
one-out similarity task, provides 39 judgment-
characterizing dimensions with human annotations,
and compares those dimensions with those derived
from a human-only model. Notably, many GPT
(and human) dimensions have similar, shared-word-
or-synonym labelling, such as food-related (food-
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related/eating-related/kitchen-related) and animal-
related/organic (animal-related/organic). We com-
pared the labelled GPT and human dimensions,
and we found that over half of the labelled GPT
dimensions had correlations above 0.5 with a sim-
ilarly labelled human one (for individual results,
see Figure 2 or Figure 12). However, while using
GPT responses did produce many characterizing
dimensions similar to those derived from human
responses, substituting in GPT responses still re-
sulted in worse approximations of human decision-
making under RSA, as demonstrated by Figure 4.
Some of this is likely attributable to modality dif-
ferences between the image and text questions,
as some of the dimensions least captured by the
model are color-oriented, such as “wood/brown-
ish”, “red”, and “colorful”, as shown in Figure 3
and Appendix I.

Surprisingly, even when we used relatively little
human data, adding GPT responses did not im-
prove the trained model’s RSA score. As shown by
Figure 4, there must be a point below which this
improvement appears, as the full GPT RSA score
is above 0.4, a randomly initialized embedding has
an RSA score of 0, and there’s very little infor-
mation present in, e.g., one triplet. However, that
point was below the lowest proportion we tested, as
shown by gaps between the RSA scores of the par-
tial human models and the GPT-augmented mixed
human–GPT models in Figure 4. This ostensibly
contradicts previous studies showing LLMs having
human-comparable performance on a wide variety
of tasks, but human-level performance is different
than human behavior. Partial human RSA scores
largely saturated by the time 0.375x the full human
dataset was used, indicating that for RSA purposes,
the sizes of the partial human datasets we consid-
ered may have been larger than needed. Nonethe-
less, it seems misguided to augment with GPT re-
sponses unless human data is considerably scarcer
than we tested, as the mixed human–GPT datasets
have considerably worse RSA scores than those
observed on much smaller partial human datasets.
Were our task extremely low-resource, the 0.42
RSA score achieved by the full GPT model might
be useful, however.

Encouragingly, when swapping human re-
sponses with those from GPT, the RSA scores ap-
peared fairly robust to replacement, as shown by
the full human and partial human models’ RSA
scores in Figure 4. When we replaced 25% of the

data (0.75 on the Human-Data-Portion x-axis) the
RSA score dropped by less than 10%. There was at
most a ∼60% reduction when 100% was replaced
(0 on the Human-Data-Portion x-axis). This is
important to consider for future crowdsourced odd-
one-out experiments, such as the Hebart dataset, be-
cause many crowdworkers have begun using GPT
for their tasks.

In conclusion, our work characterizes GPT
object-similarity judgments, enhancing our under-
standing of how LLMs and humans behave sim-
ilarly or differently. Notably, despite a modality
difference, GPT responses produced embeddings
with labels mirroring or closely resembling those
from human responses. Our findings also indicate
utility in using LLM completions for extremely
low-resource environments as a proxy for human
judgment. However, these findings suggest little
benefit from augmenting human responses for any
sizeable number, especially when crowdsourcing
human data is feasible. Our findings also warrant
caution when otherwise human-looking GPT re-
sponses might become part of collected data, but
offer hope for the odd-one-out task, as the em-
beddings proved fairly robust to lower levels of
response replacement.

4 Future Work

Our choice of LLM for our experiment was con-
strained by the sizes of (effective) current mod-
els, computing resources, and modality. As image-
capable and more powerful models appear, future
work should repeat our experiments using them.

Future work may also examine whether the
choice of dataset affects the characterizing dimen-
sions produced for an LLM. The THINGS dataset
is a set of concrete objects, and lacks more expan-
sive concepts like scenes, environments, actions, or
emotions. GPT gives us a budget-effective way of
considering whether the introduction of such con-
cepts might change what characterizing dimensions
appear.

Limitations

Our work uses text-only prompts, while the hu-
man experiment uses images. The objects of the
THINGS dataset were chosen to be highly image-
able, but this nonetheless almost certainly played
a role in shaping what GPT found salient in the
object-comparison task. At time of writing, GPT-
4’s vision API had not seen full release.
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Our prompts presented GPT with objects in an
ordered fashion that it heavily utilized (see Ap-
pendix C). To remedy this, we used aggregate
responses on permuted prompts. However, humans
may have used the ordering of questions (or re-
sponses from previous questions) in ways our setup
did not account for.

We used OpenAI’s GPT-3.5. It is possible cer-
tain aspects of our characterization are specific to it.
In particular, we anecdotally observed that smaller
models had difficulty completing the odd-one-out
task as far as we could understand; other models
likely exhibit more or less similar behavior to hu-
mans as well.

During the survey, multiple respondents men-
tioned that the percentile structure made it difficult
to discern continuous meaning across the entire
dimension scale. This may be because the dimen-
sions only hold palpable information at higher lev-
els. Regardless, the common strategy employed
was to look at the top and bottom objects rather
than the ones in the middle. Our percentiles were
chosen to align with previous work, but nonethe-
less, other methods may elucidate more nuances
than our prompt and coding schema did.

Finally, GPT-3.5 is largely trained on English
text and corpora. This has cultural and linguistic
implications, and future work may wish to consider
examining models trained specifically on data from
other languages or specific communities.

Our work serves as one data point for understand-
ing LLMs. This should be sufficient for giving in-
sight into related work, but (especially given the
quickly-arriving ubiquity of LLMs and potential
for harm; see Ethics), it is not in isolation nearly
sufficient for determining whether LLMs should be
used in real-world applications.

Ethics

Risks

Our model illuminates GPT’s behavior in a di-
rect odd-one-out task, and some of the characteriz-
ing dimensions have strong correlation with previ-
ously obtained dimensions that characterize human
object-similarity judgment. There is a potential to
misinterpret this as meaning GPT uses these di-
mensions in the same way humans do or that these
dimensions apply to all tasks GPT performs.

Resources

Response-collection was performed using Ope-
nAI’s GPT-3.5-Turbo-0613 endpoint. The
4,385,040 responses took one week for OpenAI’s
systems to process at a total cost of $722 USD.
Training was done with NVIDIA P100 GPUs on
Digital Research Alliance (Compute Canada) clus-
ters, taking about 16 hours per model.

Licensing and Artifacts

Our GPT odd-one-out response dataset and model
are available under a CC-BY version 4 licence in
Supplementary Materials. The intended use of our
dataset is general-purpose, so long as it is not harm-
ful.

We use the THINGS images dataset (Hebart
et al., 2019) under the terms of the CC BY 4.0
under which it was released (https://osf.io/
qyd6u). We use the THINGS odd-one-out dataset
(Hebart et al., 2023) under the terms of the CC-BY-
4.0 license under which it was released (https:
//osf.io/5wcte). Its intended use is to further
research (as per the Things Initiative’s website
(Hebart et al., 2019)).

We use Pandas (pandas development team
(2020); Wes McKinney (2010)) under its BSD 3 li-
cence. We use Scikit-Learn (Pedregosa et al., 2011)
under another BSD 3 licence. We use SciPy (Virta-
nen et al., 2020) under the terms of a similar licence.
We use Matplotlib (Hunter, 2007) under a BSD-like
licence. Finally, we also use PyTorch (Paszke et al.,
2019). We satisfy the licensing terms of it, along
with the previous software packages, by not redis-
tributing the source code. These software packages’
intended use is scientific and general-purpose ap-
plication, and we satisfy both those criteria.

We also use representational similarity analysis
(RSA) (Kriegeskorte, 2008) and uniform manifold
approximation and projection (UMAP) (McInnes
et al., 2018). Kriegeskorte and McInnes both likely
intended others to use their algorithms for general
research.

We use ChatGPT-3.5 and ChatGPT-4 for some
code generation under OpenAI’s commercial terms.
At no point do we provide sensitive or copyrighted
information to it.

Response Collection

All respondents were members of the same re-
search team. However, as responses were collected
using respondents’ choices of identifying keywords
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(initials were suggested), that identification was re-
moved from any public release. This minimal in-
formation was necessary because respondents were
informed they could have their responses deleted,
should they desire. All respondents were part of
the research team; no formal recruitment was done.
For the same reason, no compensation was given.
Respondents knew ahead of time what this project
was for, but details were given in the instructions
as well.

The instructions given can be found in Supple-
mentary Materials.

All responses were from graduate students and
postdocs at a leading university. The respondents’
countries of origin were diverse (only two respon-
dents were from the same country), and all were
fluent in English, although for half, it was not a
first language.

Supplementary Materials
All supplementary materials, including code,
datasets, and grid-search results, are available at
https://osf.io/7vz2h/.
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A Response-Order Counts

For a set of triplets, each object is either ordered
first, second, or third in their presentation to a re-
spondent. Below are the holistic choice rates for
each in the odd-one-out task for for GPT (Figure 5),
for humans (Figure 6), and for GPT aggregated
(Figure 7).

Figure 5: Counts of order-within-triplet responses for
raw GPT calls. For example, given a prompt asking
about ‘apple’, ‘banana’, and ‘car’, in that order, and a
response of ‘car’, this would be a response with an index
of 3. These are unbalanced, so we resort to permuting
them; see section 2, Human–GPT Datasets for details
of this.
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Figure 6: Counts of order-within-triplet responses for
adult respondents on the dataset. For example, given a
prompt asking about ‘apple’, ‘banana’, and ‘car’, in that
order, and a response of ‘car’, this would be a response
with an index of 3. These responses are from (Hebart
et al., 2020).

Figure 7: Counts of order-within-triplet responses for
aggregated GPT calls. For example, given ‘apple’, ‘ba-
nana’, and ‘car’, if the relative majority vote was ‘ba-
nana’, this would be a response of index 2. In the case
of tiebreaks, in actuality the earliest tiebreaking indexed
response was chosen; this is easier to reproduce and
works out to be equivalent to choosing randomly due to
the orders of the objects within the questions being com-
pletely random. See section 2, Human–GPT Datasets
for permutation details.

B Odd-One-Out Prompt

The prompts we provided to GPT were of the fol-
lowing form:

<|im_start|>system
Which of the objects are more similar to

each other? Say the object that
doesn 't match. Format your choice as
[[ object ]]<| im_end|>

<|im_start|>user
{object1}, {object2}, {object3 }.<| im_end

|>

This was intended to be as close to the language
used by (Hebart et al., 2020) as possible. Their
instruction example is as follows:

The three pictures show {object1}, {
object2}, and {object3 }. Which are
more similar to each other? Click on
the picture that doesn 't match.

C Permuted Response Distribution

For a given set of three objects, GPT may answer
differently when the objects’ order is permuted in
the prompt. The rates of agreement of these indi-
vidual permutations with the accepted aggregate
response are given in Figure 8.

Figure 8: Distribution of the rate of agreement of model
permutation responses with the aggregate model re-
sponse (see section 2, Human–GPT Datasets for per-
muting details). 1.00 denotes that all 6 permutations
of an odd-one-out triplet resulted in the same response;
2
3 indicate that 4 of 6 permutations resulted in the same
response. 1

2 and 2
3 indicate possible ties, which were

broken by choosing the first response at a tying index.
Due to the questions being random ordered, consistently
doing this is equivalent to choosing randomly between
the options with the most votes.
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D Model Loss

The cross-entropy loss used by the model in
training is given here.

H(q, p)object set is {i,j,k},
k is the odd-one-out

=
∑

c∈{i,j,k}
qc is the odd-one-out · ln(pc is the odd-one-out)

= − ln (p(codd-one-out))

= − ln (σ (z)c) = − ln
ezk

ezk + ezj + ezi

where

• H is the cross-entropy loss function

• i, j, k denote the three objects of a triplet,
where k is the true odd-one-out

• zc where c ∈ {i, j, k} and zc represents the
dot product between the vectors of the pair of
objects {i, j, k}∖ {c}

• z = {zi, zj , zk}
• σ is the softmax function

• q is the probability of an object being the odd
one out (so 100% for the identified odd-one-
out, 0% for any other object)

• p is the estimated probability the model gives
that a given object is the odd-one-out

For the ℓ1-norm penalty, we flatten the embed-
ding matrix and take the ℓ1 norm of the resulting
vector. We weight this norm by λ/num_items and
add it to the cross-entropy loss to obtain our full
loss.

E Grid Search Specifics

For a given training set, we perform a grid search:
we take steps of 0.0016 over the range λ ∈
{0.0064..0.0144} to find a maximum, expanding
the search radius if necessary. We then perform
(k = 4)-fold cross-validation ((k = 10)-fold for
the full GPT set) in steps of 0.0004 to the adjacent
previously-found 0.0016-stepped lambdas to find
the optimal lambda in the region around that lo-
cal maximum. We train on a 90% split for a fixed
1000 epochs for each model, mirroring the setup
of Zheng et al. (2019) to ensure convergence. The
per-epoch performance and final validation accura-
cies for the grid-search folds of the full GPT model
are given in Figure 9. The final validation accura-
cies for those λs are given in Figure 10, illustrating

the degree of local concavity. All grid-search re-
sults, as well as further by-fold stats for the mixed
human–GPT and partial human models, are found
in Supplementary Materials.

Figure 10: Step 2 of the grid-search for the full GPT
model (stepping at intervals of 0.0004). The x-axis
gives training lambda values, and the y-axis gives the
validation accuracy at 1000 epochs. The error bars
assume fold results are normally distributed and give
a range of one standard deviation. λ = 0.008 is the
highest performer.

F Dimension Scales

For each dimension, we produced scales with ob-
jects whose values spanned the dimension, as in
Figure 11.

Namely, we made images as seen in Figure 11.
The six images on the left have Dimension 12
values at the 0th, 1st, 5th, 10th, 15th, and 20th per-
centiles for the dimension. The images at the next
tick have dimension values at the 33rd percentile,
and thereafter the images at each successive tick
are at a percentile 13.333 more. This continues un-
til the last tick, denoting the 100th percentile, where
the six top-scoring images are shown.

G Dimension Labels

The aggregated dimension names for the 39 largest
dimensions of the labelled GPT model are given in
Table 1.

H Correlation Heatmaps

The full heatmap of the correlations between the
dimensions of the labelled GPT model and those
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Figure 9: Per-epoch validation accuracies for step 2 of the grid search for the full GPT model (with additional
lambdas for illustration). Note the saturation of the validation accuracies before 1000 epochs. Additional 0.0004-
intervaled grid-search results are included for context. λ = 0.008 is the highest-scoring performer.

Figure 11: Scale produced for Dimension 12 of the full GPT model for annotations
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Dimension
Ordering

Aggregate Dimension Label
Dimension
Ordering

Aggregate Dimension Label

1 round, outdoors 21 alive/nature/plant-related
2 food-related 22 boats/water-related
3 animal-related, organic 23 box/container-related
4 clothing-related 24 sports-related
5 food, kitchen-related, house 25 small, (flying) insect-related
6 furniture-related 26 music-related
7 gold/jewel, luxury, ostentatious 27 vehicle-related, outdoors
8 transportation/vehicle-related 28 fruit-related
9 gun/explosive, weapon 29 aquatic/sea-related
10 electronics-related 30 crafts, push item through hole
11 (melee) weapon, long/thin 31 wound/rolled, thread-related
12 edible/vegetable-related 32 round, colorful, sports
13 tool-related 33 sanitation, garbage-related
14 (sharp) tools 34 medical (equipment/tools)
15 delicious/sweet liquid/food 35 toy-related
16 (metallic) housing hardware-related 36 vertical, elevated
17 earth/rock-related 37 industrial/mechanical
18 candy/sweet, food 38 paper/literacy-related
19 textiles 39 temperature/temperature-change related
20 container, tableware-related

Table 1: Aggregate labels for the characterizing dimensions of the labelled GPT model. Labels were obtained via
the coding process described in subsection 2.2.

of the labelled human is shown in Figure 12. To
illustrate the closest dimensions between the la-
belled GPT and labelled human embeddings, we
performed a bipartite max-correlation-as-weight
matching of the labelled human dimensions to the
labelled GPT embeddings Figure 13 (and vice-
versa in Figure 14).

I Dimension Reproducibility and Overlap

We wished to gauge the reproducibility of the la-
belled GPT/Human embedding dimensions and de-
termine the extent to which the dimensions of one
are reproduced by the other. To determine this,
we took our labelled human model and considered
each dimension. We ran 8 other full human models
and 8 other full GPT models, each time calculating
the maximal correlation that the labelled dimen-
sion had with any of the new dimensions. This
told us (1) how reproducible the labelled human
dimensions were, and (2) the extent to which full
GPT models captured the labelled human dimen-
sions. The differences between the respective GPT
and human correlations then conveyed how much
better or worse the typical full human or full GPT
embedding was at reproducing the labelled human

dimensions. These results are shown in Figure 15.
We also repeated this setup using the labelled

GPT model as the basis of comparison. This con-
veyed the reproducibility of the labelled GPT di-
mensions and the extent to which full human mod-
els captured the labelled GPT dimensions. Similar
to before, the differences between the respective
GPT and human correlations then indicated how
much better or worse the typical full human or full
GPT embedding was at reproducing labelled GPT
dimensions. These results are shown in Figure 16.

J Dimension UMAP and PCA

We performed Uniform Manifold Approximation
and Projection (UMAP) and Principal Component
Analysis (PCA) on the labelled human and GPT
embeddings for insight into the dimensions’ spatial
relationships. These are given in Figure 17.

Most of the largest human embedding dimen-
sions have a strong correlation and corresponding
label with a dimension in the GPT embedding (and
vice-versa). However, the largest-magnitude di-
mension of each are quite different. These two
dimensions have an outsized effect on the choice
of principal components, as evidenced by them
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Figure 12: Full correlation heatmap between the dimensions of the labelled GPT model and the labelled human
model, with aggregate labels on left. Dimensions are ordered by the mean value over objects. Correlations are
multiplied by 10 and rounded to the nearest integer for text-size reasons.
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Figure 13: Correlation heatmap between each labelled GPT embedding dimension and the closest labelled human
embedding dimension under bipartite max-correlation matching. The GPT dimensions are ordered by their mean
value over all objects.
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Figure 14: Correlation heatmap between each labelled human embedding dimension and the closest labelled GPT
embedding dimension under bipartite max-correlation matching. The human dimensions are ordered by their mean
value over all objects.
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Figure 15: Maximal correlations of the labelled human characterizing dimensions with any dimension of a full
human model and a full GPT model (over 8 such models of each).

3825



Figure 16: Maximal correlations of the labelled GPT characterizing dimensions with any dimension of a full GPT
model and a full human model (over 8 such models of each).
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being in clearly distinct clusters (in the case of
‘round/outdoors’, human dimension 1, it is the only
embedding dimension present in the entire right
half-plane of the first principal component). Con-
sequently, as the choice of principal components
is dominated by these most significant dimensions,
the relationships between the rest of the dimensions
are less considered.

On the other hand, since UMAP considers the
distance between each pair of dimensional vectors
when bringing the structure of the projection close
to one imposed on the higher-dimensional vectors,
the local relationships are better preserved.

Figure 17: UMAP and PCA performed on the labelled
GPT and human embeddings’ dimensions.

K Mixed Human–GPT RSA

Table 2 gives the RSA scores used in Figure 4 in
tabular form. As such, it holds the average RSA cor-
relations with the baseline human embeddings. The
“Dot RSM” column represents using a dot-product
kernel to take a representational similarity matrix
(RSM) when comparing the various models to the
baseline human models, while the “Cos RDM Corr”
column represents using cosine similarity to pro-

duce representational difference matrices (RDMs)
in lieu of those RSMs. For our experiments, we
used the dot-product RSMs.
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Dataset Type Lambda Proportion Human Data Dot RSM Corr. (RSA Score) Cos RDM Corr

Random Embedding 0 0 -0.01
Full GPT 0.008 0 0.437 0.438
Partial Human 0.0092 0.125 0.853 0.638
Partial Human 0.0108 0.25 0.897 0.710
Partial Human 0.0128 0.375 0.916 0.752
Partial Human 0.0144 0.5 0.924 0.772
Partial Human 0.0176 0.625 0.930 0.797
Partial Human 0.02 0.75 0.928 0.763
Partial Human 0.024 0.875 0.933 0.808
Mixed 0.0084 0.125 0.507 0.502
Mixed 0.0084 0.25 0.585 0.566
Mixed 0.0084 0.375 0.667 0.613
Mixed 0.0092 0.5 0.750 0.680
Mixed 0.0084 0.625 0.826 0.723
Mixed 0.0088 0.75 0.887 0.774
Mixed 0.0092 0.875 0.926 0.809
Full Human 0.008 1 0.933 0.808
Baseline Human 0.008 1 (separate dataset) 0.978 0.926

Table 2: A table of average RSA scores for different datasets over 4 folds. The lambda values are those produced
from our grid-search procedure in Appendix E. For individual folds, see Supplementary Materials.
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