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Abstract

The performance cost of differential privacy001
has, for some applications, been shown to002
be higher for minority groups; fairness, con-003
versely, has been shown to disproportionally004
compromise the privacy of members of such005
groups. Most work in this area has been re-006
stricted to computer vision and risk assess-007
ment. In this paper, we evaluate the im-008
pact of differential privacy on fairness across009
four tasks, focusing on how attempts to mit-010
igate privacy violations and between-group011
performance differences interact: Does pri-012
vacy inhibit attempts to ensure fairness? To013
this end, we train (ε, δ)-differentially pri-014
vate models with empirical risk minimiza-015
tion and group distributionally robust train-016
ing objectives. Consistent with previous find-017
ings, we find that differential privacy increases018
between-group performance differences in the019
baseline setting; but more interestingly, differ-020
ential privacy reduces between-group perfor-021
mance differences in the robust setting. We ex-022
plain this by reinterpreting differential privacy023
as regularization.024

1 Introduction025

Classification tasks in computer vision and natural026

language processing face the challenge of balanc-027

ing performance with the need to prevent discrim-028

ination against protected demographic subgroups,029

satisfying fairness principles. In some tasks, we030

train our classifiers on private data and therefore031

also need our models to satisfy privacy guarantees.032

Privacy-preserving algorithms, however, tend033

to disproportionally affect members of minority034

classes (Farrand et al., 2020). E.g., Bagdasaryan,035

Poursaeed, and Shmatikov (2019), show the per-036

formance cost of differential privacy (Dwork et al.,037

2006) in face recognition is higher for minority038

groups, suggesting that privacy and fairness are039

fundamentally at odds (Chang and Shokri, 2021;040

Agarwal, 2021).041

In this paper, we evaluate two hypotheses at 042

scale: (a) that the performance cost of differential 043

privacy is unevenly distributed across demographic 044

groups (Ekstrand, Joshaghani, and Mehrpouyan, 045

2018; Cummings et al., 2019; Bagdasaryan, Pour- 046

saeed, and Shmatikov, 2019; Farrand et al., 2020), 047

and (b) that such effects can be mitigated by more 048

robust learning objectives (Sagawa et al., 2020a; 049

Pezeshki et al., 2020). 050

Contributions We build upon previous work 051

suggesting that differential privacy and fairness 052

are at odds: Differential privacy hurts minority 053

groups the most, and reducing the fairness gap by 054

focusing on minority groups during training typ- 055

ically puts their privacy at risk. We evaluate this 056

hypothesis at scale by measuring the impact of dif- 057

ferential privacy in terms of fairness across (1) a 058

baseline empirical risk minimization and (2) under 059

a group distributionally robust optimization. We 060

conduct our experiments across four tasks of dif- 061

ferent modalities, assuming the group membership 062

information is available at training time, but not 063

at test time: face recognition (CelebA), topic clas- 064

sification, volatility forecasting based on earning 065

calls, and sentiment analysis of product reviews. 066

Our results confirm that differential privacy com- 067

promises fairness in the baseline setting; however, 068

we demonstrate that differential privacy not only 069

mitigates the decrease but also improves fairness 070

compared to non-private experiments for 4/5 tasks 071

in the distributionally robust setting. We explain 072

this by reinterpreting differential privacy as an ap- 073

proximation of Gaussian noise injection, which is 074

equivalent to strategies previously shown to deter- 075

mine the efficacy of group-robust learning. 076

2 Fairness and Privacy 077

Fair machine learning aims to ensure that induced 078

models do not discriminate against individuals with 079

specific values in their protected attributes (e.g., 080
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race, gender). We represent each data point as081

z = (x, g, y) ∈ X × G × Y , with g ∈ G encoding082

its protected attribute(s).1 Let Dgy denote the distri-083

bution of data with protected attribute g and label084

y.085

Several definitions of group fairness exist in the086

literature (Williamson and Menon, 2019), but here087

we focus on a generalization of approximately con-088

stant conditional (equalized) risk (Donini et al.,089

2018):2090

Definition 2.1 (∆-Fairness). Let `gi(θ) =091

E[`(θ(x), y)|g = gi] be the risk of the samples092

in the group defined by gi, and ∆ ∈ [0, 1]. We say093

that a model θ is ∆-fair if for any two values of g,094

say gi and gj , |`gi(θ)− `gj (θ)| < ∆.095

Note that if ` coincides with the performance096

metric of a task, and δ = 0, this is identical to097

performance or classification parity (Yuan et al.,098

2021).3 Such a notion of fairness can be derived099

from John Rawls’ theory on distributive justice and100

stability, treating model performance as a resource101

to be allocated. Rawls’ difference principle, maxi-102

mizing the welfare of the worst-off group, is argued103

to lead to stability and mobility in society at large104

(Rawls, 1971). ∆ directly measures what is some-105

times called Rawlsian min-max fairness (Bertsimas,106

Farias, and Trichakis, 2011). In our experiments,107

we measure ∆-fairness as the absolute difference108

between performance of the worst-off and best-off109

subgroups.110

Recall the standard definition of (ε, δ)-privacy:111

Definition 2.2. θ is (ε, δ)-private iff Pr[θ(X )] ≤112

exp(ε)× Pr[θ(X ′)] + δ for any two distributions,113

X and X ′, different at most in one row.114

Differential privacy thereby ensures that an algo-115

rithm will generate similar outputs on similar data116

sets. Note the multiplicative bound exp(ε) and the117

additive bound δ serve different roles: The δ term118

represents the possibility that a few data points are119

not governed by the multiplicative bound, which120

1In practice our protected attributes in §3 will be age and
gender. Both are protected under the Equality Act 2010.

2In the fairness literature, approximate fairness is referred
to as δ-fairness, but below we will use lower case δ to refer to
(ε, δ)-differential privacy, and we refer to ∆-fairness to avoid
confusion.

3Performance or classification parity has been argued to
suffer from statistical limitations in (Corbett-Davies and Goel,
2018), which remind us that when risk distributions differ,
standard error metrics are poor proxies of individual equity.
This is known as the problem of infra-marginality. Note, how-
ever, that this argument does not apply to binary classification
problems.

controls the level of privacy (rather than its scope). 121

Note that it also follows directly that if ε = 0 and 122

δ = 0, absolute privacy is required, leading θ to be 123

independent of the data. 124

Several authors have shown that differential pri- 125

vacy comes at different costs for minority sub- 126

groups (Ekstrand, Joshaghani, and Mehrpouyan, 127

2018; Cummings et al., 2019; Bagdasaryan, Pour- 128

saeed, and Shmatikov, 2019; Farrand et al., 2020). 129

The more private the model is required to be, the 130

larger group disparities it will exhibit.4 This hap- 131

pens because differential privacy distributes noise 132

where it is needed to reduce the influence of indi- 133

vidual examples. Since outlier examples are likely 134

to have disproportional influence on output distri- 135

butions (Campbell, 1978; Chernick and Murthy, 136

1983), they are also disproportionally affected by 137

noise injection in differential privacy. 138

Agarwal (2021) show that, in fact, a (ε, 0)- 139

private and fully fair model – using equalized odds 140

as the definition of fairness – will be unable to learn 141

anything. To see this, remember that a fully pri- 142

vate model is independent of the data and unable to 143

learn from correlations between input and output. 144

If θ is, in addition, required to be fair, it is thereby 145

required to be fair for all distributions, which pre- 146

vents θ from encoding any prior beliefs about the 147

output distribution. Note this finding generalizes 148

straight-forwardly to equalized risk, and even to 149

approximate fairness (since even for finite distribu- 150

tions, we can define a ∆ > 0, such that preserving 151

absolute privacy would lead to a constant θ). 152

Theorem 1. For sufficiently small values of ∆, a 153

fully (ε, 0)-private model θ that is also ∆-fair, will 154

have trivial performance. 155

Proof. This follows directly from the above. 156

While we do not strictly require an absolute pri- 157

vacy in our experiments (setting δ = 10−5), in- 158

tuitively, privacy compromises fairness by adding 159

more noise to data points of minority group mem- 160

bers than to those of majority groups. Fairness, 161

on the other hand, leads to over-sampling or over- 162

attending to data points of minority group members, 163

more likely compromising their privacy. 164

Pannekoek and Spigler (2021) show, however, 165

that it is possible to learn somewhat private and 166

4Note this is a different trade-off than the fairness-privacy
trade-off which results from the need for collecting sensitive
data to learn fair models; the latter is discussed at length in
Veale and Binns (2017).
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somewhat fair classifiers. They combine differen-167

tial privacy with reject option classification. Their168

results nevertheless confirm that privacy and fair-169

ness objectives are fundamentally at odds, as fair-170

ness decreases with the introduction of differential171

privacy.172

3 Experiments173

This section describes the algorithms and datasets174

involved in our experiments, and presents the re-175

sults of these.176

3.1 Algorithms177

Empirical Risk Minimization For a model pa-178

rameterized by θ, in our baseline Empirical Risk179

Minimization (ERM) setting, we minimize the180

expected loss E[`(θ(x), y)] with data (x, g, y) ∈181

X × G × Y drawn from a dataset D:182

θ̂ERM = argmin
θ

ED̂[`(θ(x), y)] (1)183

Here D̂ denotes the empirical training distribution.184

Note that we disregard any group information in185

our data. In an overparameterized setting, ERM186

is prone to overfitting spurious correlations, which187

are more likely to hurt performance on minority188

groups (Sagawa et al., 2020b).189

Distributionally Robust Optimization Several190

authors have suggested to mitigate the effects of191

such overfitting by explicitly optimizing for out-of-192

distribution mixtures of sub-populations (Hu et al.,193

2018; Oren et al., 2019; Sagawa et al., 2020a). In194

this work we focus on Group-aware Distribution-195

ally Robust Optimization (Group DRO) (Sagawa196

et al., 2020a).197

Under the assumption that the training distribu-198

tion D is a mixture of a discrete number of groups,199

Dg for g ∈ G, we define the worst-case loss as the200

maximum of the group-specific expected losses:201

`(θ)worst = max
g∈G

ED̂g
[`(θ(x), y)] (2)202

In Group DRO – in contrast with ERM – we exploit203

our knowledge of the group membership of data204

points (x, g, y). The overall objective is for mini-205

mizing the empirical worst-case loss is therefore:206

207

θ̂DRO = argmin
θ

[
ˆ`(θ)worst := max

g∈G
ED̂g

[`(θ(x), y)]
]

(3)208

Note, again, that the knowledge of group mem- 209

bership g is only available at training time, not at 210

test time. Unlike Sagawa et al. (2020a), we do not 211

employ heavy `2 regularization during our experi- 212

ments, but rather use it with the same parameters 213

as proposed in Koh et al. (2021). 214

Differentially Private Stochastic Gradient De- 215

scent (DP-SGD) We implement differential pri- 216

vacy (Dwork et al., 2006) using DP-SGD, as pre- 217

sented in Abadi et al. (2016). DP-SGD limits the 218

influence of training samples by (i) clipping the 219

per-batch gradient where its norm exceeds a pre- 220

determined clipping bound C, and by (ii) adding 221

Gaussian noise N characterized by a noise scale σ 222

to the aggregated per-sample gradients. We control 223

this influence with a privacy budget ε, where lower 224

values for ε indicates a more strict level of privacy. 225

DP-SGD has remained popular, among other things 226

because it generalizes to iterative training proce- 227

dures (McMahan et al., 2018), and supports tighter 228

bounds using the Rényi method (Mironov, 2017). 229

Differential privacy generally comes at a perfor- 230

mance cost, leading to privacy-preserving models 231

performing worse compared to their non-private 232

counterparts (Alvim et al., 2011). However, we fol- 233

low Kerrigan, Slack, and Tuyls (2020) and finetune 234

the private models, which are first pretrained (with- 235

out differential privacy) on a large public dataset. 236

This protocol generally seems to provide a bet- 237

ter trade-off between accuracy and privacy (Ker- 238

rigan, Slack, and Tuyls, 2020), leading to better- 239

performing, yet private models. The only exception 240

to this setup is the volatility forecasting task, where 241

our models were trained from scratch, as those rely 242

on PRAAT audio features. 243

3.2 Tasks and architectures 244

To study the impact of differential privacy on fair- 245

ness, in ERM and Group DRO, we evaluate increas- 246

ing levels of differential privacy across five datasets 247

that span four tasks and three different modalities: 248

speech, text and vision. 249

Facial Attribute Detection We study facial at- 250

tribute recognition with the CelebFaces Attributes 251

Dataset (CelebA) (Liu et al., 2015). It contains 252

faces of celebrities annotated with attributes, such 253

as hair color, gender and other facial features. Fol- 254

lowing Sagawa et al. (2020a), we use the hair color 255

as our target variable, with gender being the demo- 256

graphic attribute (see Figure 1 (left)). The dataset 257

contains ∼ 163K datapoints, where the smallest 258
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Text: Potter's class this morning went well.
Working on a bowl that is going to have a leaf
design on it. Clay really dries your hands out.
*Reaches for vitamin E cream*[...]
Topic: Arts

Text: As you can probably tell I'm a Linux nut.
Lately I've noticed more commercial software 
being ported to or made for Linux [...]
Topic: Technology

Text: I'm trying to work out how blog skins work
so my web log will look really cute and contain
all those embedded pop culture photographs
I've seen on so many others[...]
Topic: Technology

Text: So much cool stuff was on display that I
started to get worried. Why? A few simple
reasons. Too much stuff is exactly what crushed
Apple in the John Scully days[...]
Topic: Technology

Blonde

Non-
blonde

CelebA

Young

Old

Blog Authorship Corpus
Woman Man

Woman Man

Figure 1: Examples of the different subgroups that appear in a subset of the datasets we train on. CelebA (left)
contains images of celebrities, using hair-color as our target variable and gender as our protected attribute. Blog
Authorship Corpus (right) contains text-based blogposts on two topics {Technology, Arts} our targets, using G :
{Man,Woman} × {Young,Old} as our protected subgroups.

group (blond males) only counts 1387. We fine-259

tune a publicly pretrained ResNet50, a standard260

model for image classification tasks, on the CelebA261

dataset and evaluate model performances as accu-262

racies over 3 individual seeds.263

Topic Classification For topic classification, we264

use the Blog Authorship Corpus (Schler et al.,265

2006). The Blog Authorship Corpus contains we-266

blogs written on 19 different topics, collected from267

the Internet before August 2004. The dataset con-268

tains self-reported demographic information about269

the gender and age of the authors. Gender infor-270

mation is binary, and we binarize age, distinguish-271

ing between young (=< 35) and older (> 35) au-272

thors,5 resulting in four different group combina-273

tions (see Figure 1 (right)). We chose two topics of274

roughly equal size (Technology and Arts), reduc-275

ing the topic classification task to a binary classi-276

fication task. For our experiments, we finetune a277

pretrained English DistilBERT model (Sanh et al.,278

2019). To reduce the overall added computational279

cost of DP-SGD, we freeze our model, except for280

the outer-most Transformer encoder layer as well281

as the classification layer. We report model perfor-282

mances as F1 scores over 3 individual seeds.283

Volatility Forecasting For the stock volatility284

forecasting task, we use the Earnings Conference285

Calls dataset by Qin and Yang (2019). This con-286

sists of 559 public earnings calls audio recordings287

for 277 companies in the S&P 500 index, span-288

ning over a year of earnings calls. We obtain the289

self-reported gender of the CEOs from Reuters,6290

5Older authors tend to be underrepresented in web data
6https://www.thomsonreuters.com/en/

profiles.html

Crunchbase,7 and the WikiData API.8 Gender in- 291

formation is binary, with 12.3% of speakers being 292

female and 87.7% of speakers being male, a highly 293

skewed distribution. Since our primary focus with 294

this task is to explore the impact of differential pri- 295

vacy on speech, we use only audio features without 296

the call transcripts. For each audio recording A 297

of a given earning call E, the goal is to predict 298

the company’s stock volatility as a regression task. 299

Following Qin and Yang (2019), we calculate the 300

average log volatility τ days (temporal window) 301

following the day of the earnings call. For each 302

audio clip belonging to a given call, we extract 303

26-dimensional features with PRAAT (Boersma 304

and Van Heuven, 2001). Each audio embedding of 305

the call is fed sequentially to a BiLSTM, followed 306

by an attention layer and two fully-connected lay- 307

ers. The model is trained by optimizing the Mean 308

Square Error (MSE) between the predicted and true 309

stock volatility. For all results, we report MSE on 310

the test set for a 70:10:20 temporal split of the 311

data.The results are averaged over 5 seeds. 312

Sentiment Analysis For our sentiment analysis 313

task, we use the Trustpilot Corpus (Hovy, Jo- 314

hannsen, and Søgaard, 2015)9. It consists of text- 315

based user reviews from the Trustpilot website, rat- 316

ing companies and services on a 1 to 5 star scale. 317

The reviews spans 5 different countries; Germany, 318

Denmark, France, United Kingdom and USA, how- 319

ever, we only consider the English reviews, i.e. UK 320

and US. The Trustpilot contains demographic in- 321

formation about the gender, age and geographic 322

7https://www.crunchbase.com/discover/
people

8https://query.wikidata.org/
9https://bitbucket.org/lowlands/

release/src/master/WWW2015/data/
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Performance at ε-Privacy
No DP ε1 ε2 ε3

Score ε Score ε Score ε Score ε

C
E

L
E

B ERM 0.954 ± 0.000 - 0.943 ± 0.001 9.50 0.940 ± 0.002 5.17 0.932 ± 0.001 0.99

DRO 0.953 ± 0.001 - 0.899 ± 0.006 9.50 0.891 ± 0.014 5.17 0.873 ± 0.007 0.99
B

L
O

G ERM 0.699 ± 0.002 - 0.661 ± 0.003 9.25 0.661 ± 0.003 5.03 0.648 ± 0.005 1.02

DRO 0.692 ± 0.001 - 0.651 ± 0.001 9.25 0.650 ± 0.005 5.03 0.630 ± 0.003 1.02

V
O

L
. ERM 0.756 ± 0.036 - 0.778 ± 0.073 9.32 0.794 ± 0.046 6.42 0.778 ± 0.039 0.96

DRO 0.814 ± 0.061 - 0.798 ± 0.042 9.32 0.815 ± 0.056 6.42 0.833 ± 0.093 0.96

T-
U

K ERM 0.933 ± 0.008 - 0.919 ± 0.002 9.39 0.916 ± 0.001 4.94 0.889 ± 0.009 1.02

DRO 0.931 ± 0.004 - 0.893 ± 0.006 9.39 0.873 ± 0.015 4.94 0.820 ± 0.015 1.02

T-
U

S ERM 0.894 ± 0.007 - 0.817 ± 0.014 10.71 0.812 ± 0.009 5.10 0.666 ± 0.019 1.01

DRO 0.899 ± 0.009 - 0.569 ± 0.132 10.71 0.437 ± 0.112 5.10 0.342 ± 0.012 1.01

Group-disparity at ε-Privacy
No DP ε1 ε2 ε3

GD ε GD ε GD ε GD ε

C
E

L
E

B ERM 0.556 ± 0.021 - 0.746 ± 0.032 9.50 0.734 ± 0.025 5.17 0.770 ± 0.013 0.99

DRO 0.514 ± 0.042 - 0.039 ± 0.018 9.50 0.080 ± 0.031 5.17 0.056 ± 0.027 0.99

B
L

O
G ERM 0.108 ± 0.013 - 0.149 ± 0.006 9.25 0.140 ± 0.004 5.17 0.136 ± 0.011 0.99

DRO 0.078 ± 0.009 - 0.056 ± 0.020 9.25 0.070 ± 0.013 5.17 0.077 ± 0.027 0.99

V
O

L
. ERM 0.302 ± 0.042 - 0.328 ± 0.067 9.32 0.557 ± 0.050 6.42 0.573 ± 0.050 0.96

DRO 0.221 ± 0.062 - 0.320 ± 0.085 9.32 0.371 ± 0.058 6.42 0.421 ± 0.083 0.96

T-
U

K
. ERM 0.018 ± 0.005 - 0.022 ± 0.006 9.39 0.020 ± 0.014 4.94 0.037 ± 0.006 1.02

DRO 0.030 ± 0.008 - 0.030 ± 0.004 9.39 0.039 ± 0.023 4.94 0.025 ± 0.010 1.02

T-
U

S ERM 0.055 ± 0.006 - 0.048 ± 0.019 10.71 0.054 ± 0.015 5.10 0.109 ± 0.017 1.01

DRO 0.036 ± 0.007 - 0.118 ± 0.040 10.71 0.078 ± 0.030 5.10 0.021 ± 0.030 1.01

Table 1: Performance (top) and ∆-Fairness (bottom) of ERM and Group DRO across different degrees of differ-
ential privacy (ε). ε1, ε2 and ε3 corresponds to ε-values of roughly 10, 5 and 1 respectively (see table for exact
values). We report F1 scores for sentiment and topic classification, accuracy for face recognition and MSE for
volatility forecasting. Group disparity (GD) is measured by the absolute difference between the best and worst per-
forming sub-group (∆-Fairness; see Definition 2.1). The performance and corresponding uncertainties are based
on several individual runs of each configuration, see §6.2 in the Appendix for further details. Differential privacy
consistently hurts fairness for ERM. For Group DRO, we bold-face numbers where strict differential privacy (ε3)
increases fairness; this happens in 4/5 datasets. We see large increases for face recognition and small increases for
topic classification and sentiment analysis.

location of the users, but as with the topic classi-323

fication task, we only concern ourselves with the324

gender and age of the users. As with the topic325

classification task, we finetune DistilBERT on the326

UK and US English parts of the Trustpilot Corpus,327

freezing all parameters but the final encoder layer,328

as well as the classification layer. Classification per-329

formance is measured as F1 scores and the results330

are averaged over 3 seeds.331

Our implementation is a PyTorch extension of332

the WILDS repository10 (Koh et al., 2021) using333

the DP-SGD implementation provided by the Opa-334

cus Differential Privacy framework11. For further335

details about data and training, see §6.2 in the Ap-336

10https://github.com/p-lambda/wilds/
11https://opacus.ai/

pendix. We release the code for our experiments at: 337

https://github.com/anonymized. 338

3.3 Results 339

Our results are presented in Table 1. The top half of 340

the table presents standard (average) performance 341

numbers across multiple runs of ERM and Group 342

DRO at different privacy levels. Recall that per- 343

formance for sentiment analysis as well as topic 344

classification is measured in F1, volatility forecast- 345

ing is measured in MSE and face recognition is 346

measured in accuracy. The accuracy of our ERM 347

face attribute detection classifier is 0.954 in the 348

non-private setting, for example. 349

Our first observation is that, as hypothesized ear- 350

lier, differential privacy hurts model performance. 351

For our smallest text-based dataset (T-US), per- 352
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Figure 2: Face Attribute Detection: Performance of individual groups of increasing levels of ε. Comparing
baseline ERM to Group DRO, we find that Group DRO performance on the minority group (blond males) perform
much better under privacy constraints; we return to this in §3.4.
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Figure 3: Topic Classification: Performance of individual groups of increasing levels of ε. Group DRO, compared
to baseline ERM, results in a more balanced performance across all groups, even on a low privacy budget.

formance becomes very poor at the strictest pri-353

vacy level. This is however associated with a high354

amount of variance between seeds, see Figure 5 in355

the Appendix. The above face attribute detection356

classifier, which had an accuracy of 0.954 in the357

non-private setting, has a performance of 0.932 at358

this level.359

Differential privacy hurts fairness in ERM360

The effect on differential privacy on fairness (bot-361

tom half of Table 1) is also quite consistent. The362

gap between the majority group and the minor-363

ity group (or, more precisely, the best-performing364

and the worst-performing demographic subgroup)365

widens with increased privacy. In face recognition,366

for example, the accuracy gap between the two367

groups is 0.556 without differential privacy, but368

0.770 at the strictest privacy level.369

Differential privacy increases fairness in Group 370

DRO For Group DRO, we see the opposite effect. 371

For 4/5 datasets, we see that differential privacy 372

leads to an increase in fairness. For face recogni- 373

tion, for example, the gap goes from 0.514 in the 374

non-private setting to 0.056 in the strictest, basi- 375

cally disappearing. This is also illustrated in the 376

bar plots in Figure 2. See Figure 3 for similar bar 377

plots of the topic classification results; we include 378

similar plots for other tasks in the Appendix. We 379

do also observe that this increase in privacy can 380

be expensive in terms of overall performance (e.g. 381

Trustpilot-US). Note that the increase in fairness at 382

higher privacy levels is seemingly at odds with pre- 383

vious results suggesting that privacy and fairness 384

conflict, e.g., Agarwal (2021). We return to this 385

question in §3.4. 386

Note also that the only exception to the latter 387
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Figure 4: Volatility Forecasting: A comparison of group-disparity between subgroups for increasing temporal
volatility windows (τ ) and privacy budgets (ε), over 5 independent runs.

trend is for volatility forecasting, where differen-388

tial privacy hurts fairness both in ERM and Group389

DRO (though Group DRO mitigates the disparity).390

This speech-based prediction is the only regression391

task, and the only task for which we do not rely on392

pretrained models trained on public data.393

For this task, we further analyze group dispar-394

ity for varying temporal windows (τ ) used to cal-395

culate target volatility values, along with increas-396

ingly strict privacy budgets (ε) in Figure 4. The397

disparity between subgroups widens with stricter398

privacy guarantees (Bagdasaryan, Poursaeed, and399

Shmatikov, 2019). This gap is significant for lower400

values of τ , strengthening the hypothesis that short-401

term volatility forecasting is much harder than long-402

term (Qin and Yang, 2019), especially for minority403

classes due to the disproportionate impact of noise.404

Comparing ERM and Group DRO, we find Group405

DRO mitigates this disparity gap. We observe dis-406

parity reduces with increasing temporal window,407

since stock prices over a larger time frame are com-408

paratively more stable (Qin and Yang, 2019). As409

a consequence, the influence of Group DRO for410

higher τ (6, 7) is reduced, despite facilitating faster411

convergence. Most importantly, we observe the412

power of Group DRO in mitigating the disparity413

caused by strict privacy safeguards (ε = 0.96) for414

crucial short term prediction (τ = 3) tasks.415

3.4 Discussion416

It is well-known that differential privacy comes417

with a performance cost (Shokri and Shmatikov,418

2015).12 However, recent work has additionally419

12A multitude of algorithmic improvements have been pro-
posed to mitigate the overall accuracy drop caused by the
increased privacy protection -– including private sampling

shown that differential privacy is at odds with most, 420

if not all, definitions of fairness, including equal- 421

ized risk (Ekstrand, Joshaghani, and Mehrpouyan, 422

2018; Cummings et al., 2019; Bagdasaryan, Pour- 423

saeed, and Shmatikov, 2019; Farrand et al., 2020). 424

Our work makes two important contributions: (a) 425

We evaluate and confirm this hypothesis at a larger 426

scale than previous studies for standard empirical 427

risk minimization; and (b) we point out that the 428

opposite holds true in the context of Group Dis- 429

tributionally Robust Optimization: Here, adding 430

differential privacy improves fairness (equalized 431

risk). 432

While (b) at first seems to contradict the very 433

hypothesis that (a) confirms – namely that privacy 434

is at odds with fairness – we believe the explanation 435

is quite simple, namely that we are observing two 436

opposite trends (at the same time): On one hand, 437

differential privacy adds disproportionate noise to 438

minority group examples; but on the other hand, it 439

adds Gaussian noise which acts as a regularizer to 440

improve robust optimization. 441

In their evaluation of Group Distributionally 442

Robust Optimization, Sagawa et al. (2020a) ob- 443

serve that robustness is only achieved in the con- 444

text of heavy regulation; specifically, they show 445

fairness improvements when they add `2 regular- 446

ization or early stopping. The `2 regularization 447

and early stopping did not increase fairness under 448

ERM, but seemed to ’activate’ Group DRO. This 449

makes intuitive sense: Since regularized models 450

cannot perfectly fit the training data, heavily regu- 451

from hyperbolic word representation spaces (Feyisetan, Di-
ethe, and Drake, 2019), Gaussian f -differential privacy (Bu
et al. 2020), and gradient denoising (Nasr et al., 2020). It is
yet to be examined, if the empirical application of such utility
preservation techniques affects the disparate impact issue.
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larized Group DRO sacrifices average performance452

for worst-case performance and obtain better gener-453

alization. In the absence of regularization, however,454

Group DRO is less effective.455

In our experiments (§3), we add minimal regular-456

ization to Group DRO, following the implementa-457

tion in Koh et al. (2021), but differential privacy, we458

argue, provides that additional regularization. To459

see this, remember that DP-SGD works by Gaus-460

sian noise injection. Gaussian noise injection is461

known to be near-equivalent to `2-regularization462

and early stopping (Bishop, 1995). DP-SGD sim-463

ply makes the trade-off more urgent.464

4 Related Work465

Fair machine learning Early work on mitigat-466

ing group-level disparities included oversampling467

(Shen, Lin, and Huang, 2016; Guo and Vik-468

tor, 2004) and undersampling (Drumnond, 2003;469

Barandela et al., 2003), as well as instance weight-470

ing (Shimodaira, 2000). Other proposals modify471

existing training algorithms or cost functions to472

obtain fairness (Khan et al., 2017; Chung, Lin,473

and Yang, 2015). In the context of large-scale474

deep neural networks, Group DRO is a particu-475

larly interesting approach to mitigating group-level476

disparities (Creager, Jacobsen, and Zemel, 2021).477

See Williamson and Menon (2019) and Corbett-478

Davies and Goel (2018) for interesting discussions479

of how fairness has been measured. More recent480

alternatives to Group DRO include Invariant Risk481

Minimization (Arjovsky et al., 2020), Spectral De-482

coupling (Pezeshki et al., 2020) and Adaptive Risk483

Minimization (Zhang et al., 2021). We ran ex-484

periments with both Invariant Risk Minimization485

and Spectral Decoupling, but they performed much486

worse than Group DRO.487

Fairness and privacy Recent studies suggest488

that privacy-preserving methods such as differen-489

tial privacy tend to disproportionately affect mi-490

nority class samples (Ekstrand, Joshaghani, and491

Mehrpouyan, 2018; Cummings et al., 2019; Bag-492

dasaryan, Poursaeed, and Shmatikov, 2019; Far-493

rand et al., 2020). Pannekoek and Spigler (2021)494

show that it is possible to learn somewhat private495

and somewhat fair classifiers, in their case by com-496

bining differential privacy and reject option classi-497

fication. Jagielski et al. (2019) introduced the so-498

called DP-oracle-learner, derived from an oracle-499

efficient algorithm (Agarwal et al., 2018), which500

satisfies equalized odds, an alternative notion of501

fairness (Williamson and Menon, 2019). Lyu et al. 502

(2020) introduced Differentially Private GANs (DP- 503

GANs), while Tran, Fioretto, and Van Hentenryck 504

(2020) utilize Lagrangian duality to integrate fair- 505

ness constraints to protected attributes. Group DRO 506

has, to the best of our knowledge, not been studied 507

under differential privacy before. 508

5 Conclusions 509

In §2, we summarized previous work suggesting 510

that differential privacy and fairness are at odds. 511

In §3, we then confirmed this hypothesis at scale, 512

across five datasets, spanning four tasks and three 513

modalities, showing that for Empirical Risk Mini- 514

mization, stricter levels of privacy consistently hurt 515

fairness. This holds true even after pretraining on 516

large-scale public datasets (Kerrigan, Slack, and 517

Tuyls, 2020). In the context of Group-aware Dis- 518

tributionally Robust Optimization (Group DRO) 519

(Sagawa et al., 2020a), however, which is designed 520

to mitigate group-level performance disparities (op- 521

timizing for equalized risk), we saw the opposite 522

effect: Strict levels of differential privacy were as- 523

sociated with an increase in fairness. In §3.4, we 524

discuss how this aligns well with the observation 525

that Group DRO works best in the context of heavy 526

`2 regularization, keeping in mind that Gaussian 527

noise injection is near-equivalent to `2 regulariza- 528

tion (Bishop, 1995). 529
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6 Appendix779

6.1 Additional Figures780

This section contains group-specific bar-plots for781

the performance on individual groups in the Trust-782

pilot Corpus. For barplots on CelebA and Blog783

Authorship, see Figure 2 and 3.784

6.2 Experimental Details785

This section contains additional details surrounding786

the experiments described in §3.787

CelebA We use the same processed version788

of the CelebA dataset as Sagawa et al. (2020a)789

and Koh et al. (2021), that is, we use the same790

train/val/test splits as Liu et al. (2015) with the791

Blond Hair attribute as the target with the Male792

attribute being the spuriously correlated variable.793

See group distribution in the training data in Table794

2.795

Non-Blond, Man Blond, Man Non-Blond, Woman Blond, Woman
66874 1387 71629 22880

Table 2: Group distribution in the training set of
CelebA

Blog Authorship Corpus In addition to the pre-796

processing described in §3, we split the data into797

a 60/20/20 train/val/test split (you can find the ex-798

act seed that generates the splits in our code). See799

group distribution in the training data in Table 3.800

The Blog Authorship Corpus can be downloaded

Group Young, Man Old, Man Young, Woman Old, Woman
Count 27222 2295 12750 2435

Table 3: Group distribution in the training set of Blog
Authorship corpus

801
at: https://www.kaggle.com/rtatman/802

blog-authorship-corpus803

Earnings Conference Calls Out of the 559 calls,804

we only include 535 datapoints that contain self-805

reported demographic attributes about gender. See806

Table 4 for group distributions for the training data.807

The target stock volatility variable is calculated808

following (Kogan et al., 2009; Qin and Yang, 2019),809

defined by:810

v[t−τ,t] = ln
(√∑τ

i=0(rt−i − r̄)2
τ

)
(4)811

Here rt is the return price at day t and r̄ the mean812

of return prices over the period of t − τ to t. We813

refer to τ as the temporal volatility window in our 814

experiments. The return price rt is defined as rt = 815
Pt
Pt−1
− 1 where Pt is the closing price on day t. 816

Group Man Woman
Count 333 42

Table 4: Group distribution in the training set of Earn-
ings Conference Calls

Trustpilot We only include the datapoints that 817

contains complete demographic attributes, i.e. the 818

gender, age and location, but as with our topic clas- 819

sification experiments, we only study the group 820

that we can define based on age and gender. All 821

attributes are self-reported. For training we divide 822

the reviews into the four resulting groups (Old- 823

Man, Young-Woman, etc.) and downsample the 824

largest groups to match the size of the smallest 825

group. For validation as well as testing, we with- 826

hold 200 samples from each demographic with an 827

even distribution among the ratings (1 to 5). The re- 828

view scores are then binarized by grouping positive 829

(4 and 5 stars) and negative (1 and 2 stars) and dis- 830

carding neutral ones (3 stars). For a similar use of 831

this binarization scheme, see Gupta, Thadani, and 832

O’Hare (2020) and Desai, Zhan, and Aly (2019). 833

See the group distributions for the training data in 834

Table 5 and 6 for the US and UK tasks respectively. 835

Group Young, Man Old, Man Young, Woman Old, Woman
Count 7242 7210 7222 7255

Table 5: Group distribution in the training set of
Trustpilot-US

Group Young, Man Old, Man Young, Woman Old, Woman
Count 18464 18693 18554 18693

Table 6: Group distribution in the training set of
Trustpilot-UK

BiLSTM The BiLSTM model was trained using 836

a Nvidia Tesla K80 GPU. We use a learning rate of 837

1e−2 and train using DP-SGD for 30 epochs using 838

a virtual batch size of 32. The average sequence 839

length of the audio embeddings is 159. We set the 840

maximum sequence length to 150 as we did not 841

observe a performance increase for higher values. 842

We run 5 individual seeds for each configuration. 843

In our differentially private experiments with 844

the BiLSTM (i.e Earnings Conference Calls), we 845

fix the gradient clipping C to 0.8. By specifying 846

various approximate target levels of ε ∈ {1, 5, 10} 847
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Figure 5: Performance of individual groups of increasing levels of ε for the Trustpilot-US corpus. Error bars show
standard deviation over 3 individual seeds.
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Figure 6: Performance of individual groups of increasing levels of ε for the Trustpilot-UK corpus. Error bars show
standard deviation over 3 individual seeds.

a corresponding noise multiplier σ is computed848

with the Opacus framework, based on the batch849

size and number of training epochs.850

DistilBERT DistilBERT is a small Transformer851

model trained by distilling BERT (Devlin et al.,852

2019) (bert-base-uncased). It has 3/5th of the pa-853

rameters of bert-base-uncased, runs 60% faster,854

while preserving over 95% of the performance of855

bert-base-uncased, as measured on the GLUE856

language understanding benchmark (Wang et al.,857

2018).858

We finetune DistilBERT on the Trustpilot corpus859

and Blog Authorship corpus for 20 epochs each,860

using a batch size of 8, accumulating gradient for861

a total virtual batch size of 16 using the built in862

Opcaus functionality. We limit the number of to-863

kens in a sequence to 256 and use a learning rate of864

5e−4 with the AdamW optimizer in addition to a865

weight decay of 0.01. Otherwise we use the default 866

parameters defined in the Huggingface Transform- 867

ers python package (version 4.4.2). The models are 868

trained using a single Nvidia TitanRTX GPU and 869

each configuration takes between 5 and 14 hours to 870

run, depending on the size of that dataset and if DP 871

is used or not. We run 3 individual seeds for each 872

configuration. 873

In our differentially private experiments with 874

DistilBERT (i.e. Blog Authorship and Trustpilot), 875

we fix the gradient clipping C to 1.2 and by speci- 876

fying various target levels of ε ∈ {1, 5, 10} a cor- 877

responding noise multiplier σ is computed with the 878

Opacus framework, based on the batch size and 879

number of training epochs. 880

Resnet50 ResNet50 is a variant of the ResNet 881

model (He et al., 2015), which has 48 convolution 882

layers along with 1 max pooling and 1 average 883
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pooling layer. It has 3.8 x 109 floating points oper-884

ations.885

We finetune our Resnet50 model on the CelebA886

dataset for 20 epochs using a batch size of 64. We887

optimize the model using standard stochastic gra-888

dient descent (SGD) with a learning rate of 1e−3,889

momentum of 0.9 and no weight decay. We train890

our models using a single Nvidia TitanRTX GPU891

and each configuration takes between 6 and 8 hours892

to run, depending on if DP is used or not. We run893

3 individual seeds for each configuration.894

As with the differentially private DistilBERT895

experiments, we also here fix the gradient clipping896

C to 1.2 and by specifying various target levels of897

ε ∈ {1, 5, 10} a corresponding noise multiplier σ898

is computed with the Opacus framework, based on899

the batch size and number of training epochs.900
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