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Abstract

Scientific texts are distinctive from ordinary
texts in quite a few aspects like their vocab-
ulary and discourse structure. Consequently,
Information Extraction (IE) tasks for scien-
tific texts come with their own set of chal-
lenges. The classical definition of Named En-
tities restricts the inclusion of all scientific
terms under its hood, which is why previ-
ous works have used the terms Named En-
tities and Keyphrases interchangeably. We
suggest the rechristening of Named Entities
for the scientific domain as Typed Keyphrases
(TK), broadening their scope. We advocate
for exploring this task in the few-shot do-
main due to the scarcity of labeled scientific
IE data. Currently, no dataset exists for few-
shot scientific Typed Keyphrase Recognition.
To address this gap, we develop an annota-
tion schema and present FEW-TK, a dataset in
the AI/ML field that includes scientific Typed
Keyphrase annotations on abstracts of 500
research papers. To the best of our knowl-
edge, this is the introductory few-shot Typed
Keyphrase recognition dataset and only the sec-
ond dataset structured specifically for few-shot
NER, after FEW-NERD. We report the results
of several few-shot sequence-labelling mod-
els applied to our dataset. The data and code
are available at https://github.com/
AvishekLahiri/Few_TK.git

1 Introduction

The recent past has witnessed an explosion in the
amount of scientific literature available to us, es-
pecially with the advent of the Web and scholarly
search engines. The expansiveness and variations
in even a single scientific domain today requires a
wide-ranging set of Information Extraction tools
and datasets.

Named Entity Recognition (NER) is the Infor-
mation Extraction task of identifying references
to rigid designators (Nadeau and Sekine, 2007)
and is the basic building block for a great number

Retrieval Augment Generation (RAG) is a
recent advancement in Open-Domain Question

Answering (ODQA). RAG has only been
trained and explored with a Wikipedia-based
external knowledge base and is not optimized
for use in other specialized domains such as

healthcare and news. In this paper, we evaluate
the impact of joint training of the retriever

and generator components of RAG for the task
of domain adaptation in ODQA. We propose

RAG-end2end, an extension to RAG...

Table 1: Example of an annotated TACL abstract
with scientific keyphrase mentions Algorithm/Tool-
NLP, Focus-NLP, Allied Term-Misc., Allied Term-NLP,
Study Domain-Application, Allied Term-AI/ML/DL,
Focus-AI/ML/DL, Proposed Technique-NLP.

of Natural Language Processing and Information
Retrieval tasks like relation extraction, question
answering, knowledge graphs, and text summariza-
tion (Li et al., 2022; Yadav and Bethard, 2018).

There is a dearth of labeled scientific text data
that may be used for Information Extraction tasks
and also a shortage of annotation schema that is
able to provide a satisfactory coverage of the entire
scientific information present in the text. Moreover,
prior annotation schemata often lack portability for
transfer to other scientific domains; for example,
the “language resource” entity type in computa-
tional linguistics papers (QasemiZadeh and Schu-
mann, 2016) is not relevant for the biology domain.

NER in scientific domain is frequently referred
to as keyphrase extraction, which is due to the con-
strictive nature of the classical definition of Named
Entities, which states that proper nouns are the
only words that can be allowed as Named Entities
(Petasis et al., 2000). Keyphrase extraction often
singularly refers to the span detection of scientific
terms, and not assigning types to them. There-
fore, we term the scientific NER task as the Typed
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Keyphrase Recognition task. We present the rea-
sons in detail in Section 2.

We aim to study Typed Keyphrase Recognition
for the scientific domain in a more challenging low-
resource context, specifically the few-shot setting,
alongside the standard supervised setting. There is
a substantial amount of research available on deep
learning-based approaches to classify Named Enti-
ties (Li et al., 2022; Yadav and Bethard, 2018).
But the difficulty with these approaches is that
they are data-intensive approaches. The stumbling
block is the collection of such an inordinately large
amount of labeled data. This is where few-shot
learning comes into the picture. Few-shot learning
enables the generalization of the model to new un-
seen classes based on only a few labeled samples.

Therefore, we introduce the task of few-shot
scientific Typed Keyphrase Recognition and design
a novel annotation schema for the same. We use
this schema to annotate scientific paper abstracts.
Both coarse-grained and fine-grained keyphrase
types have been included in the annotation schema
to get an extended keyphrase type set. This helps us
in the few-shot scenario because the latter requires
testing and validation on unseen class types that we
can easily get from the large number of keyphrase
types. A sample annotation is shown in Table 1.
Fine-graining of the keyphrase types has not been
attempted in a similar scientific setting before. Our
schema consists of 9 coarse-grained and 38 fine-
grained keyphrase types as opposed to previous
scientific NER research works which use only 1 to
7 coarse-grained types. We design the schema in
such a way that our coarse-grained keyphrase types
are portable to other scientific domains.

In summary, we make the following contribu-
tions: (a) We present the first human-annotated
dataset, called FEW-TK, for few-shot Typed
Keyphrase Recognition in scientific domain that
is focused on the AI/ML literature. This dataset
serves to mitigate the scarcity of labeled scientific
IE data to some extent. To the best of our knowl-
edge, ours is only the second few-shot dataset for
NER, following FEW-NERD (Ding et al., 2021).
We present this as a challenge dataset to the commu-
nity because detecting scientific typed keyphrases
from such an expanded label set is notably more
challenging than in typical scenarios. (b) We in-
troduce a new annotation schema for the scholarly
domain that is portable to other scientific domains.
This schema differs significantly from previous su-

pervised NER schemata in terms of entity types and
facilitates a broader coverage of entities. (c) We
demonstrate the challenging nature of our dataset
using several state-of-the-art deep neural models
that have been developed, both for the standard
supervised setting and the few-shot setting.

2 Scientific Typed Keyphrases

The term “Named Entity” was first coined at MUC-
6 (Grishman and Sundheim, 1996), with its scope
primarily limited to proper nouns (Petasis et al.,
2000). In standard texts, Named Entity types such
as Person, Organization, and Location exclusively
pertain to proper names. However, there has been
an unwritten agreement among researchers regard-
ing the inclusion of temporal and numerical expres-
sions as Named Entities (Nadeau and Sekine, 2007).
Previous studies in the scientific domain have at-
tempted to address this by framing the task simply
as scientific NER (Luan et al., 2018; Hou et al.,
2019; D’Souza et al., 2020; Kabongo et al., 2021;
Jain et al., 2020). Yet, this definition of Named
Entities limits the coverage of scientific terminol-
ogy because scientific literature often uses many
terms that are indispensable in terms of the seman-
tic meaning they provide but that do not qualify as
proper names. For example, in Table 1, the term
“external knowledge base” may be quite useful for
tasks like question answering, yet it does not fit
into the standard definition of Named Entities.

In this paper, we investigate the task of extrac-
tion of keyphrases and their classification, which is
similar to NER, but use the term “keyphrases” in-
stead of Named Entities, to give the task a broader
scope. Previous works using the “keyphrase” term
(Hulth, 2003; Kim et al., 2010; Meng et al., 2017;
Santosh et al., 2020; Tokala et al., 2020; Santosh
et al., 2021) have predominantly focused on the
Keyphrase Extraction task alone. In contrast, we
amalgamate the classification and extraction tasks
into a single task – Typed Keyphrase Recognition.

We have used the term “keyphrase” in a man-
ner that is more consistent with its usage in (Au-
genstein et al., 2017). The authors categorized
keyphrases into three types, namely, Process (in-
cluding methods, equipment), Task, and Material
(including corpora, physical materials); this is sim-
ilar to our attributing types to keyphrases.

Thus, we introduce the terminology “Typed
Keyphrases”, which denotes words or phrases that
have significance in the given scholarly text. They
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have a wider scope in the scientific domain as com-
pared to Named Entities. This gives rise to the task
of scientific Typed Keyphrase Recognition.

3 Problem Definition

In this section, we first offer a brief overview of
few-shot learning, followed by a definition of Few-
shot Typed Keyphrase Recognition.

3.1 Few-shot Learning

Few-Shot Learning (FSL) has been defined by
(Wang et al., 2020; Song et al., 2023) as a type of
machine learning problem (specified by experience
E, task T and performance P), where E contains
only a limited number of examples with supervised
information for the target T.

3.2 Few-shot Typed Keyphrase Recognition

Few-shot Typed Keyphrase Recognition is symmet-
rical to Few-shot Named Entity Recognition when
we formally define it in terms of tokens and labels.
The main difference between the two tasks is in
their semantic interpretation.

Given a sequence of tokens X = x1, x2, ..., xt,
we need the keyphrase recognition model to output
a label yi ∈ Y for each token, where Y is the
keyphrase type set.

In N -way, K-shot scientific Typed Keyphrase
Recognition, it essentially means that there are
N new categories during one test process, while
there are K support samples for each category.
Episodes in few-shot learning are defined as one
sample of data that is composed of N ×K support
data and N ×K ′ query data. For each episode in
training, N classes (N -way) and K examples (K-
shot) for each class are sampled to build a support
set Strain = {x(i), y(i)}N∗K

i=1 , while K ′ examples
for each of N classes are sampled to construct
a query set Qtrain = {x(j), y(j)}N∗K′

j=1 , such that
Strain ∩Qtrain = ϕ (Ding et al., 2021).

4 Dataset Creation

We annotate scientific keyphrases on 500 ab-
stracts from four sub-domains of Artificial Intel-
ligence/Machine Learning in the broad spectrum
of Computer Science. Namely, these sub-domains
are Natural Language Processing (NLP), classical
Artificial Intelligence (AI) together with Machine
Learning (ML), Data Mining together with Infor-
mation Retrieval and Computer Vision (CV). The
reason behind annotating at the abstract-level is

that by taking abstracts instead of either only titles
(D’Souza and Auer, 2021) or full texts (Augenstein
et al., 2017; Hou et al., 2019), we get a distilled
representation of the entire paper. Besides, the
sentence length in abstracts is found to be substan-
tially longer, yet not too long to resist processing
by typical deep neural models used in NLP.

4.1 Abstract Selection

We hand-pick one highly reputed journal for each
sub-domain, the details of which are shown in Ta-
ble 2. The motivation for choosing journal abstracts
over abstracts of conference-length papers is be-
cause of the considerably expanded length of ab-
stracts in journals. We start selecting the abstracts
from the latest issue available of the respective jour-
nal at the start of the year 2023.

Venue Domain No. of papers
TACL NLP 240
JMLR AI/ML 100
TPAMI CV 80
TKDD Data Mining 80

Table 2: Statistics of paper abstracts in FEW-TK. TACL:
Transactions of the Association for Computational Lin-
guistics, JMLR: Journal of Machine Learning Research,
TPAMI: IEEE Transactions on Pattern Analysis and
Machine Intelligence, TKDD: ACM Transactions on
Knowledge Discovery from Data.

4.2 Annotation Schema

Annotating scientific datasets for named entities is
an inherently challenging task due to the inability
of categorizing all words/phrases within a specific
set of entities, while at the same time ensuring
that all the necessary scientific information in a
given text is captured. A particular challenge in
classifying scientific keyphrases is that the number
of classes easily explodes to a large number if we
want to ensure a large coverage of the text.

To alleviate this problem, we propose the expan-
sion of a core set of Typed Keyphrases (TK) so that
there is a set of fine-grained Typed Keyphrases for
each coarse-grained type. Such a schema not only
divides the keyphrases on a conceptual level, but
also provides a greater coverage of the scientific
text than formerly explored entity schemata. The
novel keyphrase schema that we develop takes the
best out of the previous entity schemata that were
developed in the scientific domain. Additionally,
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Figure 1: Keyphrase Set in FEW-TK.

we bring new keyphrase types into the fold and also
refine these types into finer-grained categories.

In all, we present 9 coarse-grained and 38 fine-
grained Typed Keyphrases. This type of a schema
gives us the freedom of using either the coarse or
the fine-grained types.

Although we have designed the entity schema
exclusively for use in the context of Artificial Intel-
ligence/Machine Learning literature, we argue that
this schema can be exported to any other scientific
domain literature if we take only the coarse-grained
categories and align the fine-grained ones to the re-
spective scientific domain. We use the Brat rapid
annotation tool1 for annotating the abstracts. An
example annotation with Brat is presented in Ap-
pendix A.

5 Keyphrase Types

There are 9 coarse-grained keyphrase types in
our dataset FEW-TK. The Focus keyphrase type
mainly refers to the area of interest or problem
that is being tackled in the article, i.e., the center
of attention of the article. The Proposed Tech-
nique keyphrase type alludes specifically to the
name of the modus operandi put forward in the
paper. The Algorithm/Tool keyphrase type chiefly
refers to any pre-existing concept that has been
used in the paper. The Allied Terms keyphrase
type primarily refers to all those phrases which do
not fall in the above coarse-grained categories. The
Study Domain keyphrase type calls attention to
those phrases that refer to a particular discipline

1http://brat.nlplab.org/

or subject area. The Supplementary Material
(Code/Library) keyphrase type principally refers
to any auxiliary resource that has been provided
along with the paper. The Dataset keyphrase type
refers to any dataset that has been used in the re-
search article. The Metric keyphrase type essen-
tially contains all those measures that are used in
the AI/ML domain for evaluating various types of
learning approaches. The Performance keyphrase
type accommodates the results reported in the sci-
entific text. The full set of Typed Keyphrases
(coarse-grained and fine-grained) are described in
Appendix B and presented in tabular format in Ap-
pendix C.

The Allied Terms category is very significant be-
cause it includes those entities that would have been
easily overlooked in any other scientific schema;
these entities often have considerable importance
attached to their occurrence in the scientific text.
For example, in Artificial Intelligence/ Machine
learning literature, we encounter the word "train-
ing" several times, and it is quite an important term
in this literature. However, existing entity schemata
often overlook it or categorize it as a generic en-
tity. Through our schema, such terms are afforded
greater refinement with fine-grained types that bet-
ter capture their nuanced meanings.

If we closely examine the pattern of our fine-
grained keyphrase types, we observe that for most
of the coarse-grained types, the fine-grained cate-
gories are predominantly theoretical AI/ML, NLP,
Computer Vision, and Data Mining/Information
Retrieval, because these are the leading areas of
study within Artificial Intelligence. We argue that

4014

http://brat.nlplab.org/


Corpora Domain Classes Papers Tokens Entities
FTD (Gupta and Manning, 2011) CL 3 426 57,182 5,382
ACL RD-TEC (QasemiZadeh and Schumann, 2016) CL 7 300 32,758 4,391
SCIERC (Luan et al., 2018) AI 5 500 60,749 8,089
NLP-TDMS (Hou et al., 2019) CL 4 332 1,115,987 1,384
SciREX (Jain et al., 2020) ML 4 438 2,487,091 156,931
NCG (D’Souza et al., 2021) CL, CV 1 405 47,127 908
ORKG-TDM (Kabongo et al., 2021) AI 3 5,361 - 18,219
CL-Titles (D’Souza and Auer, 2021) CL 6 50,237 284,672 87,567
PwC (D’Souza and Auer, 2022) AI 2 12,271 1,317,256 29,273
ACL (D’Souza and Auer, 2022) CL 7 31,044 263,143 67,270

FEW-NERD (Ding et al., 2021) General
(Few-shot) 66 188.2k

sents 4601.2k 491.7k

FEW-TK AI 38 500 115,745 20064

Table 3: Comparison of FEW-TK with other scientific-domain NER datasets and FEW-NERD.

the coarse-grained keyphrase types can be used in
other scientific domains like Physics and Chemistry.
Similar to our fine-grained categories, the Physics
domain can be divided into Astrophysics, Nuclear
Physics, Thermodynamics, Biophysics, etc; the
Chemical domain may be divided into Physical
Chemistry, Organic Chemistry, Inorganic Chem-
istry, Analytical Chemistry, and Biochemistry. By
incorporating keyphrase types relevant to these spe-
cialized fields, we can greatly assist downstream
tasks such as question answering and knowledge
graph construction.

5.1 Comparison with Other Datasets

We have proposed a schema that is significantly
different from previous works in the scientific NER
area. Details of previous scientific NER research
can be found in Table 3. Our proposed dataset
is more beneficial because it is portable to other
domains, it incorporates fine-grained types, and is
able to capture more nuanced scientific information.
We are the first to come up with the few-shot setting
in the scientific domain.

SCIERC (Luan et al., 2018), which is one of
the most popular datasets not only for the pur-
pose of scientific NER, uses the following entity
types: Task, Method, Dataset, Evaluation Metric,
Material, Other Scientific Term, and Generic. At
least four other entity schemata (Hou et al., 2019;
D’Souza et al., 2020; Kabongo et al., 2021; Jain
et al., 2020) either also use a subset of these en-
tity types or have entity types bearing close resem-
blance to these entity types. However, none of them
adequately captures the domain or sub-domain of
the keyphrase.

5.2 Human Annotation

The authors of the present paper collectively de-
cided the set of coarse-grained and fine-grained
keyphrase types based on a sample annotation of
5 abstracts from each domain. The main first-draft
annotation is then done by a domain expert in this
field. Subsequently, two students who are very fa-
miliar in Machine Learning and Deep Learning con-
cepts and terminology were each assigned to anno-
tate 15% of the abstracts. This serves as the second
annotation of (part of) our dataset. Each assigned
subset contained 15% of the abstracts from each
of the four domains in the dataset, with no overlap
between the two subsets. Agreement between anno-
tators was measured using Cohen’s Kappa score to
assess annotation quality. We instructed the annota-
tors to closely follow the description provided for
various keyphrase types and annotation guidelines
that we had prepared. The annotation guidelines
are present in detail in Appendix B. In cases of
ambiguity regarding the span length, we have tried
to resolve it by deciding it on the basis of its im-
mediate context on a case-to-case basis. Conflicts
between the annotations were resolved as much as
possible through discussion between the annotators.
The Cohen’s Kappa scores between each student’s
annotation and the original annotation are 79.50%
and 81.38% respectively.

6 Experiments

We demonstrate the challenging nature of our
dataset by evaluating it on SOTA NER models that
have been developed previously both for the fully-
supervised settings and the few-shot settings. We
now briefly describe these models.
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6.1 BERT-tagger (Fully Supervised)

The output of a BERT-type model is fed into a
linear classifier and trained using the cross-entropy
training loss for the standard supervised setting.

6.2 Few-shot Models

We show the performance of the following models
on our dataset, FEW-TK:

ProtoBERT: It is based on prototypical net-
works developed by Snell et al. (2017) and it prin-
cipally computes the embeddings of the tokens that
share the same label through an embedding func-
tion. The average of these embeddings gives an
embedding representation known as the prototype.
For each token in the query set, we calculate the
prediction probability of that token with all the
prototypes using the L2 distance.

NNShot: Developed by Yang and Katiyar
(2020), each token here is represented by its contex-
tual representation in the sentence, and the query
tag is decided by calculating the token-level Eu-
clidean distance. Here, the similarity score is de-
termined between a token in the query set and all
tokens in the support set.

StructShot: This model is also developed by
Yang and Katiyar (2020) and utilizes an additional
Viterbi decoder (Forney, 1973) using an abstract
tag transition distribution and an emission distribu-
tion over the basic architecture of NNShot (Hou
et al., 2020). This method dispenses with the CRF
training phase.

CONTAINER: Introduced by Das et al. (2022),
this model employs contrastive learning to refine
the distributional divergence between similar and
dissimilar classes. For this purpose, they use Gaus-
sian embeddings instead of traditional token em-
beddings. In the calculation of the contrastive loss,
positive samples consist of tokens with the same
tag. The loss is measured by computing the KL-
divergence between the respective token Gaussian
embeddings. An instance level nearest neighbor
classifier is used for the inferencing part.

MAML-ProtoNet: Ma et al. (2022) establish a
decomposed meta-learning approach and address
the problem in two steps: entity span detection and
entity typing, the first of which is modelled as a
sequence labelling problem, while for the second
standard prototypical networks (Snell et al., 2017)
are used. Model-agnostic meta-learning (MAML)
(Finn et al., 2017) is used upon both the steps for
better representative learning.

6.3 Benchmark Settings

We test the difficulty of our dataset for the fully
supervised setting as well as for the few-shot setting
using state-of-the-art models. In this section, we
specify the details of modifying the dataset based
on the respective setting.

6.3.1 Fully Supervised Setting
For the fully supervised setting, the whole dataset
is simply split into train, validation and test, where
we use the same ratio as Ding et al. (2021) i.e. the
train:validation:test split is 70 : 10 : 20, for the
BERT-Tagger model.

6.3.2 Few-shot Setting
In few-shot NER, the overall entity set (ε)
is split into three mutually disjoint subsets,
εtrain, εdev, εtest such that εtrain∪εdev∪εtest = ε
and εtrain ∩ εdev ∩ εtest = ϕ. This is done so that
the few-shot setting of learning new classes from a
limited number of examples may be preserved.

Ding et al. (2021) propose two settings for test-
ing few-shot NER datasets, namely, the FEW-
NERD (INTRA) and FEW-NERD (INTER) set-
tings. For FEW-NERD (INTRA), εtrain, εdev, εtest
are constructed by dividing the coarse-grained en-
tity types among the three subsets ensuring that
these subsets do not have any common entity type.
In the case of FEW-NERD (INTER), the fine-
grained categories are shared in a 60 : 20 : 20
ratio among εtrain, εdev, εtest, respectively.

We also replicate similar settings for FEW-TK,
wherein FEW-TK (INTRA) is constructed such that
the validation set holds the coarse-grained types
Technique and Result, the test set contains the types
Focus and Metric, while the train set contains the re-
maining coarse-grained keyphrase types. For FEW-
TK (INTER), we randomly assign the fine-grained
types based on the given ratio.

6.3.3 Experimental Setup
For the fully supervised scenario, the maximum
sequence length is taken as 128 and batch size is
16. We test the BERT-Tagger model with both the
uncased version of BERT (Devlin et al., 2019) and
the uncased version of SciBERT (Beltagy et al.,
2019).

We take a batch size of 8 for the Proto, NNShot
and StructShot models and use 10, 000 steps to
train the model while using a learning rate of 1e−4.
The batch size used for the CONTAINER model
is also 8, but the learning rate for finetuning is 5e−
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Figure 2: F1 score for every fine-grained keyphrase type in FEW-TK in the supervised setting when using SciBERT.

5. We have reported the results for each few-shot
model by averaging the results from three separate
runs of the model, each for a different random seed
value. Here also, we use both the uncased version
of BERT (Devlin et al., 2019) and the uncased
version of SciBERT (Beltagy et al., 2019).

We measure the precision, recall and the micro-
F1 score for each few-shot model to evaluate the
complexity of our dataset. We train the models
using an A100 GPU.

7 Results

The results for both the fully-supervised and few-
shot frameworks are detailed out below.

7.1 Fully Supervised Setting

Dataset Model F1
SCIERC BERT-Tagger 64.89
FEW-TK BERT-Tagger 46.48 ↓
SCIERC SciBERT-Tagger 65.81
FEW-TK SciBERT-Tagger 48.91 ↓

Table 4: Performance of state-of-the-art fully supervised
models on FEW-TK

Table 4 shows the results of the tagging model
using two BERT-type models. We see that SciB-
ERT (Beltagy et al., 2019) gives better results than
BERT (Devlin et al., 2019) when used in the tag-
ging model. However, the results on our dataset are
significantly worse than that achieved on SCIERC
(Luan et al., 2018), underscoring the challenging
nature of our dataset even in the fully-supervised
setting. This difficulty may primarily stem from
the expanded keyphrase set present in our dataset.

Figure 2 shows the category-wise F1 scores for
each fine-grained type. There are some classes
which have very low or zero F1 score. This may be
attributed both to the nature of the phrases in those
classes and the low count of samples available for
those classes as seen in Figure 1.

7.2 Few-shot Setting

Tables 5 and 6 show the results of the top five few-
shot NER models on our typed keyphrase dataset.
We see that all state-of-the-art few-shot sequence la-
belling models have produced low performance on
our dataset, FEW-TK. There have also been some
unexpected findings. Since FEW-TK is a dataset in
the scientific domain, we conducted experiments
with SciBERT and BERT as the backbone language
models for the few-shot settings. Surprisingly, we
observed that in most cases, using BERT produced
better results than using SciBERT. Another notice-
able factor is the very low performance achieved by
the MAML-ProtoNet (Ma et al., 2022) in almost
all cases. Our analysis revealed that the span de-
tection part of the model was giving extremely low
results, which was reflected in the final results of
the model. But the type detection mechanism per-
formed relatively well, achieving F1 scores in the
range of 60-80%. CONTAINER (Das et al., 2022)
works best for the INTRA case while StructShot
(Yang and Katiyar, 2020) works best for the INTER

scenario in terms of F1 score. Figure 3 shows the
deviation of the F1 scores for different seed values
for the CONTAINER model through a box plot.
The above findings comprehensively show that a
lot of work needs to be done in the area of few-shot
Typed Keyphrase Recognition.
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Model Backbone
Model

Intra
5-way 1-shot 3-way 1-shot

Precision Recall F1 Precision Recall F1
Proto (Snell et al., 2017) BERT 36.85 17.58 23.44 34.73 17.45 23.16

NNShot (Yang and Katiyar, 2020) BERT 26.93 32.67 29.38 25.42 34.22 29.07
StructShot (Yang and Katiyar, 2020) BERT 27.88 36.65 31.66 37.00 29.09 30.46

CONTAINER (Das et al., 2022) BERT 35.79 32.73 34.19 36.61 34.32 35.39
MAML-ProtoNet (Ma et al., 2022) BERT 3.55 3.15 3.26 3.95 5.23 4.38

Proto (Snell et al., 2017) SCIBERT 24.06 27.03 25.11 13.44 07.30 09.40
NNShot (Yang and Katiyar, 2020) SCIBERT 27.05 26.04 26.53 25.91 26.82 26.35

StructShot (Yang and Katiyar, 2020) SCIBERT 24.06 27.03 25.11 26.71 26.72 26.71
CONTAINER (Das et al., 2022) SCIBERT 39.23 33.18 35.95 43.22 35.74 39.11

MAML-ProtoNet (Ma et al., 2022) SCIBERT 6.23 3.65 4.69 4.62 3.16 3.71

Table 5: Performance of state-of-the-art models on FEW-TK (INTRA).

Model Backbone
Model

Inter
5-way 1-shot 3-way 1-shot

Precision Recall F1 Precision Recall F1
Proto (Snell et al., 2017) BERT 25.35 34.43 29.18 25.18 38.17 30.26

NNShot (Yang and Katiyar, 2020) BERT 43.65 48.32 45.86 47.27 53.45 50.17
StructShot (Yang and Katiyar, 2020) BERT 44.76 49.42 46.95 48.97 53.32 51.05

CONTAINER (Das et al., 2022) BERT 47.55 42.57 44.91 47.03 43.76 45.32
MAML-ProtoNet (Ma et al., 2022) BERT 5.82 4.91 5.12 6.96 9.41 7.65

Proto (Snell et al., 2017) SCIBERT 12.96 15.44 14.08 16.41 17.99 17.09
NNShot (Yang and Katiyar, 2020) SCIBERT 38.45 43.13 40.65 38.45 43.13 40.65

StructShot (Yang and Katiyar, 2020) SCIBERT 39.53 42.06 40.75 38.99 43.07 40.92
CONTAINER (Das et al., 2022) SCIBERT 49.51 42.91 45.95 52.00 48.82 50.35

MAML-ProtoNet (Ma et al., 2022) SCIBERT 8.18 3.29 4.69 7.67 5.35 6.29

Table 6: Performance of state-of-the-art few-shot models on FEW-TK (INTER).

Figure 3: Box Plot for the CONTAINER model in the
FEW-TK (INTRA) scenario for the 3-way 1-shot setting
and the 5-way 1-shot settings respectively. The X-axis
shows the F1 scores achieved by the model.

8 Error Analysis

We present our analysis for the NNShot model in
Tables 7 and 8 for the span and type errors respec-
tively. We use the 3-way 1-shot setting for our
analysis. We consider two types of errors that oc-
cur when few-shot models try to classify Typed
Keyphrases. If a model fails to detect the span of
a Typed Keyphrase correctly, it is considered as
a Span Error. If a token that must be included in

a Typed Keyphrase is not done so by the model,
it is called a False Negative (FN) case, while if
a token is incorrectly included as part of a Typed
Keyphrase, it is called a False Positive (FP) case.

When the span of a keyphrase has been correctly
identified, if the model makes a misclassification
while predicting the type of the keyphrase, it is
termed a Type Error. If the model correctly pre-
dicts the coarse-grained type but fails to predict the
fine-grained type accurately, it is termed a Within
Error. On the other hand, if the model inaccurately
predicts the coarse-grained type, it is referred to as
an Outer Error.

Backbone
Model

Intra Inter
FP FN FP FN

BERT-Base 4.50% 5.38% 2.72% 4.20%
SciBERT 3.20% 6.58% 2.74% 5.23%

Table 7: Span Error analysis of 3-way 1-shot setting
using the NNShot model (Yang and Katiyar, 2020).

Backbone Model Type Error
Within Outer

BERT-Base 0.47% 0.95%
SciBERT 0.58% 1.72%

Table 8: Type Error analysis of 3-way 1-shot setting
using the NNShot model (Yang and Katiyar, 2020).
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9 Related Work

Automated IE from scientific literature has gar-
nered significant interest from the NLP research
community in recent years. (Gupta and Manning,
2011) introduce a method of extracting the Focus,
Domain, and Techniques used in a scientific article.
NLP-TDMS by (Hou et al., 2019) is a dataset con-
taining the Task, Dataset, Metric and Score used
in NLP papers, facilitating automated leaderboard
construction. The ACL RD-TEC (QasemiZadeh
and Schumann, 2016) dataset contains entities that
are classified into 9 types. SCIERC by Luan et al.
(2018) contains entities of types Task, Method,
Evaluation metric, Other-scientific-term, Material,
and Generic. SCIREX (Jain et al., 2020) uses both
automatic and manual annotations to annotate enti-
ties including Method, Task, Metric, and Dataset as
well as N -ary relations and co-references. NCG by
(D’Souza et al., 2021) is the dataset used in a shared
task to track scholarly contributions. ORKG-TDM
(Kabongo et al., 2021) is a dataset to facilitate
an approach for automated leaderboard extraction,
encompassing Task, Method, and Metric entities.
CL-Titles (D’Souza and Auer, 2021) is a dataset
that was created based on lexico-syntactic patterns
from titles in Computational Linguistics (CL) arti-
cles and contains entities identifying the Research
problem, Resource, Tool, Language, Solution, and
Method. ACL (D’Souza and Auer, 2022) is a
part of the CS-NER dataset and contains 7 enti-
ties, namely, Language, Method, Research prob-
lem, Resource, Dataset, Solution, and Tool. PwC
(D’Souza and Auer, 2022) was also introduced in
the same work contains the research problem and
method entities on PapersWithCode2 data. In
the context of few-shot learning, the work most
closely related to ours is the FEW-NERD dataset
that was proposed by Ding et al. (2021), but it is
for the general domain.

10 Discussion

The following points have come to our notice while
creating the dataset. Generally, when considering
both pure AI/ML literature and its sub-areas, we ob-
serve that abstracts from journals in allied AI fields,
such as NLP or CV, often contain a considerable
number of entities originating from the context of
pure Artificial Intelligence, Machine Learning, or
Deep Learning. However, in the reverse scenario,

2https://paperswithcode.com/

where abstracts from pure AI journals are exam-
ined, the presence of entities from allied AI areas
is significantly less common. The TKDD journal
was found to contain representations from all four
domains, with the pure AI domain being the least
dominant among them.

An inherent challenge we discovered with the an-
notation of scientific documents is that quite often
a term is presented in a descriptive manner, which
makes specifically demarcating the keyphrases
quite a challenging task.

Dataset Model F1
SCIERC (Span) SpanBERT-Tagger 78.77
FEW-TK (Span) SpanBERT-Tagger 67.35 ↓
SCIERC (Span) SciBERT-Tagger 78.44
FEW-TK (Span) SciBERT-Tagger 69.15 ↓

Table 9: Performance of SciBERT and SpanBERT
on SCIERC and FEW-TK datasets for detection of
keyphrase spans.

In the fully supervised setting, we have addition-
ally evaluated the ability of supervised models to
detect span-level mentions by tasking the model
with predicting only the keyphrase spans. We ob-
serve in Table 9 that both SpanBERT and SciBERT
taggers perform similarly on each of the datasets,
based on the span-level F1 scores. The perfor-
mance of the FEW-TK dataset is significantly lower
than that of SCIERC (Luan et al., 2018). Therefore,
we infer that the detection of scientific spans in our
dataset is more challenging and warrants greater at-
tention from the community to enhance algorithms
tailored for such scientific data.

11 Conclusion

We have developed a unique dataset tailored for the
task of few-shot scientific keyphrase recognition
within the scientific domain. We have also evalu-
ated various models on it to assess its credibility as
a challenging dataset. We hope that this dataset will
be used as a cornerstone in research on scientific
Typed Keyphrase recognition.

Acknowledgments

This work is partially supported by the SERB-DST
Project CRG/2021/000803 sponsored by the De-
partment of Science and Technology, Government
of India at the Indian Association for the Cultiva-
tion of Science, Kolkata.

4019

https://paperswithcode.com/


Limitations

One challenge that remains is that we do not an-
notate discontinuous spans as a single keyphrase.
For example, consider the sentence “...rule-based
and neural models”. One may wish to identify
two separate keyphrases “rule-based models” and
“neural models”, but here we extract “rule-based"
and “neural models" as the two keyphrases because
including “models" in the first keyphrase makes
the annotation process cumbersome and also intro-
duces additional challenges for the learning algo-
rithms. However, we aim to address this issue in a
future work.
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Figure 4: Example of annotation of an abstract from FEW-TK in BRAT. This the same abstract as shown in Table 1.

A BRAT-based Annotation for FEW-TK

Figure 4 illustrates an annotated abstract (from our
proposed dataset) in BRAT, a web-based tool de-
signed for text annotation.

B Annotation Guidelines

The annotators were told to follow the
keyphrase boundaries or spans following
the annotation guidelines in ACL RD-
TEC Annotation Guideline-ver 2 (https:
//github.com/languagerecipes/
acl-rd-tec-2.0/blob/master/
distribution/documents/
acl-rd-tec-guidelines-ver2.pdf).
We started with 45 fine-grained keyphrase types
after brainstorming and discussions and after
annotation merged the types that did not have a
significant number of keyphrases.

B.1 Keyphrase Types

The description for the keyphrase types used for
this dataset are as follows:

• Focus: This coarse-grained keyphrase type
refers to the intent of the scientific document
or article. Please note that a phrase is con-
sidered to be in this category only when it is
the main theme of the paper or is a domain-
specific task.

AI/ML/DL focus refers to the main intent

of the article that pertains to classical Artifi-
cial Intelligence or Machine Learning or Deep
Learning.

E.g.: continual learning, clustering

Computer Vision focus refers to the focus of
an article that is primarily related to Computer
Vision.

E.g.: visual identification, action recognition

NLP focus is considered the focus of a paper
that is primarily related to Natural language
Processing.

E.g.: text classification, sequence tagging

Data Mining/Information Retrieval focus
implies the main topic of the paper relates to
Data Mining or Information Retrieval.

E.g.: Graph-based Multi-View Clustering
(GMVC), contextual bandit learning

Miscellaneous focus refers to a theme or
domain-specific task in an article that does
not fit into any of the above-mentioned fine-
grained categories.

E.g.: Transportation demand forecasting, opti-
mal online transportation

• Proposed Technique: This coarse-grained
keyphrase type is used for those keyphrases
which mention a method that has been pro-
posed in the given document. This category es-
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pecially refers to the name of the new method
that is proposed, if any.

AI/ML/DL-based technique refers to a
method put forward by the article that is used
to solve a problem in classical Artificial Intelli-
gence or Machine Learning or Deep Learning.

E.g.: Dual-MGAN, CoarsenRank

NLP-based technique is a technique pre-
sented in the article that is used to solve a
Natural Language Processing task.

E.g.: Target-Guided Structured Attention Net-
work (TG-SAN), Question Decomposition
Meaning Representation (QDMR)

Computer Vision-based technique is a tech-
nique proposed in the article as a solution to a
Computer Vision problem.

E.g.: SegNet, adaptive two-stream consensus
network (A-TSCN)

Data Mining/Information Retrieval-based
technique is a technique proposed in a ar-
ticle to solve a problem in Data Mining or
Information Retrieval.

E.g.: dual subgraph-based pairwise graph
neural network (DSGNN), Spatio-Temporal
Heterogeneous graph Attention Network
(STHAN)

• Algorithm/Tool: It refers to a pre-existing
concept or algorithm that has been used in the
research article.

AI/ML/DL algorithm/tool is some algorithm
that has been well established and is being
used in almost all areas of Artificial Intelli-
gence or Machine Learning or Deep Learning.

E.g.: variational autoencoders, Bayesian PDE-
constrained framework, logistic regression

Statistical/Mathematical algorithm/tool is
any existing statistical or mathematical tool or
theorem or algorithm that has been referred to
in the article.

E.g.: Factorial hidden Markov models, sym-
bolic Bayesian model

Computer Vision algorithm/tool is any ex-
isting algorithm or tool that is solely used in
the domain of Computer Vision.

E.g.: 3D CNN model, Discriminative Correla-
tion Filters (DCFs)

NLP algorithm/tool is any existing algorithm
or tool that is solely used in the domain of
Natural Language Processing.

E.g.: neural language generation models,
Transformer language models

Data Mining/Information Retrieval algo-
rithm/tool is any existing algorithm or tool
that is solely used in the domain of Data Min-
ing/Information Retrieval.

E.g.: structural neighbor aggregation. LBSNs

• Study Domain: This category includes men-
tions of the domain on which the article is
based.

AI/ML/DL domain is used when the domain
name pertains very closely to Artificial Intelli-
gence or Machine Learning or Deep Learning.

E.g.: Geometric Deep Learning, machine
Learning

Computer Vision domain is used when do-
main name pertains to Computer Vision.

E.g.:Computer Vision, image processing

NLP domain refers specifically to the broad
domain of Natural Language Processing.

E.g.: Natural Language Understanding, NLP

Data Mining/Information Retrieval domain

E.g.: data mining, information retrieval

Application domain refers to the applied do-
main for which the tool or algorithm or tech-
nique that has been proposed in the paper is
presented.

E.g.: COVID-19 News, sports competitions
recommendations, healthcare, news

• Supplementary Material: This category con-
tains the supplementary material that has been
presented with the text.

URL specifically refers to the URL to the
code or dataset or any other material that is
present in the article.

E.g.: https://tpami.wmflabs.org,
https://github.com/WayneWong97/CSDia

Material Description is a phrase or word
that describes the supplementary material pro-
vided in the article.

E.g.: 170,000+ documents, 2–4 hop questions
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Miscellaneous material alludes to references
or any other material that has been presented
with the paper.

E.g.: CRAN, DoubleML

• Dataset: It refers to the dataset name.

AI/ML/DL dataset refers to a dataset that is
primarily of generic use in Artificial Intelli-
gence or Machine Learning or Deep Learning,
and not meant for a specific use-case.

E.g.: UniRef, BFD

Computer Vision dataset alludes to a dataset
that is used for a Computer Vision task.

E.g.: ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC), ImageNet 2012

NLP dataset alludes to a dataset that is used
for a Natural Language Processing task.

E.g.: CFQ, FeTaQA

• Metric: This label refers to the keyphrases
which represent different metrics.

Classification metrics are the metrics that
are used to measure the correctness of data
classification.

E.g.: accuracy, Macro F1

Statistical/Mathematical metrics refer to
quantitative metrics.

E.g.: mIOU, Normalized Discounted Cumula-
tive Gain (NDCG)

NLP metrics refers to the metrics that are
solely used in Natural Language Processing.

E.g.: dialog act segmentation error rates
(DSER), BLEU

Miscellaneous metrics are those metrics that
do not fall in any of the above metric cate-
gories.

E.g.: signal-to-background ratio (SBR), hu-
man aggregate agreement

• Allied Terms: These are the terms which

AI/ML/DL term refers to a term from the
classical Artificial Intelligence or Machine
Learning or Deep Learning domain. It refers
to any term that is neither a task nor a tech-
nique nor a dataset in the present context.

E.g.: model architecture, regularization pa-
rameter kernel

Statistical/Mathematical term alludes to any
technical term that belongs to Statistical or
Mathematical domain. This is useful because
AI/ML research articles generally refer to
many Statistical/Mathematical terminologies.

E.g.: probability, equivariance

Computer Vision term refers to any term that
does not belong to any of the above-mentioned
categories but is an important terminology re-
lated to Computer Vision.

E.g.: full-image convolutional features, coded
exposure image

NLP term alludes to any term that does not
belong to any of the above-mentioned cate-
gories but is an important terminology related
to Natural Language Processing.

E.g.: entities, phonological

Data Mining/Information Retrieval term
alludes to any term that does not belong to any
of the above-mentioned categories but is an
important terminology related to Data Mining
or Information Retrieval.

E.g.: temporal nonlinear sparsity weak serial
correlation, linkage quality

Miscellaneous term is any term that does not
fall under any of the above-mentioned cat-
egories but is still deemed important in the
context of the paper.

E.g.: model complexity, computational bottle-
necks

• Performance: This category captures the
performance-related information reported in
the document.

Numerical Performance alludes specifically
to the results or such data that has been pre-
sented with numerical figures. It could be the
quantitative value of any metric such as the F1
score.

E.g.: 18.01, 63.69

Performance Descriptor refers to any phrase
that describes the performance in words.

E.g.: top-1, inference time reduction

C Coarse-grained and Fine-grained
Keyphrase Types

Table 10 shows the full list of proposed coarse-
grained and fine-grained keyphrase types in FEW-
TK dataset.
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Coarse-grained
Keyphrase Type

Fine-grained
Keyphrase Type

Focus

AI/ML/DL focus
Computer Vision focus

NLP focus
Data Mining/Information Retrieval focus

Miscellaneous focus

Proposed Technique

AI/ML/DL-based technique
Computer Vision-based technique

NLP-based technique
Data Mining/Information Retrieval-based technique

Algorithm/Tool

AI/ML/DL algorithm/tool
Statistical/Mathematical algorithm/tool

Computer Vision algorithm/tool
NLP algorithm/tool

Data Mining/Information Retrieval
algorithm/tool

Miscellaneous algorithm/tool

Study Domain

AI/ML/DL domain
Computer Vision domain

NLP domain
Data Mining/Information Retrieval domain

Application domain

Supplementary Material
URL

Material Description
Miscellaneous material

Dataset
AI/ML/DL dataset

Computer Vision dataset
NLP dataset

Metric

Classification metrics
Statistical/Mathematical metrics

NLP metrics
Miscellaneous metrics

Allied Terms

AI/ML/DL term
Statistical/Mathematical term

Computer Vision term
NLP term

Data Mining/Information Retrieval term
Miscellaneous term

Performance
Numerical Performance
Performance Descriptor

Table 10: Combined list of all the coarse-grained keyphrase types and their corresponding fine-grained sub-types in
FEW-TK.
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