
Findings of the Association for Computational Linguistics: NAACL 2024, pages 3977–3990
June 16-21, 2024 ©2024 Association for Computational Linguistics

Read between the lines - Functionality Extraction From READMEs

Anonymous ACL submission

Abstract

While text summarization is a well-known NLP001
task, in this paper, we introduce a novel and002
useful variant of it called functionality extrac-003
tion from Git README files. Though this task004
is a text2text generation at an abstract level, it005
involves its own peculiarities and challenges006
making existing text2text generation systems007
not very useful. The motivation behind this008
task stems from a recent surge in research and009
development activities around the use of large010
language models for code-related tasks, such as011
code refactoring, code summarization, etc. We012
also release a human-annotated dataset called013
FuncRead, and develop a battery of models014
for the task. Our exhaustive experimentation015
shows that small size fine-tuned models beat016
any baseline models that can be designed using017
popular black-box or white-box large language018
models (LLMs) such as ChatGPT (OpenAI,019
2023) and Bard (Chowdhery et al., 2022). Our020
best fine-tuned 7 Billion CodeLlama model ex-021
hibit 70% and 20% gain on the F1 score against022
ChatGPT and Bard respectively.023

1 Introduction024

Large Language Models (LLMs) are known to per-025

form really well on many text2text (Yang and Flek,026

2021) generation tasks such as summarization (Liu027

and Lapata, 2019; El-Kassas et al., 2021)), trans-028

lation (Wang et al., 2019; Maruf et al., 2021), etc.029

Because of this success, there is a growing research030

interest in applying LLMs in novel task settings031

such as explaining complex codes, generating new032

recipes, simplifying contents, etc1. In this paper,033

we introduce another novel task called functionality034

extraction from Git README files – a variant of text035

summarization task (Prana et al., 2019) that detects036

all the functionalities supported by the correspond-037

ing application software. This task can also be seen038

as a variation of a Question-Answering (QA) (Fan039

1https://platform.openai.com/examples

et al., 2019; Soares and Parreiras, 2020) task where 040

the question like List all functionalities is fixed. 041

The motivation to introduce automatic function- 042

ality extraction from Git README files stems from 043

the requirement of application code refactoring to 044

decompose a monolith application into functional 045

microservices. Here each microservice is a collec- 046

tion of closely connected application artifacts (pro- 047

grams, tables etc.) supporting a common function- 048

ality (Lewis and Fowler, 2014; Richardson, 2018; 049

Newman, 2021). Current microservice recommen- 050

dation systems rely a lot on subject matter experts 051

(SMEs) and falls short to correctly group artefacts 052

since they do not have reference list of functional- 053

ities. But many application Git README files tend 054

to contain capture different functionalities 2 of the 055

underlying software code base3 along with other 056

implementation details like what it does, how oth- 057

ers can use it, licensing, etc.,(Prana et al., 2019; 058

Chen et al., 2021). As an example, the README file 059

of the Daytrader application4 discusses the applica- 060

tion overview, the technology used, licensing terms, 061

etc., and in between discusses four functionalities 062

as highlighted in Figure 1(a). 063

Recently, (Doan et al., 2023) focused on lever- 064

aging LLM to generate sections of README.md 065

like "About" section (brief 1-2 line summary of 066

repo) but they do not aim to list all the functional- 067

ities. Extraction of the application functionalities 068

from such README files is not straightforward. The 069

functionalities may not be always structured and 070

might spread across multiple paragraphs and lines. 071

Therefore, there is a need for an intelligent system 072

that can parse the text, understand functionality ex- 073

pressions, de-duplicate, and list them. To tackle 074

this first-of-its-kind task, we also introduce and re- 075

2Occasionally, we call functionality as feature
3https://docs.GitHub.com/en/repositories/

managing-your-repositorys-settings-and-features/
customizing-your-repository/about-readmes

4https://GitHub.com/WASdev/sample.daytrader7/

1
3977

https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://GitHub.com/WASdev/sample.daytrader7/

Figure 1: Snapshot of Github README content of Daytrader, an online trading application is captured in (a). The
human annotated four functionalities based on the description are listed as golden truth along with the functionalities
generated by fine-tuned 7 billion CodeLlama model.

lease a new dataset called FuncRead that will help076

the community to benchmark their functionality077

understanding module and refactor monolith appli-078

cations into discovered functional microservices.079

The key contributions of this paper are as follows.080

1. We introduce a novel functionality extraction081

from Git README files task and human-annotated082

dataset called FuncRead. This dataset captures083

the human-annotated lists of the functionalities084

in both extractive and abstractive forms for each085

of 2101 different GitHub README files following086

permissible licenses.087

2. We perform a comparative analysis of genera-088

tive models to reason out the gap in performance089

between different baselines on the FuncRead090

dataset. To enable comparison, we perform bi-091

partite matching (one-to-one, many-to-one, and092

weighted many-to-one) to align generated func-093

tionalities with the gold functionalities.094

3. We present smaller fine-tuned generative mod-095

els 1&7 billion StarCoderbase, 2.7 billion phi-2,096

7 billion Llama-2 & CodeLlama which give su-097

perior results compared to ChatGPT and Bard.098

2 FuncRead Dataset099

The FuncRead dataset is a first-of-its-kind dataset100

that consists of functionalities described in the101

README files. These functionalities were hand-102

curated by human annotators after carefully reading103

the file. For each README file, the functionalities104

are annotated in two formats - extractive and ab-105

stractive. Extractive functionalities are segments106

of the text or span from the README file; whereas107

abstractive functionalities are the self-explained108

versions of the corresponding extractive functional-109

ities, written in the annotator’s own words. Each of110

these format outputs are presented in the form of111

a list. The dataset consists of unique 2101 human 112

annotated GitHub README files. 113

2.1 Dataset Collection 114

We used GitHub provided APIs to randomly se- 115

lect a subset of public repositories that comes with 116

a permissible licenses. Further, we manually in- 117

spected the README files of these repositories and 118

retained only the ones that comprised of at least two 119

functionalities. Note, we do not store the README 120

files for the crawled repositories, we only extracted 121

the README content and other metadata like license 122

information. We also removed markdown tags 123

and any Personal Identifiable Information (PII) like 124

names, email addresses etc. before further process- 125

ing. The license distribution for the 2101 README 126

files are as follows MIT (1436), Apache (334) , 127

BSD (334), and EPL (6) licenses. We found that 128

the majority of the repositories consist of 10 or 129

lesser functionalities with an average being 5 func- 130

tionality per repository. Some repository has as 131

many as 34 different functionalities. 132

2.2 Dataset Annotation 133

We had a total of seven annotators involved in the 134

initial data annotation process. Each annotator was 135

asked to read the whole README file and perform 136

both the annotations – extractive and abstractive. 137

For extractive annotation, annotators were asked to 138

select text spans from the README file which they 139

felt were describing functionalities, and note them 140

in the form of a numbered list. For abstractive an- 141

notation, each annotator was asked to describe the 142

functionalities in their own words. All the annota- 143

tors were given a disjoint set of README files. 144

2.3 Annotation Validation 145

We employed two new independent annotators for 146

the purpose of human validation of the dataset ob- 147

2
3978

tained from the previous step. We randomly sam-148

pled 200 README files from each of these two anno-149

tators out of which 50 README files were common150

for both the annotators. Both of these annotators151

were instructed to read extractive as well as ab-152

stractive functionalities and check whether all the153

functionalities were included. Based on their ob-154

servation, they were tasked to give a rating from155

1 to 4 based on the degree of strictly necessary156

functionalities annotated. These ratings were used157

to calculate the inter-annotator agreement. We ob-158

served a Kappa score of 0.873. Figure 2 describes159

the ratings and the rating score distribution for both.160

More details on the dataset characteristics and161

annotation procedure can be found in appendix.162

Figure 2: Ratings distribution of the two annotators
during the verification step of the FuncRead dataset.

3 Task Modelling163

For modeling purposes, one can view the func-164

tionality extraction as a generation task. In the165

generation mode, the goal is to generate a list of166

functionalities from a given README file. As ours167

is the first-of-its-kind dataset, we used ChatGPT168

and Bard models known to perform really well on169

most NLP and code tasks even in zero-shot setting170

as a baseline for our task. Among many prompts,171

the following prompt “List all the features from172

above text. Each features should be in individual173

line without headings. Each features should be in174

individual line without headings. Do not include175

features related to license” provided the best re-176

sults. The actual list of prompts tried on ChatGPT177

and Bard can be found in section 6.5.178

We wanted to study if task specific small sized179

models can provide competitive results. For this we180

considered mix of NL and code model variants like181

1b and 7b StarCoderbase, 2.7b phi-2 and 7b llama-2182

and CodeLlama. For fine-tuning, we pre-processed183

the README data through the steps listed in section184

2.1. Next, we append it with “\n##FEATURES##\n”185

as the task designator prompt followed by the hu-186

man annotated list of functionalities corresponding 187

to that README file. For inference, we simply ap- 188

pended the task designator prompt to the README 189

text and then allowed the model to complete se- 190

quence to generate list of functionalities. 191

4 Experiments and Results 192

For our experiments, we divided the FuncRead 193

dataset into train, validation, and test sets com- 194

prising 1801, 100, and 200 samples respectively. 195

binding for tokenizer of SQLite Full-
Text search (FTS3/4) and FTS5

Gold Functionalities
Generated Functionalities

it allows you to write tokenizers in
Python

ranking functions based on
peewee

utility function to add FTS5
auxiliary functions

utility function to add FTS5
auxiliary functions

SQLite has Full-Text search feature
FTS3/FTS4 and FTS5 along with some
predefined tokenizers for FTS3/4.

It allows you to write tokenizers in
Python.

It also has ranking functions based
on peewee, utility function to add
FTS5 auxiliary functions, and an FTS5
aux function implementation.

The module has a sample
tokenizer for FTS3,4 and FTS5.One-to-one matching

Many-to-one matching

Figure 3: One-to-One bipartite matching (red color) and
Many-to-one bipartite matching (blue color). Edges are
established based on cosine similarity

196

4.1 Evaluation Metrics 197

To evaluate the quality of the generated function- 198

alities, we align them to the gold annotated func- 199

tionalities via bipartite matching. We perform three 200

kinds of bipartite matching: i) one-to-one, ii) one- 201

to-many, and iii) weighted one-to-many. 202

In any of these bipartite graphs, we have model- 203

generated functionalities as nodes on one side and 204

gold (ground truth) functionalities as nodes on the 205

other side. The presence or absence of an edge 206

in this bipartite graph is decided by the similarity 207

scores between the corresponding sentences. In 208

our experiments, we found threshold 0.3 similar- 209

ity matches the most with the human judgment. 210

We did maximum bipartite matching to compute 211

Precision (P), Recall (R), and F1 scores based on 212

matched pairs to measure the generation capability. 213

For fine-tuning the models, we used extractive 214

functionalities as gold, and because of it, we em- 215

ployed ROUGE-1, ROUGE-2, ROUGE-L scores 216

to check the lexical matching quality of generated 217

functionalities at an individual level. Since all the 218

considered models are generative models, there is 219

a high chance that it would introduce new tokens 220

while generating functionalities. Hence, we also 221

3
3979

Model F#
1 P# R# F ∗

1 P∗ R∗
F+

1 P+

ChatGPT 0.459 0.336 0.900 0.431 0.303 0.922 0.406 0.282
Bard 0.653 0.611 0.806 0.649 0.573 0.858 0.612 0.528

StarCoderbase-1b 0.772 0.816 0.786 0.808 0.788 0.876 0.754 0.711
StarCoderbase-7b 0.743 0.797 0.754 0.787 0.777 0.844 0.734 0.698

Phi- 2 0.231 0.172 0.656 0.226 0.159 0.733 0.207 0.144
Llama2-7b 0.698 0.748 0.715 0.715 0.700 0.795 0.658 0.622

CodeLlama-7b 0.784 0.827 0.794 0.816 0.801 0.877 0.770 0.738

Table 1: Result comparison for various fine-tuned models against out-of-the box large models for threshold = 0.3.
represents one-to-one bipartite matching, * represents many-to-one bipartite matching, + represents weighted
many-to-one bipartite matching.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.423 0.404 0.564 0.301 0.291 0.391 0.410 0.390 0.549
Bard 0.616 0.648 0.673 0.511 0.542 0.549 0.609 0.640 0.666

StarCoderbase-1b 0.759 0.750 0.845 0.676 0.667 0.755 0.757 0.747 0.842
StarCoderbase-7b 0.754 0.790 0.802 0.640 0.663 0.688 0.752 0.788 0.800

Phi-2 0.665 0.677 0.765 0.567 0.571 0.658 0.663 0.674 0.762
Llama2-7b 0.755 0.787 0.810 0.659 0.688 0.706 0.752 0.783 0.806

CodeLlama-7b 0.778 0.815 0.820 0.684 0.710 0.725 0.777 0.813 0.818

Table 2: Results for one-to-one matched pairs of different models generation and ground truth for threshold = 0.3.

Model
BERTScore

F1 P R

ChatGPT 0.895 0.889 0.902
Bard 0.912 0.910 0.916

StarCoderbase-1b 0.945 0.940 0.951
StarCoderbase-7b 0.938 0.938 0.940

Phi-2 0.928 0.925 0.933
Llama2-7b 0.936 0.935 0.939

CodeLlama-7b 0.946 0.946 0.947

Table 3: Results for one-to-one matched pairs for thresh-
old = 0.3.

used BERTScore (Zhang et al., 2019) to capture222

the semantic similarity between the matched pairs.223

4.2 Results224

Overall, we find fine-tuned models specifically225

code models are reliable for this novel task. From226

table 1, we can observe fine-tuned models have a227

tendency to combine multiple functionalities into a228

single sentence but F1, P , and R scores of many-229

to-one bipartite matching indicates that it still does 230

less frequently. But all the fine-tuned models sig- 231

nificantly outperform ChatGPT, Bard on P and F1 232

measures. Due to inherent verbosity, R is higher for 233

the latter models. Table 2 ROUGE scores demon- 234

strates that the functionalities generated by the fine- 235

tuned models have a relatively higher token simi- 236

larity when matched one-to-one (it is consistent for 237

the other two schemes as can be seen in appendix). 238

Table 3 BERTScores are also consistent with the 239

claims showing better semantic similarity for the 240

fine-tuned models. We suspect code models ten- 241

dency to outperform NL models can be due to their 242

stronger exposure to Git data. In few instances the 243

models did not list any functionalities which can be 244

attributed to complexity and lack in standardization 245

of GitHub README files. Please refer to appendix 246

for in-depth comparisons and discussions. 247

5 Conclusion 248

We introduced a novel task functionality extraction 249

from Git README files and studied on a new dataset 250

curated from public repositories to demonstrate 251

reliability of small sized fine-tuned LLMs. 252

4
3980

References253

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming254
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-255
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,256
Greg Brockman, et al. 2021. Evaluating large257
language models trained on code. arXiv preprint258
arXiv:2107.03374.259

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,260
Maarten Bosma, Gaurav Mishra, Adam Roberts,261
Paul Barham, Hyung Won Chung, Charles Sutton,262
Sebastian Gehrmann, Parker Schuh, Kensen Shi,263
Sasha Tsvyashchenko, Joshua Maynez, Abhishek264
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-265
odkumar Prabhakaran, Emily Reif, Nan Du, Ben266
Hutchinson, Reiner Pope, James Bradbury, Jacob267
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,268
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,269
Sunipa Dev, Henryk Michalewski, Xavier Garcia,270
Vedant Misra, Kevin Robinson, Liam Fedus, Denny271
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,272
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,273
David Dohan, Shivani Agrawal, Mark Omernick, An-274
drew M. Dai, Thanumalayan Sankaranarayana Pil-275
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,276
Rewon Child, Oleksandr Polozov, Katherine Lee,277
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark278
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy279
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,280
and Noah Fiedel. 2022. Palm: Scaling language mod-281
eling with pathways.282

Thu TH Doan, Phuong T Nguyen, Juri Di Rocco, and283
Davide Di Ruscio. 2023. Too long; didn’t read: Au-284
tomatic summarization of github readme. md with285
transformers. In Proceedings of the 27th Interna-286
tional Conference on Evaluation and Assessment in287
Software Engineering, pages 267–272.288

Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea,289
and Hoda K Mohamed. 2021. Automatic text sum-290
marization: A comprehensive survey. Expert Systems291
with Applications, 165:113679.292

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-293
ier, Jason Weston, and Michael Auli. 2019. Eli5:294
Long form question answering. arXiv preprint295
arXiv:1907.09190.296

J. Lewis and M. Fowler. 2014. www.martinfowler.com/297
articles/microservices.html. www.martinfowler.298
com/articles/microservices.html.299

Yang Liu and Mirella Lapata. 2019. Text summariza-300
tion with pretrained encoders. In Proceedings of301
the 2019 Conference on Empirical Methods in Natu-302
ral Language Processing and the 9th International303
Joint Conference on Natural Language Processing304
(EMNLP-IJCNLP), pages 3730–3740.305

Sameen Maruf, Fahimeh Saleh, and Gholamreza Haffari.306
2021. A survey on document-level neural machine307
translation: Methods and evaluation. ACM Comput-308
ing Surveys (CSUR), 54(2):1–36.309

Sam Newman. 2021. Building microservices. " 310
O’Reilly Media, Inc.". 311

OpenAI. 2023. Chatgpt (sep 25 version) [large language 312
model]. 313

Gede Artha Azriadi Prana, Christoph Treude, Ferdian 314
Thung, Thushari Atapattu, and David Lo. 2019. Cat- 315
egorizing the content of github readme files. Empiri- 316
cal Software Engineering, 24(3):1296–1327. 317

Chris Richardson. 2018. Microservices patterns: with 318
examples in Java. Simon and Schuster. 319

Marco Antonio Calijorne Soares and Fernando Silva 320
Parreiras. 2020. A literature review on question an- 321
swering techniques, paradigms and systems. Journal 322
of King Saud University-Computer and Information 323
Sciences, 32(6):635–646. 324

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, 325
Changliang Li, Derek F Wong, and Lidia S Chao. 326
2019. Learning deep transformer models for ma- 327
chine translation. In Proceedings of the 57th Annual 328
Meeting of the Association for Computational Lin- 329
guistics, pages 1810–1822. 330

Diyi Yang and Lucie Flek. 2021. Towards user-centric 331
text-to-text generation: A survey. In International 332
Conference on Text, Speech, and Dialogue, pages 333
3–22. Springer. 334

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q 335
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval- 336
uating text generation with bert. arXiv preprint 337
arXiv:1904.09675. 338

5
3981

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
https://chat.openai.com/chat
https://chat.openai.com/chat
https://chat.openai.com/chat

6 Appendix339

We organize the appendix to cover the following :340

• Limitations - Discuss four key limitations with341

this work that we plan to address in our future342

studies.343

• Dataset - Discuss the crawled github data charac-344

teristics in detail345

• Annotator Profile - Discuss the demography and346

key details of annotators who helped prepare the347

study dataset348

• Annotator Instruction - Discuss in detail the in-349

structions and guidance provided to annotators350

• Annotation Validation - Discuss in detail the351

steps taken to review annotations352

• Task Modelling using Baseline Models - List353

all the prompts tried to get the most accurate354

functionalities355

• Model Hyperparameters - Key hyper-parameters356

used to reproduce results357

• Quantitative Results - Discuss results in detail358

for the different settings and thresholds359

6.1 Limitations360

There are four major limitations in this work that361

could be addressed in future research. First, the362

study focused on 2101 samples, there could be363

more unknown ways of describing functionalities364

that the current models may not be able to handle.365

This can be addressed by increasing the dataset size.366

Second, as shown in Figure 2, we found human er-367

rors during the annotation process where, for a few368

samples, unwanted functionalities were added and369

some wanted functionalities were missed. But this370

can be handled by expanding the validation efforts371

to the rest of the samples. Third, handling very long372

README files is a challenge as we have a maximum373

of 2048 token limit for models. There is promising374

research in this direction to support longer token375

limit. Fourth, defining the reference set of function-376

alities is sometimes an ill-posed problem because377

different humans may perceive the README differ-378

ently and they may conceive the set of functionali-379

ties differently. But we hope to educate annotators380

by discussing more number of ground truth sam-381

ples.382

6.2 Dataset383

Table 4 shows the license distribution for the 2101.384

Figure 4 represents the functionalities count distri-385

bution for the repositories. README files. We plan386

to release this dataset post review period.387

License Count Count Percentage(%)

MIT 1436 68.34
Apache 334 15.90
BSD 325 15.47
EPL 6 0.29

Table 4: License-wise split of FuncRead dataset.

Number of functionalities

Figure 4: Functionalities count distribution of the
FuncRead dataset.

6.3 Annotators Profile 388

To prepare the dataset, we requested participation 389

from nine software engineers based out of Asia. 390

The participants were identified based on their prior 391

experience working on application modernization 392

projects listed on their profile page. On an aver- 393

age, the participants had industrial experience of 394

13 years in different software engineering roles. 395

We requested seven participants to annotate the 396

2101 different GitHub README files. Once extrac- 397

tive and abstractive functionalities were annotated, 398

we employed 2 new participants to perform the ver- 399

ification step. We individually discussed the task 400

details, expectations, the tentative average time that 401

might be needed (5 minutes per annotation), and 402

the research goal and got their consensus before 403

providing them with the annotation instruction. 404

6.4 Annotation Instructions 405

Following were the instructions given to the seven 406

annotators : 407

• We thank you for agreeing to annotate. An 408

excel sheet will be given with the following 409

information 410

– Repository id 411

– Readme URL 412

– Extractive functionalities 413

6
3982

– Abstractive functionalities414

• First row will be filled for convenience.415

• For each repository id two types of annota-416

tions are requested to be done417

– Extractive: Copy and paste the function-418

alities as numbered lists.419

– Abstractive: Write the functionality in420

your own words.421

* NOTE: Please do not copy-paste for422

this. Please try to be as descrip-423

tive as possible i.e., introduce new424

words to describe instead of reusing425

the same set of words.426

• Please write/copy-paste each functionality in427

the new line as a numbered list.428

• Please make sure that number of abstractive429

and extractive functionalities are the same.430

• Few things to take care431

– Do not include future/expected function-432

alities/roadmap/TODO/planned433

– Please do not click on any link to find434

more functionalities. Whatever function-435

alities are present in the README, please436

include those only.437

– Do not include application – meaning438

what is possible with that functionality439

or repository.440

– In Progress/partial functionalities can be441

included.442

All the annotators were given the same set of443

instructions so as to maintain consistency. Anno-444

tators’ doubts were clarified on regular basis. The445

generated dataset was reviewed by the authors in-446

ternal review board and was deemed suitable to be447

published for research.448

6.4.1 Annotator Validation Example449

Let us understand above ratings via an example.450

For the README given in Figure 1, suppose follow-451

ing extractive functionalities were annotated by an452

annotator:453

• allow users to login454

• lookup stock quotes455

• buy or sell stock shares456

• provides a real-world java EE workload457

It is now clear that the annotator in this specific case 458

has missed one of the functionality, namely “view 459

their portfolio” and added an extra functionality 460

namely “provides a real-world java EE workload”. 461

Therefore, a rating of 4 would be assigned during 462

the human validation step. 463

6.5 Task Modelling using ChatGPT, Bard 464

To understand what prompts helps best to list the 465

functionalities, we tried various prompt on Chat- 466

GPT and Bard baseline models. Some of them are 467

as follows: 468

• List all the features for the above text. 469

• List all the functionalities for the above text. 470

• List all the features from above text. Each fea- 471

tures should be in individual line without head- 472

ings. 473

• List all the features from above text. Each fea- 474

tures should be in individual line without head- 475

ings. Each features should be in individual line 476

without headings. 477

• List all the features from above text. Each fea- 478

tures should be in individual line without head- 479

ings. Each features should be in individual line 480

without headings. Do not include features related 481

to license 482

6.6 Evaluation Metrics 483

To evaluate the quality of the generated function- 484

alities, we align them to the gold annotated func- 485

tionalities via bipartite matching. We perform three 486

kinds of bipartite matching: i) one-to-one, ii) one- 487

to-many, and iii) weighted one-to-many. 488

In any of these bipartite graphs, we have model- 489

generated functionalities as nodes on one side and 490

gold (ground truth) functionalities as nodes on the 491

other side. The presence or absence of an edge 492

in this bipartite graph is decided by the similarity 493

scores between the corresponding sentences. Fig- 494

ure 3 captures an illustration. For computing the 495

similarity score, we used SentenceTransformer5 496

and generated the sentence embeddings for both 497

model-generated and gold functionalities sentences. 498

Next, we computed a cosine similarity between 499

these two vectors, and experimented with multiple 500

thresholds to decide whether the edge should be 501

present in the bipartite graph. In our experiments 502

we found threshold 0.3 matches the most with the 503

human judgment. A lower threshold was giving 504

poor-quality mapping with excessively matched 505

5https://www.sbert.net/

7
3983

https://www.sbert.net/

pairs. A higher value was giving high-quality map-506

ping but the number of matched pairs was very507

less. We used the maximum_bipartite_matching6508

function from SciPy library to perform the maxi-509

mum (weighted or unweighted) bipartite matching.510

Based on the matched pairs, we compute Preci-511

sion (P), Recall (R), and F1 scores to measure the512

generation capability.513

For fine-tuning the models, we used extractive514

functionalities as gold, and because of it, we em-515

ployed ROUGE-1, ROUGE-2, ROUGE-L scores516

to check the lexical matching quality of generated517

functionalities at an individual level. Since all the518

considered models are generative models, there is519

a high chance that it would introduce new tokens520

while generating functionalities. Hence, we also521

used BERTScore (Zhang et al., 2019) to capture522

the semantic similarity between the matched pairs.523

After analyzing the generated functionalities, we524

realized that the model sometimes combines mul-525

tiple functionalities into a single generated sen-526

tence (see Figure 3). Therefore, there is a need527

for many-to-one bipartite matching where multiple528

gold functionalities are allowed to map into a sin-529

gle generated functionality. There are two kinds of530

results we show in many-to-one bipartite matching.531

The first one is many-to-one P , R, and F1 scores,532

where all the edges in the bipartite matching are533

given a score of 1. The second is weighted many-534

to-one P , R, and F1 scores, where for each of the535

model-generated functionality that is matched with536

multiple gold functionalities, each matched edge537

is assigned a weight that is inversely proportional538

to the number of functionalities matched. We take539

the reciprocal of the number of matched edges and540

assign that as a weight to all the incoming edges for541

that particular model-generated functionality. For542

example, consider the third functionality sentence543

generated by the model in Figure 3, which reads544

“It also has ranking functions based on peewee, util-545

ity function to add FTS5 auxiliary functions and546

an FTS5 aux function implementation.” Now, each547

matched edge incident on this node gets a weight of548

1/3 for weighted many-to-one bipartite matching.549

6.7 Model Hyperparameters550

Table 17 shows the important hyperparamters that551

can be used to reproduce results. Rest of the hyper-552

paramters are the default ones present in Hugging-553

6https://docs.scipy.org/doc/scipy/reference/
generated/scipy.sparse.csgraph.maximum_
bipartite_matching.html

face Trainer API. 554

6.8 Quantitative Results 555

All experiments were performed on an A100 556

80GB GPU machine. 557

We report results on the discussed metrics for all 558

the fine-tuned models and compare them against 559

the ChatGPT and Bard. Table 1 shows the P , 560

R, and F1 scores for the three bipartite matching 561

schemes. We do not report R for weighted many- 562

to-one bipartite matching as it is the same as R 563

for many-to-one bipartite matching. Results in ta- 564

bles 1, 2, and 3, are restricted over that subset of 565

test samples for which each of these models out- 566

puts a nonempty string and also yields at least one 567

matched pair during the bipartite matching proce- 568

dure. The total comparable test samples thus came 569

down to 69. 570

From table 1, we can observe that all the fine- 571

tuned models significantly outperform ChatGPT 572

and Bard across P , R, and F1 measures. We can 573

see that the F1 score of one-to-one bipartite match- 574

ing for ChatGPT is 0.459 and for Bard is 0.653 575

which are much smaller as compared to code mod- 576

els. Table 2 further shows the ROUGE scores for 577

one-to-one matched pairs. Again we see that the 578

functionalities generated by the fine-tuned models 579

have a relatively higher lexical similarity. Table 3 580

shows BERTScore which is again higher than Chat- 581

GPT and Bard. Tables 5 and 6 shows many-to-one 582

results for threshold = 0.3. The rest of the tables 583

show results for other threshold values 0.4 and 0.5 584

and matching schemes. Count of common test sam- 585

ples across various models which have non-empty 586

generations and have at least one matched pair are 587

85 and 98 for threshold values 0.4 and 0.5 respec- 588

tively. An increase in ROUGE and BERTScore 589

gives the illusion that a higher threshold value 590

should be preferred but as mentioned earlier the 591

number of functionalities generated/classified de- 592

creases too which is not much helpful as we lose 593

out on many functionalities. We recorded the re- 594

sponses from ChatGPT and Bard on November 25, 595

2023 for our experiments. 596

For the different task types and for threshold 0.4, 597

please refer tables 7-11. For threshold 0.5, please 598

refer tables 12-16. 599

8
3984

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.607 0.576 0.792 0.467 0.448 0.604 0.589 0.558 0.772
Bard 0.687 0.719 0.764 0.583 0.617 0.636 0.681 0.711 0.758

StarCoderbase-1b 0.765 0.752 0.868 0.677 0.664 0.772 0.763 0.750 0.864
StarCoderbase-7b 0.742 0.766 0.813 0.626 0.639 0.688 0.739 0.762 0.809

Phi-2 0.664 0.667 0.775 0.567 0.567 0.662 0.661 0.663 0.769
Llama2-7b 0.734 0.762 0.806 0.637 0.655 0.699 0.732 0.758 0.802

CodeLlama-7b 0.772 0.797 0.833 0.681 0.699 0.735 0.770 0.795 0.830

Table 5: Results for many-to-one matched pairs with threshold = 0.3.

Model
BERTScore

F1 P R

ChatGPT 0.918 0.909 0.929
Bard 0.920 0.917 0.924

StarCoderbase-1b 0.950 0.944 0.958
StarCoderbase-7b 0.941 0.940 0.944

Phi-2 0.935 0.931 0.941
Llama2-7b 0.941 0.938 0.945

CodeLlama-7b 0.951 0.950 0.953

Table 6: Results for many-to-one matched pairs with
threshold = 0.3.

9
3985

Model F#
1 P# R# F ∗

1 P∗ R∗
F+

1 P+

ChatGPT 0.431 0.314 0.849 0.415 0.293 0.878 0.395 0.276
Bard 0.614 0.575 0.753 0.619 0.556 0.795 0.594 0.522

StarCoderbase-1b 0.738 0.778 0.752 0.771 0.767 0.819 0.735 0.712
StarCoderbase-7b 0.713 0.764 0.723 0.745 0.754 0.783 0.713 0.701

Phi- 2 0.213 0.158 0.604 0.211 0.152 0.661 0.200 0.143
Llama2-7b 0.653 0.697 0.669 0.669 0.671 0.726 0.633 0.623

CodeLlama-7b 0.752 0.792 0.761 0.777 0.780 0.816 0.750 0.737

Table 7: Result comparison for various fine-tuned models against out-of-the box large models for threshold = 0.4.
represents one-to-one bipartite matching, * represents many-to-one bipartite matching, + represents weighted
many-to-one bipartite matching.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.527 0.509 0.670 0.391 0.381 0.489 0.512 0.493 0.652
Bard 0.701 0.734 0.764 0.590 0.621 0.628 0.694 0.725 0.756

StarCoderbase-1b 0.813 0.804 0.903 0.721 0.713 0.805 0.811 0.801 0.899
StarCoderbase-7b 0.820 0.848 0.869 0.696 0.715 0.744 0.818 0.845 0.867

Phi-2 0.733 0.741 0.831 0.631 0.635 0.720 0.730 0.736 0.826
Llama2-7b 0.812 0.842 0.863 0.714 0.739 0.757 0.809 0.838 0.858

CodeLlama-7b 0.834 0.858 0.880 0.737 0.758 0.778 0.832 0.855 0.878

Table 8: Results for one-to-one matched pairs with threshold = 0.4.

Model
BERTScore

F1 P R

ChatGPT 0.906 0.901 0.913
Bard 0.923 0.919 0.927

StarCoderbase-1b 0.951 0.945 0.959
StarCoderbase-7b 0.946 0.944 0.949

Phi-2 0.940 0.937 0.944
Llama2-7b 0.946 0.943 0.950

CodeLlama-7b 0.948 0.947 0.950

Table 9: Results for one-to-one matched pairs with
threshold = 0.4.

10
3986

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.632 0.605 0.799 0.493 0.476 0.625 0.616 0.588 0.781
Bard 0.740 0.768 0.813 0.639 0.667 0.692 0.735 0.760 0.807

StarCoderbase-1b 0.810 0.796 0.909 0.724 0.710 0.823 0.808 0.794 0.906
StarCoderbase-7b 0.805 0.824 0.868 0.688 0.699 0.750 0.802 0.820 0.865

Phi-2 0.739 0.738 0.845 0.644 0.642 0.744 0.735 0.734 0.839
Llama2-7b 0.793 0.818 0.855 0.697 0.716 0.755 0.791 0.815 0.851

CodeLlama-7b 0.828 0.847 0.883 0.738 0.754 0.790 0.826 0.845 0.881

Table 10: Results for many-to-one matched pairs with threshold = 0.4.

Model
BERTScore

F1 P R

ChatGPT 0.921 0.912 0.930
Bard 0.925 0.922 0.930

StarCoderbase-1b 0.955 0.948 0.963
StarCoderbase-7b 0.947 0.946 0.950

Phi-2 0.947 0.943 0.952
Llama2-7b 0.946 0.943 0.951

CodeLlama-7b 0.953 0.952 0.955

Table 11: Results for many-to-one matched pairs with
threshold = 0.4.

11
3987

Model F#
1 P# R# F ∗

1 P∗ R∗
F+

1 P+

ChatGPT 0.398 0.290 0.783 0.392 0.280 0.806 0.380 0.269
Bard 0.553 0.520 0.672 0.562 0.514 0.702 0.547 0.492

StarCoderbase-1b 0.710 0.747 0.724 0.730 0.743 0.763 0.711 0.712
StarCoderbase-7b 0.682 0.731 0.689 0.702 0.726 0.724 0.685 0.697

Phi- 2 0.198 0.148 0.558 0.199 0.145 0.593 0.192 0.139
Llama2-7b 0.611 0.647 0.624 0.621 0.634 0.656 0.602 0.608

CodeLlama-7b 0.726 0.756 0.735 0.742 0.7506 0.769 0.726 0.723

Table 12: Result comparison for various fine-tuned models against out-of-the box large models for threshold = 0.5.
represents one-to-one bipartite matching, * represents many-to-one bipartite matching, + represents weighted
many-to-one bipartite matching.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.632 0.617 0.752 0.499 0.488 0.611 0.617 0.602 0.736
Bard 0.796 0.822 0.843 0.696 0.721 0.739 0.788 0.812 0.835

StarCoderbase-1b 0.866 0.858 0.943 0.796 0.790 0.876 0.864 0.855 0.941
StarCoderbase-7b 0.850 0.875 0.896 0.743 0.759 0.795 0.849 0.872 0.895

Phi-2 0.800 0.806 0.882 0.718 0.725 0.797 0.799 0.805 0.878
Llama2-7b 0.858 0.889 0.905 0.784 0.813 0.834 0.855 0.886 0.902

CodeLlama-7b 0.881 0.901 0.920 0.791 0.813 0.834 0.880 0.899 0.919

Table 13: Results for one-to-one matched pairs with threshold = 0.5.

Model
BERTScore

F1 P R

ChatGPT 0.920 0.914 0.928
Bard 0.937 0.934 0.941

StarCoderbase-1b 0.962 0.956 0.969
StarCoderbase-7b 0.954 0.953 0.956

Phi-2 0.956 0.953 0.959
Llama2-7b 0.954 0.953 0.956

CodeLlama-7b 0.959 0.959 0.961

Table 14: Results for one-to-one matched pairs with
threshold = 0.5.

12
3988

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.676 0.653 0.811 0.545 0.527 0.671 0.662 0.638 0.794
Bard 0.809 0.827 0.869 0.718 0.736 0.777 0.804 0.820 0.863

StarCoderbase-1b 0.841 0.829 0.929 0.770 0.758 0.859 0.840 0.826 0.925
StarCoderbase-7b 0.837 0.855 0.895 0.731 0.742 0.793 0.835 0.852 0.892

Phi-2 0.791 0.792 0.882 0.709 0.710 0.801 0.787 0.788 0.877
Llama2-7b 0.831 0.857 0.887 0.754 0.778 0.811 0.828 0.854 0.883

CodeLlama-7b 0.870 0.886 0.917 0.781 0.800 0.833 0.868 0.885 0.915

Table 15: Results for many-to-one matched pairs with threshold = 0.5.

Model
BERTScore

F1 P R

ChatGPT 0.928 0.919 0.937
Bard 0.938 0.936 0.942

StarCoderbase-1b 0.962 0.956 0.969
StarCoderbase-7b 0.954 0.953 0.955

Phi-2 0.958 0.956 0.962
Llama2-7b 0.953 0.951 0.956

CodeLlama-7b 0.953 0.951 0.956

Table 16: Results for many-to-one matched pairs with
threshold = 0.5.

13
3989

Model Learning Rate Learning Rate Scheduler Batch Size Step Size Epochs

StarCoderbase-1b 5e-7 cosine 2 100 10
StarCoderbase-7b 5e-6 cosine 1 100 5

Phi-2 5e-7 cosine 1 100 10
Llama2-7b 5e-6 cosine 1 100 5

CodeLlama-7b 5e-5 cosine 1 100 5

Table 17: Hyperparamaters for the different fine-tuned models

14
3990

