
Findings of the Association for Computational Linguistics: NAACL 2024, pages 3829–3845
June 16-21, 2024 ©2024 Association for Computational Linguistics

SELF-DEMOS: Eliciting Out-of-Demonstration Generalizability
in Large Language Models

Wei He1, Shichun Liu1, Jun Zhao1, Yiwen Ding1, Yi Lu1,
Zhiheng Xi1, Tao Gui2*, Qi Zhang1*, Xuanjing Huang1

1 School of Computer Science, Fudan University
2 Institute of Modern Languages and Linguistics, Fudan University

whe23@m.fudan.edu.cn, {tgui,qz}@fudan.edu.cn

Abstract

Large language models (LLMs) have shown
promising abilities of in-context learning (ICL),
adapting swiftly to new tasks with only few-
shot demonstrations. However, current few-
shot methods heavily depend on high-quality,
query-specific demos, which are often lack-
ing. When faced with out-of-demonstration
(OOD1) queries, methods that rely on hand-
crafted demos or external retrievers might fail.
To bridge the gap between limited demos and
OOD queries, we propose SELF-DEMOS, a
novel prompting method that elicits the inher-
ent generalizability in LLMs by query-aware
demo generation. The generated demos strate-
gically interpolate between existing demos and
the given query, transforming the query from
OOD to ID. To evaluate the effectiveness of
our approach, we manually constructed OOD-
Toolset, a dataset in the tool-using scenario
with over 300 real-world APIs and 1000 in-
stances, each consisting of three tool-use cases
as demos and an OOD query. Thorough ex-
periments on our dataset and two public math
benchmarks have shown that our method can
outperform state-of-the-art baselines in the
OOD setting. Moreover, we conduct a range
of analyses to validate SELF-DEMOS’s gener-
alization and provide more insights.2

1 Introduction

Large language models (LLMs) have achieved im-
pressive performance across a wide range of tasks,
ranging from mathematical reasoning to tool using
(Brown et al., 2020a; Kojima et al., 2022; Qin et al.,
2023; Xi et al., 2023). The models learn to perform
unseen downstream tasks simply by conditioning
on a prompt containing input-output pairs (i.e., few-
shot demonstrations, Brown et al., 2020a). This

* Corresponding authors.
1OOD refers to “Out-of-Demonstration” in this paper, not

the commonly understood “Out-of-Distribution”. Similarly,
ID stands for “In-Demonstration”.

2Code & Data: https://github.com/hewei2001/Self-Demos.

Query: How do I drive from

Big Ben to the London Eye?

Q: How far is Beijing to Shanghai?

A: We should call DISTANCE API...

Q: How many shops are around Times Square in 3km?

A: We should first call SEARCH API and then...

Q: How can I go from Beijing to...

A: We should call ROUTE API...

Query: How do I drive from

Big Ben to the London Eye?

OOD Query

ID QueryGenerated Demos

Existing Demos

Extended Scope

Original Scope

Q: How far is Beijing to Shanghai?

A: We should call DISTANCE API...

Q: How many shops are around Times Square in 3km?

A: We should first call SEARCH API and then...

Query-aware

Demo Generation

Figure 1: An example of how query-aware demo gen-
eration works. In the tool-using scenario, there is a
gap between the user query and the available tool-use
cases in the original scope since they require different
APIs. This can lead to errors if the LLM is unfamiliar
with the ROUTE API. After interpolating new demos
between the existing ones and the OOD query, LLMs
can perform better in the extended scope.

paradigm, also known as in-context learning (ICL),
has been found its effectiveness considerably influ-
enced by the quality and relevance of the demos
provided (Liu et al., 2022; Dong et al., 2023). Thus,
how to provide high-quality demos becomes an es-
sential challenge in LLM applications.

The leading few-shot techniques typically hinge
on hand-crafted task-specific demos or extensive

3829

https://github.com/hewei2001/Self-Demos

demo libraries (Wei et al., 2022c; Liu et al., 2022;
Rubin et al., 2022). However, crafting demos for
each unique query is impractical, and the demo
libraries are also unable to cover all the potential
queries. The issue arises when faced with out-of-
demonstration (OOD) queries, resulting in poorer
performance due to the gap between existing demos
and new queries.

An alternative strategy is prompting the LLMs to
self-generate relevant demos, thereby guiding them-
selves toward resolving the query (Kim et al., 2022;
Chen et al., 2023b; Yasunaga et al., 2023). How-
ever, these works often overlook a critical point:
instead of blindly recalling relevant demos based
on queries, we can perform interpolation between
existing demos and queries, as depicted in Figure 1.
By strategically interpolating, we can derive more
relevant and accurate demos from existing ones,
which have proven helpful for the final response
(Liu et al., 2022; Halawi et al., 2023). Specifically,
we introduce SELF-DEMOS, a novel prompting
method that may fully elicit the model’s potential
out-of-demonstration generalizability. Unlike pre-
vious works, we developed a complete workflow in-
corporating pre- and post-processing steps around
the demo generation. Before the demos are gener-
ated, we first prompt the model to “give a general
understanding of the user query”, thereby simpli-
fying the complexity of the analysis in subsequent
steps. Then, we generate query-aware demos and
select the most high-quality ones through Best-of-N
sampling (Nakano et al., 2021). These selected de-
mos will be used for the final response along with
the initial available demos.

To evaluate our approach’s efficacy in the OOD
context, we manually construct OOD-Toolset, a
dataset tailored for tool-using scenarios as de-
lineated by Tang et al. (2023). Our dataset in-
cludes over 300 real-world APIs and 1000 in-
stances, each consisting of three tool-use cases as
demos and an OOD query. Moreover, we bench-
marked our method with two public mathematical
datasets, GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021), to validate its adaptabil-
ity in different scenarios. The primary experimen-
tal findings reveal that SELF-DEMOS outperforms
state-of-the-art baselines in solving OOD queries.
We also conducted ablation studies and other ex-
tensive experiments to gain more insights into our
method. Collectively, our analyses show that we
have found a more efficient way to elicit the poten-
tial OOD generalizability in LLMs.

Our contributions are summarized as follows:

1. We proposed SELF-DEMOS, a novel prompt-
ing method to elicit the out-of-demonstration
(OOD) generalizability in LLMs.

2. We manually constructed OOD-Toolset, a tool-
using dataset for better verifying the potential
OOD generalizability in LLMs.

3. We conducted extensive experiments to validate
SELF-DEMOS’s effectiveness and generaliza-
tion under different settings.

2 Related Work

2.1 In-Context Learning

The rise of LLMs such as ChatGPT (OpenAI, 2022)
and LLaMA (Touvron et al., 2023) has revolution-
ized the field. With the model size scaling, LLMs
demonstrate remarkable capabilities of ICL (Brown
et al., 2020b; Wei et al., 2022b), which learns to
perform tasks by specific instructions and demon-
strations. Additionally, insights from scaling laws
(Wei et al., 2022b) also highlight the LLMs’ poten-
tial for out-of-distribution generalization. It refers
to the challenge where model inputs deviate from
their training distribution (Wang et al., 2023a). If
stimulated effectively, this generalization capabil-
ity can empower LLMs to address queries outside
the training corpus (Collins et al., 2022), enhancing
utility in dynamic and open-ended scenarios.

2.2 Optimizing Demonstrations for ICL

The performance of LLMs may be influenced by
the quantity, relevance, diversity, and truthfulness
of demonstrations (Chen et al., 2023a; Levy et al.,
2023; Min et al., 2022; Halawi et al., 2023). There
are two primary paradigms to optimize demonstra-
tions and steer models towards generalization.

Demo Retrieval for ICL. LLMs are sensitive
to the choice of demonstrations. Therefore, re-
searchers have focused on using retrieval mod-
ules to find the most representative demos for ICL.
One effective strategy is leveraging existing retriev-
ers based on semantic similarity metrics between
the available demos and queries (Liu et al., 2022;
Agrawal et al., 2023; Gao et al., 2023; Luo et al.,
2023). Another method employs ranking scores
derived from fine-tuned language models (Rubin
et al., 2022; Shi et al., 2022).

3830

Demo Generation for ICL. Rather than extract-
ing existing demos, demo generation aims to self-
generate exemplars that closely align with the in-
put. Kim et al. (2022) initially employed language
models to produce demos from pre-defined labels.
Subsequent works adopted a two-stage approach
of generating and selecting demos (Li et al., 2022;
Zhang et al., 2023; Shao et al., 2023). In con-
trast, our work leverages the intrinsic capabilities
of LLMs to identify superior demos via best-of-N
sampling.

Besides, there are approaches akin to ours. Chen
et al. (2023b) adopt multi-steps to construct demon-
stration pairs, while Yasunaga et al. (2023) prompt
LLMs to recall relevant demos before answering.
However, our method stands out by combining pre-
and post-processing steps around demo generation
to guarantee the high quality of generated demos.

2.3 Eliciting LLMs’ Power with Prompts

Efforts to enhance LLMs include finetuning with
specific instructions (Wei et al., 2022a) and employ-
ing prompting strategies like Chain-of-Thought
(CoT, Wei et al., 2022c). Our approach adopts
the prompt-based strategy and draws inspiration
from studies of the “self” series (Madaan et al.,
2023; Wang et al., 2023b; Chen et al., 2023b). The
essence of “self” is to leverage the model’s inher-
ent power, without external modules. Our method
positions the LLM itself as an analyzer, generator,
and selector, aiming to elicit its intrinsic generaliz-
ability to resolve OOD queries.

3 Methodology

In this section, we first introduce the construction
process of OOD-Toolset. Next, we provide a de-
tailed description of the SELF-DEMOS method,
which is illustrated in Figure 2.

3.1 OOD-Toolset Construction

Recent works are evaluated on benchmarks such as
BIG-Bench (Srivastava et al., 2022) and GSM8K
(Cobbe et al., 2021). However, since these datasets
may have been inadvertently included in the train-
ing data of LLMs, there is a risk of overestimating
their ability to generalize to OOD query (Zhou
et al., 2023). To mitigate this, we chose the tool-
using scenarios that are less likely to occur during
model training for assessment. Specifically, we
constructed the dataset following the two steps:

Data Collection. Our original data derives from
the tool-use corpus created by ToolAlpaca (Tang
et al., 2023). It was composed of a wide range of
real-world APIs complete with API descriptions,
usage specifications, and multiple simulated tool-
use cases. However, despite the dataset’s compre-
hensiveness, we noted that the initial AI-generated
tool-use cases contain some errors, such as ambigu-
ous queries and incorrect API calls in response.
These minor errors may prevent accurate judgment
in our evaluation. Therefore, we engaged human
annotators to manually refine the corpus, producing
a high-quality version for more reliable assessment.
Additional details and an example of OOD-Toolset
are provided in Appendix B.

OOD Setting. We retained the user’s queries and
corresponding API calls from tool-use cases as
input-output pairs for the evaluation. In addition,
we kept the API descriptions and usage specifica-
tions from the refined corpus as context for LLMs.
For each test instance, we provided three cases
from the same API as initial available few-shot
demos (also referred to as seed demos, or Dseed).
Notably, in the OOD setting, the sub-APIs in seed
demos differ from those needed in the final query.

Take the MAP tool for example, which contains
three sub-APIs: DISTANCE, ROUTE, and SEARCH

API. For instance, if the DISTANCE and SEARCH

APIs serve as seed demos, the user’s query might
pertain to the ROUTE API. This design tests the
model’s ability to understand and apply tool-using
patterns across different functions, allowing us to
explore the OOD generalizability in LLMs.

3.2 SELF-DEMOS

We executed the whole workflow by prompting the
model itself. The prompt template for each step is
illustrated in Appendix C.

Query Understanding. The first step involves
comprehensive query understanding. Given the
model M and a query q, we employ a zero-shot
method:

u = M(p1 || q), (1)

where p1 is the prompt for query understanding,
|| denotes concatenation, and u is the generated
understanding. During this pre-processing step, we
aim to reduce the disparity between the initial seed
demonstrations and the ultimate target query. As
shown in Figure 2, when given a query that involves
MAP API, we guide the model to generate an un-

3831

Step #1: Query Understanding Step #2: Demo Generation

Step #3: Best-of-N Sampling Step #4: Response Generation

The query involves

finding directions…

To solve this type of

query, we should call

ROUTE API to...

Q: How can I go from Beijing to Shanghai?

A: We should call ROUTE API to get the directions

from Beijing to Shanghai. The function call is

ROUTE(position=“Beijing”, target= “Shanghai”).

Seed Demos:

Q: How far is… A: We should call DISTANCE…

Q: How many… A: We should call SEARCH API…

Query-aware

Instruction: The Map API including 3 sub-APIs. In this task, you need to generate the API calls for a given query.

Query: How do I drive from Big Ben to Tower Bridge, and then to the London Eye ?

API: SEARCH

args: (target, position,

distance)

API: DISTANCE

args: (start, target)

API: ROUTE

args: (start, target)

Q: How can I go from Beijing to Shanghai?

A: ROUTE(position=“Beijing”, target=“Shanghai”)

Q: How can I go from Beijing to Shanghai?

A: ROUTE(start=“Beijing”, target=“Shanghai”)

Query
?

Request

Understanding

Understanding

Instruction & Query

Seed Demos & Selected Demos

API Specifications

Final answer: The function call is

ROUTE(start=“Big Ben”, target=“Tower Bridge”),

ROUTE(start=“Tower Bridge”, target=“London Eye”).

Given Criteria

Figure 2: An overview of the proposed SELF-DEMOS prompting method in tool-using scenario.

derstanding focused on the more specific ROUTE

sub-API. Furthermore, this step resembles a chain-
of-thought process (Wei et al., 2022c), which may
reduce the cognitive load in subsequent steps. This
is helpful to enhance the relevance and accuracy of
the generated demos.

Query-aware Demo Generation. Based on the
distilled understanding u and seed demos Dseed,
we generate query-aware demos as:

Dgen = {d1, d2, ..., dN} = M(p2 || q, u,Dseed),
(2)

where p2 is the prompt for demo generation, Dgen

is the set of generated demos, and N is the number
of demos to be generated. The seed demos, while
not directly linked to the specific query, showcase
potential tool-using patterns of MAP API, offering
guidance for the generation. We call the model N
times to generate N demos separately, alleviating
the difficulty of a single try and avoiding the model
falling into consecutive errors in one response. In
this phase, we extend the original scope of the

demos to a broader boundary.

Best-of-N Sampling. It has been argued that
LLMs are unlikely to self-critique their outputs
without an external validator (Stechly et al., 2023;
Valmeekam et al., 2023). Consequently, we assume
that while models might not calibrate and refine
outputs, they could still discern the superior output
from a variety. Therefore, we employ a Best-of-N
sampling strategy, where the model is prompted
to select the best K demos from the N generated
demos based on special criteria:

DtopK = M(p3 || Dgen, C,K), (3)

where p3 is the prompt for sampling, DtopK is the
subset of K demos sampled from the generated
ones, conditioned on criteria C.

This process is inspired by preference learning,
where multiple samples are generated and the one
with the highest reward model score is chosen
(Nakano et al., 2021). It is worth noting that our cri-
teria, which include the demos’ accuracy, relevance,

3832

and potential helpfulness for the final response, are
given to the model via prompts. Our sampling crite-
ria are more nuanced and do not rely on an external
retriever. This is where SELF-DEMOS differs from
methods such as Synthetic Prompting (Shao et al.,
2023), which also selects demos after generation.

Response Generation. Finally, we leverage the
sampled demos DtopK and the initial seed demos
Dseed to generate the final response:

r = M(p4 || Dseed ∪DtopK, q), (4)

where p4 is the prompt for response generation, ∪
denotes the concatenation of two sets and the r is
the final response. The concatenation ensures that
the model benefits from the query-specific demos
in DtopK, while also incorporating the beneficial
diversity and quality of Dseed (Levy et al., 2023;
Halawi et al., 2023).

4 Experiments

To evaluate the effectiveness of SELF-DEMOS, we
conduct extensive experiments for comparison and
analysis.

4.1 Experimental Setups
Foundation Models. We use GPT-3.5 (the
gpt-3.5-turbo-0613 version) for most of our ex-
periments, with only one additional experiment
using the Llama-2-Chat model family, to validate
the generalization of SELF-DEMOS across different
model sizes. For all LLMs, we set the parameter
temperature = 0 for stable responses except for
the sampling step, where we set temperature =
0.7 to introduce diversity.

Tasks & Datasets. We evaluate the proposed
method in two reasoning-intensive tasks: tool-
using and mathematical problem-solving.

In the tool task, we developed the OOD-Toolset
for evaluation. Details of the construction process
are described in section 3.1. In the math task, we
employed two public datasets: GSM8K (Cobbe
et al., 2021), featuring elementary math word prob-
lems, and MATH (Hendrycks et al., 2021), contain-
ing complex problems from high school competi-
tions. We evaluate the entire GSM8K testing set
and a randomly selected subset from the MATH
testing set. Distinct OOD settings are designed for
math tasks. For GSM8K, we manually created sev-
eral outlier samples, ensuring that the testing set
did not contain problems with similar contexts. For

MATH, since the problems were categorized into
seven subjects and five difficulty levels, we used
problems from different subjects but the same level
to meet the OOD condition. The dataset statistics
are presented in Table 1.

Evaluation Metric. In the report for the math
tasks, we present the exact match accuracy for each
problem. For the tool task, which may require mul-
tiple API calls in one case, we assess accuracy us-
ing both exact and partial matches. Partial matches
are awarded half the score if the model’s response
includes only part of the required API calls.

4.2 Baselines

We compare SELF-DEMOS with the following
baselines, including two methods that are designed
for demo generation:

Zero-shot and Zero-shot + CoT (Brown et al.,
2020a; Kojima et al., 2022). Prompt the model
with the task description, test input, and no demon-
stration. Besides, the CoT method integrates a
trigger prompt “let’s think step by step”.

Few-shot (Wei et al., 2022c). Employ a fixed set
of seed demos we constructed for each OOD query.
For the GSM8K and MATH datasets, which in-
clude solutions with labeled reasoning steps, the de-
mos also feature CoT steps to enhance the model’s
problem-solving capabilities.

Self-ICL (Chen et al., 2023b). A multi-step
framework for zero-shot in-context learning by
prompting the LLM itself to generate pseudo-
inputs and labels. Unlike our method, they generate
inputs and labels separately and then merge them
into demos, with no other pre- and post-processing
steps. We have also adapted it into a few-shot vari-
ant to make it comparable.

Analogical Prompting (Yasunaga et al., 2023).
A single-step prompting method that guides LLM
to recall relevant demos and knowledge before solv-
ing a given problem. Here we let it generate demos
for the vanilla version and our few-shot variant.
The vanilla Self-ICL and Analogical Prompting
methods initially generate three demos each. How-
ever, in the few-shot variant, we adjust this to two
demos to better align with our approach.

4.3 Main Results

Table 2 shows the performance of each method on
three datasets. We can find that: (1) The better

3833

Dataset
Name Size Demo Source Avg. #tokens

of Query
Avg. #tokens

of Demo
Avg. #tokens of

Context (Few-shot)

OOD-Toolset 1,057 Same tool, different sub-APIs 35.5 53.8 496.0
GSM8K 1,319 Manually created outliers 59.0 136.8 526.1
MATH 1,000 Same level, different subjects 69.1 291.9 1002.1

Table 1: Statistics of three datasets in the OOD setting.

Prompting Method OOD-Toolset GSM8K MATH Average
Exact Acc Part Acc Acc Acc

Zero-shot 64.5 68.4 75.0∗ 33.0∗ 60.2
Zero-shot + CoT 66.1 70.9 75.8∗ 33.9∗ 61.7
Few-shot 71.9 76.6 76.2 35.1 65.0

Self-ICL (Zero-shot) 67.0 71.1 76.6 34.6 62.3
Self-ICL (Few-shot) 71.5 76.0 78.0 37.9 65.9
Analogical Prompting (Zero-shot) 67.8 72.0 77.8∗ 37.3∗ 63.7
Analogical Prompting (Few-shot) 71.1 75.4 75.7 36.3 64.6
SELF-DEMOS (ours) 75.1 79.4 78.2 37.9 67.7

Table 2: Main results of different prompting methods on three datasets. All the results are with GPT-3.5-Turbo. The
best performance for each task is in bold. The (∗) indicates that results are from Yasunaga et al. (2023).

performance of few-shot over zero-shot (+ CoT)
shows the LLM’s capacity to discern and apply un-
derlying patterns from seed demos to OOD queries,
indicating a degree of inherent generalizability. Fur-
thermore, the OOD-Toolset measures this ability
more accurately than the two public math datasets,
validating the necessity of creating unseen scenar-
ios and OOD structures of instances. (2) Only a
few-shot method does not fully unlock the model’s
capability. In contrast, the methods with demo gen-
eration, especially SELF-DEMOS, present superior
performance, underscoring their potential to serve
as a reliable prompting strategy in OOD scenar-
ios. (3) Self-ICL, which generates Q&A separately,
serves a similar purpose to our Best-of-N Sampling
step by enhancing the accuracy of generated demos.
Thus, it yields performance that is closest to our
method. However, this framework may also lead to
mismatches of Q&A pairs, i.e., the model fails to
answer the questions it generates, which may affect
subsequent responses. (4) Seed demos bring little
benefit to the Analogical Prompting method and
may even be harmful. This could be because the
additional demos are irrelevant to the instructions
of analogical reasoning, which require the model to
do multiple tasks. The seed demos fail to guide the
model in different tasks and may distract the model
from the whole process. Overall, SELF-DEMOS

outperforms all baselines in solving OOD queries.

Pre- & Post-processing Method OOD-Toolset

w/o Pre-processing 72.9 / 77.5
+ Directly Answering 72.3 / 77.0
+ Query Understanding 75.1 / 79.4

w/o Post-processing 74.1 / 78.7
+ Self-Critique 74.3 / 78.8
+ Best-of-N Sampling 75.1 / 79.4
+ Best-of-N Sampling & Self-Critique 74.6 / 79.0

Table 3: Ablation study of pre- & post-processing meth-
ods on OOD-Toolset. The upper rows show the impact
of different pre-processing steps, with the other steps
remaining consistent with the original. The following
rows show the impact of post-processing steps, again
keeping all other steps consistent with the original.

4.4 Ablation Study
Table 3 presents the results of our ablation study.
We compare a range of pre- and post-processing
methods and their influence.

Pre-processing Methods. We performed the fol-
lowing settings: no pre-processing before generat-
ing demos, directly answering the query before gen-
erating, and query understanding before generating.
The result shows that either no pre-processing or
directly answering will compromise performance.
Notably, the absence of pre-processing tends to
yield homogenous outputs despite our introduc-
tion of randomness, potentially due to the model’s

3834

challenge in reconciling the demanded relevance
and diversity. Direct answer generation also di-
minishes performance, as initial errors propagate,
leading to more erroneous or ambiguous answers in
subsequent steps. Hence, a robust pre-processing
strategy enhances model performance by ensuring
diverse and correct initial responses.

Post-processing Methods. We performed the fol-
lowing settings: no post-processing after generat-
ing two demos, self-critique after generating two,
sampling the best two demos after generating five,
and self-critique after sampling. In the self-critique
step, we prompt the model to verify and refine the
Dgen or DTopK according to the same criteria C.
However, the result indicates that LLMs are no
better at verifying their own outputs, echoing the
findings of Stechly et al. (2023). This also discour-
ages us from constantly improving the quality of
demos through iterative verification.

5 Discussion

5.1 Consistency when Model Scaling
Figure 3 presents the results on varying sizes of
the foundation model, ranging from Llama-2-7B-
Chat to Llama-2-70B-Chat. According to the re-
sults, analogical reasoning did not work on smaller
models, likely due to their limited capacity to fol-
low hard instructions. The Self-ICL method en-
countered similar issues, with the small models’
inability to provide accurate demos compromising
their effectiveness. In contrast, our method, which
incorporates extra processing steps around demo
generation and lowers the task difficulty, proved
more adaptable even when the model is weaker
(∼10B parameters). It suggests that our approach
is highly adaptable and can be more effective for
resource-limited or mobile scenarios.

5.2 Effectiveness Toward Complex Tasks
In the main results, we can observe that both Self-
ICL and SELF-DEMOS have shown a consider-
able improvement on the most challenging MATH
datasets. This may suggest that the methods of
generating demos in advance are more effective for
complex tasks, as we will detail here.

Table 4 presents the full results on the MATH
dataset across different complexity levels. Analogi-
cal Prompting, as a single-step prompting method,
is most effective for simple problems, showing an
entirely different trend from the other methods.
This aligns with our previous analysis that high

Level Prompting Method

FS Self-ICL + FS Analog + FS SELF-DEMOS

1 70.2 71.3 (↑ 1.6) 80.9 (↑ 15.2) 74.5 (↑ 6.1)
2 58.9 61.9 (↑ 5.1) 63.1 (↑ 7.1) 58.3 (↓ 1.0)
3 37.4 38.7 (↑ 3.5) 39.9 (↑ 6.7) 39.1 (↑ 4.5)
4 28.0 34.7 (↑ 23.9) 24.0 (↓ 14.3) 34.7 (↑ 23.9)
5 12.4 13.8 (↑ 11.3) 11.6 (↓ 6.4) 14.6 (↑ 17.7)

Table 4: Evaluating prompting methods on the MATH
dataset at different complexity levels. The Level cor-
responds to problem complexity, with higher values
indicating greater difficulty. The percentage of perfor-
mance improvements / declines compared to the few-
shot method (FS) is denoted by (↑) / (↓).

model ability is required for analogical reasoning.
In contrast, Self-ICL and our method significantly
gain in more complex problems. With its greater
focus on the relevance and correctness of demos,
SELF-DEMOS outperforms others in solving the
most difficult level 5 problems.

5.3 Comparing with Demo Retrieval

A key motivation for our idea is to provide relevant
demos for problem-solving, without using an exter-
nal retriever or demo library. So, is our approach
comparable enough to retrieval-based solutions?
To answer this question, we created two baselines
that retrieve exemplars relevant to the given query
from external data (i.e., the training set of GSM8K
and MATH, which includes labeled Q&A pairs).
Table 5 shows the results of these methods on two
math datasets.

Undoubtedly, the retrieval-based methods per-
form well, with the dense retriever achieving the
highest scores due to its effective representation
of latent semantics (Karpukhin et al., 2020). Be-
sides, SELF-DEMOS also shows competitive per-
formance, especially on the MATH dataset. This
could be due to more complex questions in the
MATH dataset, resulting in intricate semantic con-
nections that cannot be easily captured by a statisti-
cal algorithm like BM25 (Robertson et al., 2009).
In contrast, the GSM8K dataset has more uniform
and centrally distributed questions, making it more
suitable for retrieval-based approaches.

Overall, SELF-DEMOS can still be a good op-
tion when resources are limited and retrieval is
less feasible. Moreover, it’s worth noting that the
techniques of demo generation and retrieval are
not mutually exclusive. Our method is particularly
well-suited for a “cold start” and once a certain
amount of demos is accumulated, we can then em-

3835

7B 13B 70B
20

25

30

35

40

45

50

55

60

65
Ex

ac
t A

cc
ur

ac
y

OOD-Toolset
Few-shot
Self-ICL (Few-shot)
Analog (Zero-shot)
Analog (Few-shot)
Self-Demos

7B 13B 70B
0

10

20

30

40

50

Ac
cu

ra
cy

GSM8K
Few-shot
Self-ICL (Few-shot)
Analog (Zero-shot)
Analog (Few-shot)
Self-Demos

7B 13B 70B
0

2

4

6

8

10

Ac
cu

ra
cy

MATH
Few-shot
Self-ICL (Few-shot)
Analog (Zero-shot)
Analog (Few-shot)
Self-Demos

Figure 3: Performance comparison on Llama-2-Chat model family. SELF-DEMOS consistently improves perfor-
mance across multiple model sizes from 7B, 13B to 70B parameters.

Demonstrating Method Dataset

GSM8K MATH

Demo Retrieval (Sparse) 79.5 37.0
Demo Retrieval (Dense) 79.7 38.1
Demo Generation (SELF-DEMOS) 78.2 37.9

Table 5: Comparison with demo retrieval meth-
ods on the GSM8K and MATH datasets. The
(Sparse) means sparse retrieval using the BM25 algo-
rithm, and the (Dense) means dense retrieval using
text-embedding-ada-002 API to generate sentence
embedding and apply cosine similarity. Both baselines
retrieve the Top 5 similar samples from the training set
as demonstrations.

ploy a complementary retrieval strategy to improve
efficiency and reduce incremental costs.

5.4 Number of Demonstrations Matters

We examine the impact of varying the number of
self-generated demos (N) and selected demos (K)
in the tool-using task. The details are shown in Fig-
ure 4a. Notably, the model performs better when
selecting two demos. We suspect that a singular
demo is insufficient to grasp all using patterns of an
API and additional samples (K = 3) may introduce
noise and instabilities and hinder model learning.
Our configuration (K = 2, N = 5) not only maxi-
mizes accuracy but also ensures efficiency in com-
putational costs. In our experiments, we further
observed a tendency for the model to preferentially
select demos positioned towards the front, indicat-
ing the phenomenon of position bias (Ko et al.,
2020; Nori et al., 2023).

5.5 Error Analysis

Furthermore, we manually analyze the errors of
SELF-DEMOS, comparing with the two baselines
of demo generation in Figure 4b. Errors were cat-

3 5 7 9
Number of Generated Demos (N)

71

72

73

74

75

76

Ex
ac

t A
cc

ur
ac

y

K = 1
K = 2
K = 3

(a)

Self-ICL + FS Analog + FS Self-Demos
Prompting Methods

80

100

120

140

160

180

200

220

Er
ro

r C
ou

nt
s

relevant and correct
relevant but incorrect
irrelevant

(b)

Figure 4: (a) Comparison of SELF-DEMOS with vary-
ing numbers of self-generated demonstrations (N) and
selected training exemplars (K). (b) Error distribution
of different methods. Demos yielding incorrect answers
can be categorized into three types based on relevance
and accuracy. Both results are on the OOD-Toolset.

egorized into three distinct types: (1) Irrelevant
demos: These exemplars are generated in a similar
distribution and fail to interpolate between seed de-
mos and given queries. (2) Relevant but incorrect
demos: This category includes syntactical errors
and redundant or inaccurate parameters. The is-
sues contribute to false information propagation
and interfere with the final output. (3) Relevant
and correct demos: Even with correct demonstra-
tions, errors can occur due to the model’s inherent
limitations and the generalization gap. Based on
Figure 4b, all three methods have similar results in
Category 3 with approximately 140 errors. How-
ever, SELF-DEMOS stands out by greatly lowering
the errors in the first two categories. This suggests
that SELF-DEMOS is better at generating relevant
exemplars, which improves generalization across
novel and unseen tasks.

5.6 Computational Overhead Analysis

Our method, based on a multi-step framework, nat-
urally leads to additional computational overhead.
In Table 6, we detail this overhead for each method

3836

Prompting Method Cost OOD-Toolset

Few-shot 0.54 71.9 / 76.6
Few-shot + SC (5 Paths) 2.71 72.5 / 77.2
Few-shot + SC (10 Paths) 5.41 72.2 / 77.0
Self-ICL (Few-shot) 2.37 71.5 / 76.0
Analogical Prompting (Few-shot) 1.21 71.1 / 75.4
Self-Demos (Standard) 4.81 75.1 / 79.4
Self-Demos (KV Cache Reuse) 2.84 75.1 / 79.4

Table 6: Comparison of computational costs on OOD-
Toolset. The cost is calculated according to OpenAI
price list3, measured in dollars per thousand uses. The
methods with similar costs are underlined.

and present another computationally demanding
baseline, Self-Consistency, which samples various
reasoning paths and generates a consistent answer
using a majority vote strategy (Wang et al., 2023b).
Complete calculation specifics can be found in Ap-
pendix D. Statistically, the standard SELF-DEMOS

incurs a higher overhead compared to other ap-
proaches, primarily due to the demo generation
phase that involves repeating the input N times to
generate N demos. This leads to numerous redun-
dant computations (i.e., KV vectors), a drawback
that can be alleviated through caching and reusing
(Pope et al., 2022). It can be achieved by specifying
the parameter n = N upon API invocation4. The
trick cuts overhead by approximately 41%, reach-
ing computational efficiency on par with Self-ICL
and Self-Consistency (5 Paths). However, despite
Self-ICL’s step 2 necessitating multiple calls to
model, its distinct query for each input prevents
KV cache reuse (Chen et al., 2023b).

Moreover, SELF-DEMOS offer substantial long-
term cost efficiency. When demos are limited, the
use of our method does result in a higher compu-
tational overhead initially. But over time, the high-
quality demos that we generate can be preserved,
and when a certain amount of them is accumulated,
we can apply complementary demo selection meth-
ods to reduce the incremental cost and flatten the
cost curve. Refer to Appendix A for details.

6 Conclusion

This paper focuses on addressing the challenge of
out-of-demonstration (OOD) queries in few-shot
learning scenario. We present a novel prompting
method, SELF-DEMOS, which elicits the OOD
generalizability in LLMs by generating query-

3API Pricing - OpenAI API
4API Reference - OpenAI API

aware demos. Our method strategically inter-
polates between existing demonstrations and the
OOD queries, effectively transforming them into
in-demonstration (ID) queries. In an OOD setting,
SELF-DEMOS achieved state-of-the-art results on
the proposed OOD-Toolset and two public mathe-
matical benchmarks. For future works, we aim to
explore the scalability of the SELF-DEMOS method
across diverse domains and to integrate unsuper-
vised learning techniques to refine the quality of
generated demos further.

Limitations

We summarize the limitations of our method as fol-
lows: (1) SELF-DEMOS is designed to resolve the
out-of-demonstration queries, which can steadily
improve downstream task performance, but the pro-
cess involves additional costs. In Section 5.6, we
explore the computational overhead, allowing users
to make informed trade-offs depending on their spe-
cific task scenarios. (2) Our method necessitates
certain capabilities of the model. Although we have
done empirical experiments and demonstrated our
approach works for weaker models compared to
other baselines, it still requires the models to have
a certain degree of instruction-following ability.

Ethics Statement

In this paper, we have followed ethical standards
and principles to ensure the accuracy and validity of
our research. The dataset was manually cleansed to
ensure the removal of any sensitive or personal in-
formation. The human-annotated data is collected
and used in compliance with relevant ethical guide-
lines. During the data construction process, we
followed ToolAlpaca’s terms under the Apache Li-
cense 2.0 (Tang et al., 2023).

Acknowledgment

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Foundation of
China (No.62206057,61976056,62076069), Shang-
hai Rising-Star Program (23QA1400200), Natural
Science Foundation of Shanghai (23ZR1403500),
Program of Shanghai Academic Research Leader
under grant 22XD1401100, CCF-Baidu Open
Fund, and CCF-Baichuan Fund.

3837

https://openai.com/pricing
https://platform.openai.com/docs/api-reference/chat/create#chat-create-n

References
Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke

Zettlemoyer, and Marjan Ghazvininejad. 2023. In-
context examples selection for machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 8857–8873. Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020b. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023a. How many demonstrations do you need for
in-context learning?

Wei-Lin Chen, Cheng-Kuang Wu, and Hsin-Hsi
Chen. 2023b. Self-icl: Zero-shot in-context learn-
ing with self-generated demonstrations. CoRR,
abs/2305.15035.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Katherine M. Collins, Catherine Wong, Jiahai Feng,
Megan Wei, and Joshua B. Tenenbaum. 2022. Struc-
tured, flexible, and robust: benchmarking and im-
proving large language models towards more human-
like behavior in out-of-distribution reasoning tasks.
CoRR, abs/2205.05718.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.

Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan,
Kazuma Hashimoto, Karthik Raman, and Michael
Bendersky. 2023. Ambiguity-aware in-context
learning with large language models. CoRR,
abs/2309.07900.

Danny Halawi, Jean-Stanislas Denain, and Jacob Stein-
hardt. 2023. Overthinking the truth: Understanding
how language models process false demonstrations.
CoRR, abs/2307.09476.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk
Kim, Kang Min Yoo, and Sang-goo Lee. 2022.
Self-generated in-context learning: Leveraging auto-
regressive language models as a demonstration gen-
erator. CoRR, abs/2206.08082.

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo
Kim, and Jaewoo Kang. 2020. Look at the first
sentence: Position bias in question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 1109–
1121. Association for Computational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 1401–1422.
Association for Computational Linguistics.

Junlong Li, Zhuosheng Zhang, and Hai Zhao. 2022.
Self-prompting large language models for open-
domain QA. CoRR, abs/2212.08635.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for gpt-3? In Pro-
ceedings of Deep Learning Inside Out: The 3rd Work-
shop on Knowledge Extraction and Integration for
Deep Learning Architectures, DeeLIO@ACL 2022,

3838

https://doi.org/10.18653/V1/2023.FINDINGS-ACL.564
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.564
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2303.08119
http://arxiv.org/abs/2303.08119
https://doi.org/10.48550/ARXIV.2305.15035
https://doi.org/10.48550/ARXIV.2305.15035
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2205.05718
https://doi.org/10.48550/ARXIV.2205.05718
https://doi.org/10.48550/ARXIV.2205.05718
https://doi.org/10.48550/ARXIV.2205.05718
http://arxiv.org/abs/2301.00234
https://doi.org/10.48550/ARXIV.2309.07900
https://doi.org/10.48550/ARXIV.2309.07900
https://doi.org/10.48550/ARXIV.2307.09476
https://doi.org/10.48550/ARXIV.2307.09476
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.48550/ARXIV.2206.08082
https://doi.org/10.48550/ARXIV.2206.08082
https://doi.org/10.48550/ARXIV.2206.08082
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.84
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.84
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.48550/ARXIV.2212.08635
https://doi.org/10.48550/ARXIV.2212.08635
https://doi.org/10.18653/V1/2022.DEELIO-1.10
https://doi.org/10.18653/V1/2022.DEELIO-1.10

Dublin, Ireland and Online, May 27, 2022, pages
100–114. Association for Computational Linguistics.

Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasu-
pat, Seyed Mehran Kazemi, Chitta Baral, Vaiva
Imbrasaite, and Vincent Y. Zhao. 2023. Dr.icl:
Demonstration-retrieved in-context learning. CoRR,
abs/2305.14128.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. CoRR, abs/2303.17651.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 11048–11064. Association for Computational
Linguistics.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan,
Richard Edgar, Nicolò Fusi, Nicholas King, Jonathan
Larson, Yuanzhi Li, Weishung Liu, Renqian Luo,
Scott Mayer McKinney, Robert Osazuwa Ness, Hoi-
fung Poon, Tao Qin, Naoto Usuyama, Chris White,
and Eric Horvitz. 2023. Can generalist foundation
models outcompete special-purpose tuning? case
study in medicine. CoRR, abs/2311.16452.

OpenAI. 2022. Openai: Introducing chatgpt. Website.
https://openai.com/blog/chatgpt.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. 2022. Efficiently scaling transformer in-
ference. CoRR, abs/2211.05102.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 2655–2671. Association for
Computational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Min-
lie Huang, Nan Duan, and Weizhu Chen. 2023.
Synthetic prompting: Generating chain-of-thought
demonstrations for large language models. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 30706–30775.
PMLR.

Peng Shi, Rui Zhang, He Bai, and Jimmy Lin. 2022.
XRICL: cross-lingual retrieval-augmented in-context
learning for cross-lingual text-to-sql semantic pars-
ing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 5248–
5259. Association for Computational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ameet Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,
Arfa Tabassum, Arul Menezes, Arun Kirubarajan,
Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and
et al. 2022. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
CoRR, abs/2206.04615.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. GPT-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. CoRR, abs/2310.12397.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. CoRR, abs/2306.05301.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

3839

https://doi.org/10.48550/ARXIV.2305.14128
https://doi.org/10.48550/ARXIV.2305.14128
https://doi.org/10.48550/ARXIV.2303.17651
https://doi.org/10.48550/ARXIV.2303.17651
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://doi.org/10.48550/ARXIV.2311.16452
https://doi.org/10.48550/ARXIV.2311.16452
https://doi.org/10.48550/ARXIV.2311.16452
https://openai.com/blog/chatgpt
https://doi.org/10.48550/ARXIV.2211.05102
https://doi.org/10.48550/ARXIV.2211.05102
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
https://doi.org/10.18653/V1/2022.NAACL-MAIN.191
https://doi.org/10.18653/V1/2022.NAACL-MAIN.191
https://proceedings.mlr.press/v202/shao23a.html
https://proceedings.mlr.press/v202/shao23a.html
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.384
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.384
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.384
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2310.12397
https://doi.org/10.48550/ARXIV.2310.12397
https://doi.org/10.48550/ARXIV.2310.12397
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.48550/ARXIV.2306.05301

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Karthik Valmeekam, Matthew Marquez, and Subbarao
Kambhampati. 2023. Can large language models
really improve by self-critiquing their own plans?
CoRR, abs/2310.08118.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wen-
jun Zeng, and Philip S. Yu. 2023a. Generalizing to
unseen domains: A survey on domain generalization.
IEEE Trans. Knowl. Data Eng., 35(8):8052–8072.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022b. Emer-
gent abilities of large language models. Trans. Mach.
Learn. Res., 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022c. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,

Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huan, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H. Chi,
and Denny Zhou. 2023. Large language models as
analogical reasoners. CoRR, abs/2310.01714.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Inter-
national Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen,
and Jiawei Han. 2023. Don’t make your LLM an eval-
uation benchmark cheater. CoRR, abs/2311.01964.

Appendix

A Supplementary Experiments on GPT-4

Model OOD-Toolset Cost

Few-shot
GPT-4 76.50 / 79.75 ∼ 1.12

SELF-DEMOS
GPT-4 in all steps 80.50 / 83.50 ∼ 4.95
GPT-3.5 in all steps 75.50 / 79.50 ∼ 0.57
GPT-3.5 reuse GPT-4 demos in step4 76.50 / 79.75 ∼ 0.13

Table 7: Comparison of performance and overhead on
more powerful models (i.e, GPT-4). The cost is calcu-
lated according to OpenAI price list, measured by total
dollars spent on 200 instances.

We conducted GPT-4 tests on 200 random OOD-
Toolset instances and used its generated demos
as inputs for GPT-3.5 in SELF-DEMOS step 4, as
detailed in Table 7.

Based on the results, we observe that: (1) GPT-
4’s advanced capabilities allow it to match the per-
formance of GPT-3.5 using SELF-DEMOS with
simply a few-shot approach. However, given the
model’s enhanced capabilities, it comes with a
higher cost. (2) GPT-4 still benefits from the our
proposed method, and the high-quality demos it
generates remain effective for weaker models. This
shows the reusability of demos and proves the way
for SELF-DEMOS to reduce long-term costs.

3840

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2310.08118
https://doi.org/10.48550/ARXIV.2310.08118
https://doi.org/10.1109/TKDE.2022.3178128
https://doi.org/10.1109/TKDE.2022.3178128
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2310.01714
https://doi.org/10.48550/ARXIV.2310.01714
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://doi.org/10.48550/ARXIV.2311.01964
https://doi.org/10.48550/ARXIV.2311.01964

B Details of OOD-Toolset
The raw data from ToolAlpaca (Tang et al., 2023)
including the training and testing sets, comprises
468 tool APIs and 4,369 tool-use cases. Due to a
lack of validation of the content generated by GPT-
3.5, the dataset may contain specific errors, such as
ambiguous queries due to outdated or insufficient
information and incorrect API calls due to null
or wrong values being passed. To address these
issues, we implemented a data cleansing process in
the following steps:

Rule-based Cleaning. We structured each tool
API in the raw data into a dictionary with keys
for API Name, Description, Usage Specification,
and Tool-use Cases. The API name identifies the
tool, and the description outlines its purpose. The
usage specification clarifies the API call format and
required parameters. The tool-use cases consist of
user queries and corresponding function call lists.
The rule-based cleaning process involved:

• We removed entries with missing keys and for-
matting errors, particularly those that did not fol-
low the JSON format in the function calls.

• We removed user queries that required more than
three function calls to be resolved due to their
complexity.

• We removed parameters not directly related to
the core functionality of tools, such as API keys
and sensitive user information.

• We removed tools with fewer than 3 instances
or fewer than 3 functions to ensure that OOD
scenarios could be built.

After the first cleaning round, a total of 322 tools
and 2,788 instances remained.

Manual Data Cleaning. In manual data cleaning,
we emphasize the solvability of given queries. The
manual data cleaning process involved:

• We strive to minimize dependencies between
function calls, avoiding scenarios where a subse-
quent function call relies on the results returned
by preceding ones. This is to ensure that these
queries can be answered in a round of dialog.

• While we avoided the exposure of sensitive user
information, some necessary parameters within
function calls, such as the email address in the
email API, are subjected to obfuscation using a
placeholder, for instance, user@example.com.

• Time and location information should be explic-
itly mentioned in the queries, avoiding the use
of ambiguous pronouns such as ‘today’, ‘tomor-
row’, and ‘my home’.

• We confirmed the consistency of parameter val-
ues with their data types as defined in the usage
specifications.

After the second cleaning round, the dataset
comprised 321 tools and 2,625 instances. Table
8 presents an illustrative example of the cleaned
dataset.

Query and Demonstration Construction. After
two rounds of data cleaning, the correctness and
solvability of the data have been ensured. Then,
we proceeded to select instances from the tool-use
cases and construct corresponding demonstrations.
During the selection process, we tended to choose
longer instances as queries, considering them to be
more challenging. Following that, we randomly
sampled three other instances from the remaining
use cases of the same tool as demos. Note that
the sub-APIs to be called for the demos should be
different from those required for the chosen queries
to fulfill the OOD settings.

Finally, we obtained a set of 1,057 queries, form-
ing our testing set. Table 9 presents an instance of
OOD-Toolset.

C Prompt Templates
The prompt templates of SELF-DEMOS for each
step in tool-using tasks are presented in Table 10,
11, 12, and 13. Similarly, the prompt templates in
mathematical problem-solving tasks are presented
in Table 14, 15, 16, and 17.

D Details of Computational Overhead
The details about the computational overhead of
each methods are shown in Table 18.

E Case Study
Even SELF-DEMOS performs better than all other
methods, there are instances where it falied while
others succeeded. We have picked up 3 represen-
tative cases for further analysis: (1) SELF-DEMOS

succeeded while few-shot / Self-ICL failed, (2) few-
shot succeeded while SELF-DEMOS failed, and (3)
both failed. Due to space constraints, we put the
full case study in our GitHub repository.

3841

API Name: MAP

Description: MAP API is used for calculating distances, planning routes, and locating points.

Usage Specifications:
DISTANCE: Calculate the distance between two points.
Parameters: {“start”: “Required. String. The starting point for the distance calculation.”, “target”:
“Required. String. The destination point for the distance calculation.”}

ROUTE: Generate a travel route between two points.
Parameters: {“start”: “Required. String. The starting point for the route.”, “target”: “Required. String.
The destination point for the route.”}

SEARCH: Locate nearby points within a set distance.
Parameters: {“target”: “Required. String. The target point to search around.”, “position”: “Required.
String. The current position of the user.”, “distance”: “Required. Integer. The search radius in kilome-
ters.”}

Tool-use Cases:
Query: How far is Beijing to Shanghai?
Function calls: [DISTANCE(start=“Beijing”, target=“Shanghai”)]

Query: How many shops are around Times Square in 3km?
Function calls: [SEARCH(target=“shop”, position=“Times Square”, distance=3)]

Query: Show me the route from Los Angeles to San Francisco.
Function calls: [ROUTE(start=“Los Angeles”, target=“San Francisco”)]

Query: Are there any bookstores within 5km of Central Park?
Function calls: [SEARCH(target=“bookstore”, position=“Central Park”, distance=5)]

Query: How do I drive from Big Ben to Tower Bridge, and then to the London Eye?
Function calls: [ROUTE(start=“Big Ben”, target=“Tower Bridge”),

ROUTE(start=“Tower Bridge”, target=“London Eye”)]

Query: What’s the distance from my home at 123 Main St to the grocery store at 456 Oak St, and from
there to my office at 789 Pine St?
Function calls: [DISTANCE(start=“123 Main St”, target=“456 Oak St”),

DISTANCE(start=“456 Oak St”, target=“789 Pine St”)]

Table 8: An illustrative example of the cleaned dataset, composed of four parts: API Name, Description, Usage
Specifications, and Tool-use Cases. Among them, the tool-use cases are stored as lists.

Seed Demos:
Query: How far is Beijing to Shanghai?
Function calls: [DISTANCE(start=“Beijing”, target=“Shanghai”)]

Query: How many shops are around Times Square in 3km?
Function calls: [SEARCH(target=“shop”, position=“Times Square”, distance=3)]

Query: Are there any bookstores within 5km of Central Park?
Function calls: [SEARCH(target=“bookstore”, position=“Central Park”, distance=5)]

Query: How do I drive from Big Ben to Tower Bridge, and then to the London Eye?

Table 9: An instance of OOD-Toolset corresponds to the tool in Table 8, where the function required for the Query
is ROUTE. Consequently, tool-use cases related to this sub-API should not be included in the Seed Demos.

3842

The {tool_name} API is used for {description}. In this task, you need to give a general understanding
of the user query and determine which function should be called to solve the query.

Tool Specification:
{specification}

User Query:
{query}

Instruction:
Generate a general understanding here. In particular, you need to explicitly indicate the name of the
function that should be called.

Table 10: Prompt template for Query Understanding (Step 1) on the OOD-Toolset.

The {tool_name} API is used for {description}. In this task, you need to give an example of when to
use the API based on the specification.

Tool Specification:
{specification}

Demonstration:
{seed_demos}

Instruction:
Generate an example of how to use the {function_mentioned_in_step1} function.
- After "Query: ", describe the user query.
- After "Function Calls: ", give the function calls in the format of ["function_name(parameter=value)"].

Table 11: Prompt template for Query-aware Demo Generation (Step 2) on the OOD-Toolset.

The {tool_name} API is used for {description}. Here are some examples of how to use the API. In
this task, you must check the examples for correctness and select one or two best examples to keep.

Tool Specification:
{specification}

Check List:
- Syntax errors: the function calls should conform to the format like "function_name(parameter=value)".
- Redundant parameters: the function calls must conform to the parameter list in the tool specification.
- Value passing errors: the values of parameters should be of the correct type and reasonable.
- Unsolvable errors: the query should be solvable with the given function.

Examples to be Checked:
{generated_demos}

Instruction:
Select one or two best examples to keep. If there are not enough correct examples, just keep one.
For your output:
- After "Selection: ", give the serial numbers of your choice in the format of <x>, <y>.
- After "Explanation: ", give the reason why you keep the examples.

Table 12: Prompt template for Best-of-N Sampling (Step 3) on the OOD-Toolset.

3843

The {tool_name} API is used for {description}. In this task, you must generate the function calls for
a given query.

Tool Specification:
{specification}

Demonstration:
{seed_demos}
{selected_demos}

Instruction:
Solve the following user query.
Query: {query}
Function calls: Give your answer in the format of ["function_name(parameter=value)"].

Table 13: Prompt template for Response Generation (Step 4) on the OOD-Toolset.

In this task, you need to give a general understanding of mathematical problems, which can be applied to
all similar questions in the same scenario.

Problem:
{question}

Instruction:
Give a general understanding of this problem in one line. Highlight the general solution methodologies to
solve this type of problem. Focus on the problem-solving approach without delving into specific numerical
values or answers.
You can refer to this template for your understanding: This problem involves...To solve this type of
problem...

Table 14: Prompt template for Query Understanding (Step 1) on the GSM8K and MATH datasets.

In this task, you need to recall mathematical problems. When presented with a math problem, recall
another relevant problem as an example. The example should help answer the initial problem.

Problem:
The initial problem:
{question}

The understanding you can refer to:
{understanding}

Demonstration:
{seed_demos}

Instruction:
Recall one example of a math problem relevant to the initial problem. The example should be distinct
from the initial problem (e.g., involving different numbers and names).
- After "Question: ", describe the problem you generate in one line.
- After "Answer: ", explain the step-by-step solution and enclose the ultimate answer in \boxed{}.

Table 15: Prompt template for Query-aware Demo Generation (Step 2) on the GSM8K and MATH datasets.

3844

In this task, you need to check the correctness of these math Q&A pairs and select one or two best
examples to keep for answering the initial problem.

The initial problem:
{Question}

Check List:
- The calculation process in the solution must be correct and without ambiguity.
- The examples should be relevant and helpful in solving the initial problem.

Examples to be checked:
{generated_demos}

Instruction:
Select one or two best examples to keep. If there are not enough correct and helpful examples, just keep
one.
For your answer:
- After "Selection: ", give the serial numbers of your choice in the format of <x>, <y>.
- After "Explanation: ", give the reason why you keep this example.

Table 16: Prompt template for Best-of-N Sampling (Step 3) on the GSM8K and MATH datasets.

Your task is to tackle mathematical problems step by step. You can refer to these demonstrations to give
your reasoning process.

Demonstration:
{seed_demos}
{selected_demos}

Instruction:
Solve the following problem step by step.
Question: {Question}
Answer: Explain the step-by-step solution and enclose the ultimate answer in \boxed{} here.

Table 17: Prompt template for Response Generation (Step 4) on the GSM8K and MATH datasets.

Prompting Method Avg. #tokens of Input Avg.#tokens of Output Cost OOD-Toolset

Few-shot 496.0 22.6 0.54 71.9 / 76.6
Few-shot + SC (5 Paths) 496.0× 5 = 2480.0 22.6× 5 = 113.0 2.71 72.5 / 77.2
Few-shot + SC (10 Paths) 496.0× 10 = 4960.0 22.6× 10 = 226.0 5.41 72.2 / 77.0
Self-ICL (Few-shot) 456.4 + 498.4× 2 + 625.1 = 2078.3 78.7 + 23.6× 2 + 22.2 = 148.1 2.37 71.5 / 76.0
Analogical Prompting (Few-shot) 598.0 304.5 1.21 71.1 / 75.4
Self-Demos (Standard) 323.6 + 490.8× 5 + 776.4 + 606.4 = 4160.4 3.4 + 58.0× 5 + 7.7 + 22.5 = 323.6 4.81 75.1 / 79.4
Self-Demos (KV Cache Reuse) 323.6 + 490.8 + 776.4 + 606.4 = 2197.2 3.4 + 58.0× 5 + 7.7 + 22.5 = 323.6 2.84 75.1 / 79.4

Table 18: Average number of input and output tokens of different methods on OOD-Toolset. In the equation, each
term being added represents the average number of tokens per step (used only within a multi-step framework), while
each multiplier indicates the number of times that step is called.

3845

