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Abstract

Users of natural language interfaces, frequently
powered by Large Language Models (LLMs),
must often repeat their full set of preferences
each time they make a similar request. We
describe an approach to LLM-based dialogue
modeling in which persistent user constraints
and preferences – collectively termed standing
instructions – are provided as additional con-
text for such interfaces. For example, when a
user states I’m hungry, a previously expressed
preference for Persian food can be automati-
cally added to the LLM prompt, influencing
the search for relevant restaurants. We develop
NLSI, a language-to-program dataset consist-
ing of over 2.4K English dialogues spanning
17 domains, in which each dialogue is paired
with a user profile (a set of user-specific stand-
ing instructions) and corresponding structured
representations (a sequence of API calls). A
key challenge in NLSI is to identify which
subset of the standing instructions is applica-
ble to a given dialogue. NLSI contains diverse
phenomena, from simple preferences to interde-
pendent instructions such as triggering a hotel
search whenever the user is booking tickets to
an event. We conduct experiments on NLSI
using prompting with large language models
and various retrieval approaches, achieving a
maximum of 46% exact match on API predic-
tion. Our results demonstrate the challenges
in identifying the relevant standing instructions
and their interpretation into API calls1.

1 Introduction

Large language models (LLMs) such as GPT-3
(Brown et al., 2020), GPT-4 (OpenAI, 2023), and
LLaMa 2 (Touvron et al., 2023) are increasingly
being used with tools and APIs (Schick et al., 2023;
Qin et al., 2023) to provide additional functionality

∗Work done while interning at Microsoft
1Code: https://github.com/nikitacs16/nlsi

Data: https://huggingface.co/datasets/nikitam/
nlsi

GetRestaurants(city="San 
Leandro", cuisine="Persian",  
price_range="moderate") 

GetMovies(..) 
GetRestaurants(..)

 

GetFlights(..) 
APIs

>If I am looking for Flights and airlines is American Airlines then look for 
economy 
>My preferred account type is savings   
>If I ask for restaurants, my default location is San Leandro  
>My preferred movie theater name is Regal Jack London  
>If restaurant price range is moderate then look for Persian cuisine 
… 

If I ask for restaurants, my default location is San Leandro 
If restaurant price range is moderate then look for Persian cuisine. 

User Specific Standing Instructions

Relevant Standing Instructions

Interpretation

I'm hungry, something not too 
fancy please

User
Utterance

Figure 1: Parsing an utterance into a structured output,
in the presence of a user-specific set of standing instruc-
tions. A model for the task needs to identify (explicitly
or implicitly) the subset of instructions applicable to the
utterance and interpret the utterance into API calls.

to users. For example, ChatGPT allows several
external plugins such as OpenTable for searching
restaurants or Expedia for booking travel.2 These
applications must learn to identify which service
the user is seeking while respecting preferences
across diverse domains that are unique to each user.
Understanding such preferences can aid in person-
alising the user experience by providing tailored
responses, increased accuracy in recommendations
and saving user time. However, in most cases, users
must verbalise their preferences in detail during the
interaction, including for repeated requests.

Past work has explored learning preferences
from user-system interactions over time (Micarelli
et al., 2007; Salemi et al., 2023). These preferences
can be hard to learn while also requiring signifi-
cant amounts of training data. Further, these learnt
preferences are implicit and usually cannot be in-
terpreted or edited by the user.

2https://openai.com/blog/chatgpt-plugins
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We propose incorporating personalised standing
instructions explicitly as additional context while
interpreting a user’s requests. Standing instructions
are user-provided natural language statements to
change or prescribe system behaviour under cer-
tain circumstances. For example, in Figure 1, the
user wishes to look for some nearby restaurants.
In the absence of standing instructions, the user
might have to interact for multiple turns with the
system to arrive at their preferred restaurant cuisine
and location. By looking up the relevant stand-
ing instructions for restaurants, the system can di-
rectly search for Persian restaurants in San Lean-
dro, saving the user’s time as well as providing
customised/localised recommendations. Explicit
natural language instructions are also both control-
lable and interpretable. A user can inspect and edit
their standing instructions, especially for prefer-
ences that change over time. Further, the generated
outputs can be directly linked to the relevant stand-
ing instructions, improving the user’s trust in the
system (Liu et al., 2023).

Our work is related to Gupta et al. (2022), which
conditions a dialogue model’s response on a set
of developer guidelines. Their work focuses on
controlling response generation in open-domain
dialogue systems with a focus on reducing toxi-
city and enhancing safety. More recently, com-
mercial LLM providers have introduced System
Prompts3/Custom Instructions4/Preamble5 which
have an option to include guidelines at the begin-
ning of every conversation to improve response gen-
eration. However, not much is known about how it
operates, and no evaluations of its usage have been
documented, especially in the task-oriented setting.

This work makes the following contributions:
(i) We systematically study the incorporation of
standing instructions in a task-oriented setup. We
develop and introduce NLSI (Natural Language
Standing Instructions), an English-language dataset
in which every example consists of a conversation
between the user and a dialogue agent, accompa-
nied by a collection of standing instructions (user
profile) and a sequence of API calls reflecting user
intents. (ii) We investigate six reasoning types for
using standing instructions that range from a single

3https://docs.anthropic.com/claude/docs/
how-to-use-system-prompts

4https://openai.com/blog/
custom-instructions-for-chatgpt

5https://txt.cohere.com/
chatbot-chat-endpoint/

instruction for a specific attribute to more complex
situations such as the user proposing multiple pref-
erences for same aspect, etc. These reasoning types
introduce challenges pertaining to subset selection
of relevant standing instructions and then inferring
the structured API calls and their arguments. These
include instructions that specify a single prefer-
ence to more complex ones that involve multi-hop,
cross-domain, and conflict reasoning. (iii) We use
this dataset to benchmark a variety of methods in-
volving the selection and interpretation of user ut-
terances in the presence of standing instructions.
We observe that our LLM-based methods are far
from perfect, raising new challenges in retrieval,
reasoning, and semantic parsing.

2 Task Overview

We are interested in translating a user utterance
into a sequence of API calls in the context of user-
specific standing instructions (Figure 1). Consider
a conversational context x, which consists of di-
alogue history between the user and the system
(if any) and the user’s current utterance. We as-
sume a user profile u consisting of a sequence of
natural language instructions u1, u2, ...uM . In this
setting, instruction following consists of a selection
task (which obtains a set of standing instructions
z from the user profile u that are relevant to x)
followed by an interpretation task (which predicts
API calls y based on the conversational context and
the relevant subset of standing instructions z). We
assume access to a schema s that lists the valid API
method names and their keyword arguments (slots).
Formally, an agent of this kind is described by a
generative model:

z ∼ p(· | x, u)
y ∼ p(· | x, z, s)

3 Dataset: NLSI

Existing related datasets have focused on generat-
ing safer responses in open-domain dialogue via
natural language guidelines (Gupta et al., 2022) or
looked at personalised text generation by condi-
tioning on a set of past user-written documents like
emails or reviews (Salemi et al., 2023). Similarly,
Madaan et al. (2022) improved response genera-
tion on user feedback on past conversations to assist
new users on tasks such as ethical reasoning and
word scrambling. Joshi et al. (2017); Irfan et al.
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PLAIN MULTIHOP MULTIPREFERENCE

Relevant
Standing
Instructions
(z)

>I always go to Santa Rosa if I’m looking
for Movies.
>I like fantasy movies the best.

>If I’m looking for a flight, American Air-
lines is my go-to.
>If I’m flying American Airlines, check for
Economy seating class.

>If I ask for Events, my preferred event
type is Music.
>When the event type is Music, search for
Blues as the category.
>Search for the event name Greensky Blue-
grass if the category is Blues.
>If I ask for Events, my preferred event type
is Sports.

Conversation
(x)

User: I want to go out to watch a movie,
please help me find a good one.

User: Can you get on and get me a round
trip ticket?
Agent: Where will you go? Where are you
coming from?
User: I’m going to SFO from New York
City.

User: My schedule is free today and I plan
to go to an event in Seattle, WA. I want to
look for events in that area.

API calls (y)

GetMovies(
genre=" fantasy",
location ="Santa Rosa")

GetFlights(
destination ="SFO",
origin ="New york",
airlines =" American

Airlines",
seating_class =" Economy ")

GetEvents(
city="Seattle , WA",
event_type =" Music",
category =" Blues",
event_name =" Greensky

Bluegrass ")
GetEvents(

city="Seattle , WA",
event_type =" Sports ")

Table 1: Some examples from NLSI. User profile is not shown for brevity. (1) In PLAIN, the instructions usually
represent a domain matching problem. (2) In MULTIHOP, note that the seating class attribute Economy is dependent
on choosing the instruction with American Airlines. (3) For the example for MULTIPREFERENCE, as there are
two preferences for the same attribute event_type, there are two separate API calls. Further, the API call with
event_type Music has additional attributes. Additional examples are provided in Table 5 in Appendix A.

(2021) focus on incorporating personalisation in
task-oriented dialogue with a small set (<5) of pref-
erences. Due to the lack of comprehensive datasets
that study the use of natural language standing in-
structions in a language-to-program setup, we cre-
ated NLSI. Our dataset covers multiple domains
like airline booking or finding events. Each domain
has an associated API.

3.1 Reasoning Types

In the context of standing instructions, various
types of reasoning might be needed to predict API
calls. Following a single standing instruction may
be easier than composing and reasoning over sev-
eral instructions. Furthermore, reasoning across
several instructions in the same domain, like book-
ing hotels, may be easier than across domains.
Thus, to enable comparisons at different difficul-
ties, we designated six reasoning types for NLSI.
While these are not exhaustive, they allow us to
systematically study a range of situations ranging
from simple domain matching to more complex
reasoning (see examples in Table 1):

NONEAPPLICABLE For these examples, no
standing instructions from the user profile are re-
quired for interpreting the user’s utterance (z = ∅).

PLAIN These examples use the standing instruc-
tions directly: each argument can be predicted from
a single standing instruction. All the relevant stand-
ing instructions, z, belong to the same domain.

MULTIHOP These examples contain at least one
standing instruction in z that is relevant to the dia-
logue x only due to the presence of another stand-
ing instruction in z. These are of the form “if A
then B” and “if B then C”, where A, B, and C are
slot names from the same domain. For example, in
Table 1, choosing seating_class as economy is de-
pendent on choosing airlines as American Airlines.
Such examples test multi-hop reasoning abilities of
the model.

MULTIDOMAIN These examples are like MUL-
TIHOP except that there is an instruction in z that
links two domains. These examples typically in-
volve triggering API(s) from an additional domain
while being consistent on any shared arguments
such as location. For example, the user might re-
quest searching for Hotels when looking for places
to visit (Travel). These example types require the
identification of standing instructions relevant to
either domain as well as sharing any common at-
tributes, like location or date, across the domains.
These examples challenge multi-domain under-
standing in addition to multi-hop reasoning.
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SGD Action NLSI

User: Can you get on and get me a round trip ticket? use as dialogue Dialogue: User: Can you get on and get me a
round trip ticket?

Agent: Where will you go? Where you coming from? use as dialogue Agent: Where will you go? Where you coming
from?

User:I’m going to SFO from New York City. use as dialogue,
use as parameters User: I’m going to SFO from New York City.

Agent: When are you leaving? When will you return? discard Standing Instructions:
User: I need to get back on the 14th. I really insist on getting
American Airlines tickets. I have mile advntage with them. I’m
taking off on Sunday this week.

convert to standing instruction If I’m looking for a flight, American Airlines
is my go-to

Agent: You’re in luck, there’s an American Airlines flight that takes
off at 8:50 pm. You’ll return leaving at 8:55 pm. You’ll only pay
$203 for everything.

discard

User: Ok, just make sure I get the best economy deal convert to standing instruction,
dependent on the previous one

If I’m flying American Airlines, check for
Economy seating class

Agent: Ok to be clear: 1 ticket from New York going to San
Francisco on American Airlines at 8:50 pm on March 3rd, economy.
You’ll return boarding at 8:55 pm on March 14th.

discard this and future turns

API Call:

GetFlights(
destination ="SFO",
origin ="New York City",
airlines =" American Airlines

",
seating_class =" economy ")

Table 2: Converting an example from SGD dataset (Rastogi et al., 2020) into NLSI format. We show a per
utterance decision process to obtain the dialogue, standing instructions, and parameters for the API call. We exclude
parameters that cannot be converted into standing instructions. We exclude utterances not relevant to the creation of
standing instructions.

MULTIPREFERENCE These examples contain
standing instructions catering towards multiple
preferences for the same attribute. The interpre-
tation task for such examples requires placing mul-
tiple API calls respecting the different constraints.
For example, searching for Music or Sports when
looking for an event type.

CONFLICT These examples include instructions
in the profile u that conflict with the information
in the user utterance in the dialogue x. The model
should gracefully handle such situations and give
preference to the user’s request.

Examples can contain standing instructions
demonstrating multiple reasoning types. In NLSI,
we associate each example with a single type as
based on the above ordering - a type occurring later
in the above ordering gets precedence.

3.2 Dataset Creation

We constructed NLSI by extending Schema
Guided Dataset (SGD, Rastogi et al., 2020). SGD
consists of multi-turn conversations across 20 do-
mains like airlines or restaurants. We chose SGD
because the dialogues in that dataset include nat-
ural and rich conversations and the accompany-
ing annotations make it possible to construct the
ground truth API labels. The process outlined be-
low intends to repurpose an existing dataset for
studying the selection and interpretation tasks. In

a real-world setting, a user might provide explicit
preferences through another interface, or else such
preferences would be inferred from the user’s con-
tinuous interaction with the system. We briefly
discuss the dataset creation below and provide de-
tails in Appendix A.

Extracting standing instructions: We first iden-
tified which slots within the SGD schema can be
translated into standing instructions based on the
slot descriptions provided in the original dataset.
For example, theatre_name is inclined to be a
persistent user preference unlike movie_title or
date which are likely to change with every interac-
tion.

Each conversation in SGD originated from a
sequence of actions that a user or agent should take
alternately. For example, the second conversation
in Table 1 was based on a template sequence like
Inform(airline_ticket) → Request(origin,
dest) → Inform(origin, dest) →
Offer(airlines) → Confirm(airlines),
Request(seating_class). These sequences
were then specialized by binding the variables, and
the resulting sequence was written as a dialogue by
a crowd worker that constituted this SGD example.
We reverse-engineer the original SGD creation
process to construct the standing instructions for
NLSI.

To convert an SGD dialogue to an NLSI dia-
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logue with standing instructions, we retained the
first one or three turns as the conversational context
x, and converted the remaining turns into the rele-
vant standing instructions z. See an illustration in
Table 2. Continuing our example, the natural lan-
guage turns that specified airlines=“American
Airlines”, seating_class=“Economy” were
converted to standing instructions. We excluded
information from any turns that could not be con-
verted into a standing instruction - see the sixth
utterance in the table.

We start with templated instructions for different
scenarios in an if-then format akin to the work in
Gupta et al. (2022). To convert these templated
instructions into natural language, we use GPT-3
to paraphrase the templated instructions and obtain
diverse instructions. We list the prompts to obtain
these paraphrases in Appendix A.

Forming user profiles: The above process pro-
vides us with the relevant standing instructions z
for the given example from SGD, but these are only
part of the full user profile u. A user will have addi-
tional preferences that are not relevant to the given
example. To emulate this, for the given example,
we create u by augmenting z with M randomly
sampled instructions from other examples. These
“distractor” instructions are sampled from domains
unrelated to the current domain(s).

API calls: The outputs of the interpretation task
are API calls y, in line with the recent works of
integrating LLMs with tools and plugins (Schick
et al., 2023; Qin et al., 2023). The API calls
are of the format GetDomain(slot_1=value_1,
slot_2=value_2). The argument names and val-
ues are derived from annotations in the SGD ex-
amples, which are either mentioned in the user’s
utterance or inferred in the standing instructions.

Dataset Statistics: We construct a balanced test
set based on the different reasoning types: 340 per
reasoning type, leading to a total of 2040 exam-
ples across 17 domains. The train set contains at
most 10 examples per domain with a minimum of
five examples per reasoning type, for a total of 150
examples. The remaining examples form the devel-
opment set (251). There are 10.4 ± 3.0 instructions
in a user profile (min: 3, max: 22) and there are
2.1 ±1.7 relevant standing instructions per exam-
ple in the dataset (min: 0, max: 10). There are 17
function calls corresponding to the 17 domains.

4 Methods

Given the recent success of using LLMs to gen-
erate outputs in structured prediction tasks (Roy
et al., 2023; Schick et al., 2023; Heck et al., 2023),
we use an LLM-based method to interpret a user
utterance into a structured API call. We use in-
context learning (Dong et al., 2023) by providing
K demonstrations, where K is tuned on the dev
set. These demonstrations are obtained by retriev-
ing examples from the training set that are most
similar to the current dialogue of the test exam-
ple using the BM25 similarity measure (Robertson
et al., 1994) as in Rubin et al. (2022); Roy et al.
(2023). The examples are arranged in a best-first
order. We describe the different paradigms (Fig-
ure 2) used for the interpretation task by selecting
the instructions implicitly (DIRECT Interpretation),
jointly (SELECT-AND-INTERPRET) or explicitly
(SELECT-THEN-INTERPRET).

4.1 Direct Interpretation

In the DIRECT method, we do not have any ex-
plicit selection of standing instructions from the
user profile, and directly interpret the dialogue con-
text into API calls. The input to the LLM (Figure
2) consists of (i) instructions about the interpre-
tation task including the information about using
standing instructions, (ii) the schema of the dataset
(list of functions and arguments that can be used
when generating API calls) s, (iii) user profile u,
(iv) user’s dialogue x, and (v) API calls y. Of these,
(iii)-(v) are repeated for every demonstration exam-
ple and the test example only consists of the user
profile and the dialogue. We also include the list
of categorical slots and their categories as well as a
list of boolean slots while describing the schema.
This method is similar to the commercial usage of
System Prompts. This setup allows us to evalu-
ate the ability of implicit selection of the relevant
standing instructions for the interpretation task.

4.2 Joint Selection and Interpretation

Inspired by the effectiveness of techniques like
Chain-of-Thought prompting (Wei et al., 2022)
across several tasks (Chu et al., 2023), we also
treat the direct interpretation task with a two-step
approach: generate the relevant standing instruc-
tions z ⊆ u and then generate the corresponding
API calls y. Such explicit selection can enhance
the transparency of the system by exposing the rel-
evant subset of instructions to the user (Liu et al.,

4047



Task Specific 
Instructions

+
Schema

User Profile

User Utterance

API calls

User Profile

User Utterance

API calls

Task Specific 
Instructions

+
Schema

Gold 
Standing Instructions

User Utterance

API calls

Relevant 
Standing Instructions

User Utterance
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Instructions

+
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User Profile

User Utterance

Relevant Standing 
Instructions

API calls

{K 
examples

{Test 
example

Prediction

Task Specific 
Instructions

User Profile

User Utterance

User Profile

User Utterance

Relevant 
Standing Instructions

Gold 
Standing Instructions

DIRECT SELECT-AND-INTERPRET

Selection

SELECT-THEN-INTERPRET

Interpretation

Figure 2: Illustration of different prompting methods. The blocks in red are the expected output generation and every
other block is part of the input. The green bits are repeated K times, providing K demonstrations for in-context
learning. DIRECT Interpretation conditions the generation of API calls on the user profile and user utterance.
SELECT-AND-INTERPRET requires the generation of the appropriate standing instructions based on user profile and
user utterance followed by API generation. SELECT-THEN-INTERPRET receives the predicted standing instructions
from a separate Selection Model (see left) in addition to the user utterance and then generates the API calls. The
selection step only generates the standing instructions based on the user profile and the user utterance.

2023). To implement the method, the input prompt
to the LLM is modified such that the demonstra-
tions include the set of all standing instructions u,
the relevant standing instructions z, and then the
API calls y (Figure 2). We refer to this method as
SELECT-AND-INTERPRET.

4.3 Selection Then Interpretation
Here we treat selection and interpretation with two
separate models. The interpretation model is sim-
ilar to the one described for DIRECT, except that
instead of user profile, the relevant standing instruc-
tions are used directly. By decoupling the selection
task from the interpretation task, we can explore
popular methods of information retrieval for se-
lection. As the user profile size increases, and the
instructions no longer fit into the prompt, a separate
selection step can be convenient. We now describe
various approaches for the selection step.

ORACLE: The selection step simply returns the
true z. This setup measures the standalone perfor-
mance of the interpretation task when given the
correct standing instructions.

BM25: The selection step sets z to the N instruc-
tions from the user profile u that are most similar to
the dialogue x using BM25 (Robertson et al., 1994),
where N is tuned on the dev set. To compute the

corpus statistics for BM25, each instruction in u
is considered a document, and as is each standing
instruction from the train examples.

CONTRIEVER: As above, replace BM25 with
cosine similarity. The dialogue x and each stand-
ing instruction in u is embedded into R768 with a
pretrained sentence encoder, CONTRIEVER (Izac-
ard et al., 2022). Both BM25 and CONTRIEVER

have been used as baselines in similar past work
(Gupta et al., 2022; Salemi et al., 2023).

ICL: We also experiment with using LLMs for
the selection task. The fixed input prompt to the
LLM consists of instructions for the selection task,
followed by exactly six demonstrations, each con-
sisting of a dialogue x, user profile u, and relevant
standing instructions z and then the test example
(see Figure 2, Selection). We randomly sampled
the six demonstrations from the training set, one
per reasoning type, and used the same demonstra-
tions for all the test examples.

ICL-DYNAMIC: Similar to ICL, except that
now K demonstrations are dynamically retrieved
from the train split by using the ones that are simi-
lar to the dialogue in the current example through
BM25.
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MULTI-PASS: In our preliminary experiments
with LLM-based selection methods, we observed
that the LLMs consistently missed a subset of rele-
vant instructions in the MULTIHOP and MULTIDO-
MAIN reasoning types. We propose running the
selection step multiple times to add these missing
instructions. We use the standing instructions se-
lected in the first pass of the selection process from
ICL as part of the prompt to perform a new selec-
tion step. We instruct the model to find the standing
instructions that are missing from the current selec-
tion set. Though the process can be iterated across
multiple steps, we found the best results with only
one additional round of selection.

5 Experiments

We benchmark the dataset on the above methods to
explain the various challenges on the benchmark.
We used GPT-3.5 (text-davinci-003), GPT-4 as
the base LLMs from GPT family. We use LLaMA
2 (7B) for the selection task and CodeLLaMA 2
(7B) for the interpretation task from the LLaMA 2
family (Touvron et al., 2023).

5.1 Evaluation

For both selection and interpretation tasks, we re-
port exact match and sample F1 score. The exact
match for interpretation task is 1 when every func-
tion call and its arguments equal to the ground
truth. We treat function_name-argument_name-
argument_value as triples when computing F1 sim-
ilar to the evaluation in dialogue state tracking (Dey
et al., 2022). For the selection task, an exact match
is when the set of predicted instructions is equal
to the ground truth set of instructions. We post-
process the outputs for both the tasks (see Appendix
B), e.g. we exclude any predicted instructions not
present in the user profile.

5.2 Results

We report the results for the different methods in
Table 3. Overall, across all the methods, using
GPT-4 as the base LLM has better results.

Within the different ways of incorporating the
selection task with the interpretation task, we find
that DIRECT interpretation gives the best result (as
per EM), closely followed by the SELECT-AND-
INTERPRET and then ICL when using GPT-3.5
and LLaMA 2. This trend shifts for GPT-4 where
MULTI-PASS has the best results followed by ICL
and DIRECT. Despite the success of chain-of-

thought methods in tasks like mathematical rea-
soning (Wei et al., 2022) and multi-hop question
answering (Yoran et al., 2023), we find that gen-
erating for selection and then generating API call
within the same prompt may not be suitable for
incorporating standing instructions.

We also experimented with fine-tuning smaller
pre-trained models like RoBERTa (Liu et al.,
2019) and CodeT5 (Wang et al., 2021) for the
selection and interpretation task respectively. The
selection task has EM/F1 results as 54.3/64.4.
The interpretation task only reaches 7.6/37.3
suggesting that smaller models will require
inclusion of techniques beyond fine-tuning such
as cross-attention between the schema and the
standing instructions, use of data augmentation etc.
See Appendix C.2 for more details.

Models struggle to effectively incorporate
standing instructions The best-performing
configuration across all the methods only has an
exact match of 46%. Considering the ORACLE

method has an exact match of 58.5%, there is a
considerable gap in performance. Incorporating
standing instructions to interpret the user’s
context is not a trivial problem and would require
approaches beyond the listed prompting methods.
Even with the gold standing instructions in
ORACLE, the models fail to achieve perfect exact
match for interpretation, which shows the difficulty
of the interpretation task. We attribute this to the
examples in our dataset that require understanding
from different contexts - standing instructions, list
of valid APIs, and the current dialogue. Further,
the relevance of standing instructions can be
dependent on each other. This may explain why
we found that standard retrieval approaches fail at
this task. Our findings align with the observations
made in other tasks that find the retrieval of some
form of context from a separate memory to be
challenging (Weir et al., 2023; Majumder et al.,
2023).

Comparison across selection methods We find
that LLM-based selection methods surpass tradi-
tional methods based on lexical statistics and em-
bedding similarity for the GPT family as also seen
in Sun et al. (2023). Further, the gap between
the ORACLE setting in the selection module and
the best-performing configuration is substantial on
both exact match and F1, suggesting that selecting
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GPT-3.5 GPT-4 LLaMA 2 (7B)
Method Selection Interpretation Selection Interpretation Selection Interpretation

EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑
DIRECT N/A N/A 32.0 66.4 N/A N/A 42.0 67.9 N/A N/A 15.1 47.8
SELECT-AND-INTERPRET 25.9 50.3 28.0 65.9 46.5 67.6 40.2 73.2 12.0 26.2 15.0 47.7
SELECT-THEN-INTERPRET

BM25 17.3 19.3 11.2 39.7 17.3 19.3 11.8 40.8 17.3 19.3 7.8 30.9
CONTRIEVER 14.6 51.5 17.2 57.5 14.6 51.5 25.4 62.7 14.6 51.5 9.3 40.6
ICL 33.5 48.1 24.7 61.6 65.9 67.7 44.7 75.5 6.1 23.9 3.7 22.9
ICL-DYNAMIC 29.0 32.2 19.5 54.9 60.1 61.3 40.7 73.4 12.6 21.2 7.4 29.6
MULTI-PASS 24.3 52.1 20.6 57.2 68.5 70.2 46.0 76.6 8 14.3 5.3 22.0
ORACLE N/A N/A 55.9 82.8 N/A N/A 58.5 84.1 N/A N/A 36.5 68.7

Table 3: Results of the different methods on the NLSI dataset for the interpretation task and selection task evaluated
on sample F1 and Exact Match (EM) by using different base LLMs from GPT and LLaMA families (LLaMA 2 (7B)
for selection and CodeLLaMA 2 (7B) for interpretation). DIRECT has the highest score on exact match followed by
SELECT-AND-INTERPRET for GPT-3.5 and LLaMA 2 (7B) while MULTI-PASS is best followed by ICL for GPT-4.
For the selection task, LLM based models are better for GPT models while LLaMA 2 struggles on this task.

Type ORACLE DIRECT JOINT ICL ICL-D MULTI-P

NONEAPPLICABLE 68.2 57.3 48.8 61.4 62.6 61.1
PLAIN 77.9 67.6 70.5 69.7 65.0 70.8
MULTIHOP 65.5 56.4 47.3 59.1 57.9 60.2
MULTIPREFERENCE 55.8 24.1 32.6 42.6 38.2 44.7
MULTIDOMAIN 30.9 16.1 12.6 12.0 07.6 14.4
CONFLICT 70.2 35.0 32.0 33.5 22.3 34.4

Table 4: Per reasoning type exact match on the in-
terpretation task (GPT-4). JOINT is SELECT-AND-
INTERPRET, ICL-D is ICL-DYNAMIC and MULTI-P
is MULTI-PASS. All the methods find PLAIN easiest
while struggling at MULTIDOMAIN. There is no consis-
tent winning method.

the relevant standing instructions explicitly from
the user profile in the context of the conversation
is itself challenging. This is most reflected in the
LLaMA 2 (7B) results where the selection task has
results worse than the BM25 and CONTRIEVER.

Over time, we envision the capability to add new
standing instructions to user profiles, which might
exceed the prompt’s capacity. We anticipate that
our benchmark can be useful for evaluating inter-
esting questions in LLMs augmented with external
memory (Lewis et al., 2020). Further, decoupling
the selection step would provide more transparency,
as it would allow users to see their individual stand-
ing instructions that influenced the generated out-
put (Liu et al., 2023)

5.3 Results by reasoning type
We break down the examples by reasoning type in
Table 4 with GPT-4 and investigate the accuracy
of different methods (See Appendix C for remain-
ing results). We observe that different methods
display varying trends across different reasoning
types and there is no one consistent winner among
these methods. We find that PLAIN is the easiest

reasoning type for all the methods, suggesting that
LLMs do have the capacity to follow simple stand-
ing instructions. The methods perform worse on
more complex MULTIDOMAIN examples (<17%)
or MULTIPREFERENCE examples. These examples
require sharing arguments across multiple domains,
following individual standing instructions under
respective domains, and reasoning across different
standing instructions. Also, MULTI-PASS has im-
provement over MULTIDOMAIN and MULTIPREF-
ERENCE suggesting that another round of selection
can benefit the reasoning types where complex rea-
soning over the instructions is required.

5.4 Qualitative Analysis

We annotate 100 erroneous examples each from
the DIRECT and ICL from GPT-3.5 with the most
prominent error (See Table 9 for examples). Com-
mon errors include the hallucination of variables
(Example 1) and missing arguments (Example 3)
while generating API calls. For MULTIPREFER-
ENCE, some predictions exclude the second API
call. Further, if one of the repeating arguments has
a standing instruction dependent on its value, the
model does not include this conditional dependence
when generating the API call (Example 2). For
MULTIDOMAIN, some predictions exclude API
calls from the remaining domains (Example 3). For
DIRECT, overgeneration of API calls is common.
The model is likely to confuse demonstrations from
PLAIN with MULTIDOMAIN. Another possible rea-
son is that the model incorrectly considers many
irrelevant instructions in the profile while generat-
ing the API calls. For ICL, missing and incorrectly
predicted standing instructions from the selection
step produce erroneous arguments in the API calls.
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6 Related Work

NL guidelines: Gupta et al. (2022) collected and
released a dataset of NL guidelines that govern the
safe response generation in dialogue systems. Com-
pared to theirs, we showcase a more challenging
retrieval setup: we have more applicable instruc-
tions on average, with rich phenomena such as
MULTIHOP or MULTIPREFERENCE. Moreover,
we are concerned with generating structured repre-
sentations as a more complex final task.

Irfan et al. (2021) consider a variant of standing
instructions in a barista setting where the instruc-
tions consist of the favourite drink and snack of the
corresponding user. Similarly, Joshi et al. (2017)
provide a user profile consisting of age, gender, and
favourite food item structured as a dictionary to en-
hance the style of response generation that is appro-
priate to the selected attributes. Both these works
use toy scenarios (Weston et al., 2015a), are single-
domain, contain < 5 attributes for personalisation,
and use non pretrained LSTM-based sequence-to-
sequence methods (Weston et al., 2015b) for bench-
marking. Our work offers more diverse scenarios,
domains (17), and attributes (150). Our instruc-
tions are more complex than maintaining user pref-
erences in a key-value format. We also explore
the complexity of selecting relevant standing in-
structions often requiring multi-domain and multi-
hop reasoning. More recently, commercial LLM
providers also offer guidelines to enhance personal-
isation similar to the notion of standing instructions
but lacks a reported systematic evaluation (See Ap-
pendix C).

The use of declarative NL specifications has
been explored in past work. For example, Ye et al.
(2023) use an LLM to generate a declarative task
specification, coupled with an off-the-shelf auto-
mated theorem prover to derive the final answer.
Weir et al. (2023) discuss methods to generate
user-NPC dialogues based on game quest specifica-
tions. Constitutional AI (Bai et al., 2022) identifies
whether some model response violates a given rule,
and then revises the response accordingly.

Closely related to the use of standing instruc-
tions is also learning from feedback (Labutov et al.,
2018; Tandon et al., 2022; Madaan et al., 2022),
where the goal is to maintain a memory of user-
provided feedback and use it to augment the knowl-
edge used by question-answering models at test
time. Analogously, standing instructions can also
be seen as a form of memory.

Personalisation: Personalisation in dialogue has
been extensively studied (Li et al. (2016); Zhang
et al. (2018); Majumder et al. (2020); inter-alia)
where the personality traits are provided through
NL statements. However, all these works focus on
providing a persona to the bot to generate more
engaging responses rather than assisting the users
in completing their request.

In a broader sense, learning from preferences has
been fundamental to improving user experience.
These include personalised review generation (Li
et al., 2020), personalised search results through
collaborative filtering (Micarelli et al., 2007) or
leveraging a profile of user interests (Speretta and
Gauch, 2005). Salemi et al. (2023) explored per-
sonalised text generation with LLMs on tasks such
as article generation given past articles authored
by the user. Our work provides incorporation of
preferences explicitly through standing instructions.
Such explicit mention will aid in better understand-
ing of the generated result.

7 Conclusion

We proposed the use of standing instructions - a
set of natural language statements that contain the
user’s preferences to aid the interpretation of the
user’s requests. To facilitate this, we created NLSI,
a language-to-program dataset based on SGD. This
enabled us to explore two tasks: standing instruc-
tion selection and interpretation task of generating
API calls which are conditioned on the selected
instructions and conversational context. We experi-
mented with several methods for the selection and
interpretation tasks.

Our results show that while LLMs are capable of
incorporating standing instructions as an additional
context to an extent, their usage of standing instruc-
tions is far from perfect. The models struggled to
select the instructions in the user profile that were
relevant to the given dialogue, which in turn af-
fected the interpretation task. Moreover, as reason-
ing types become more intricate and involve com-
plex reasoning or interactions among the respective
standing instructions, the interpretation of these in-
structions becomes increasingly challenging for
these methods. This calls for the development
of new approaches in incorporating standing in-
structions, reasoning-based retrieval, and memory-
augmented representations.
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Ethics Statement

Our dataset is based on SGD (Rastogi et al., 2020)
which consists of fictional conversations. The real
world named entities such as restaurant names
for the dataset were sampled from Freebase while
date/times were sampled synthetically. No human
names or any personal information is present in
the dataset. Our task involves API call generation
in a constratined setup which generally does not
produce harmful or toxic responses.

Limitations

Our task setup is limited to generating API calls
for the current turn. In an ideal scenario, the LLM
or the service should also display the results in a
user-friendly format, like natural language or Mark-
down, and perhaps confirm with the user before
executing the call. Our dataset is not accompanied
by the results from respective API calls or replies
from the system due to the unavailability of re-
sults from the base dataset. The different reasoning
types in our dataset are not exhaustive and future
work could look into expanding them. The num-
ber of APIs in the dataset is 17 that currently fits
in the prompt. In future iterations, as the number
of APIs will increase beyond the prompt length,
we would need to incorporate techniques from Qin
et al. (2023); Ye et al. (2024) as an additional step
to select the right APIs.

As our dataset is derived from an existing aca-
demic task-oriented dialogue dataset, it is useful for
testing methods, but we caution readers that real-
world services will include more complex stand-
ing instructions, domains, and user scenarios. The
standing instructions were derived from templates
and then adequately paraphrased. Despite this, we
find it to be a challenging and non-trivial bench-
mark as evident in our results section Further, pref-
erences stated explicitly by a human user would
likely take a wider range of natural language forms.
Preferences deduced from the user’s past history
might take a non-linguistic form, as in recommen-
dation systems; they might be uncertain or soft
constraints that cannot be passed directly as argu-
ments to simple search APIs.
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A Dataset Construction Details

We provide further details about dataset construc-
tion.

Forming examples for different reasoning types:
We do not need to extract any standing instructions
z for examples in NONEAPPLICABLE. For exam-
ples in PLAIN, each (domain, slot, value) triple
was extracted and written in natural language via
an if-then template and appropriately paraphrased.
Since each slot is independent of each other, this
set of instructions form z. MULTIHOP examples
were formed by creating a hierarchy of slots asso-
ciated with the same domain like seating_class is
dependent on airlines. If the subsequent dialogue
states contained the same dependent slots, then that
example was categorized as a MULTIHOP example,
where the primary slot value was obtained from the
dialogue or one of the standing instructions. MUL-
TIDOMAIN examples were dialogues from SGD
that were inherently multi-domain because they re-
quired API calls from different domains. These
reasoning types were created through a determinis-
tic process based on the existing SGD data.

MULTIPREFERENCE examples were formed by
duplicating one of the ground truth standing instruc-
tions from PLAIN, MULTIHOP and MULTIDO-
MAIN, and substituting an argument value with
another relevant entity. Meanwhile, CONFLICT ex-
amples were formed with examples from PLAIN or
MULTIHOP. We added information that conflicts
with the gold standing instruction like asking for
Mexican restaurants when the standing instruction
is about preference for Italian restaurants. We pro-
vide examples for the remaining reasoning types in
Table 5.

Sampling instructions for user profile: We
drew M instructions uniformly from the range
[3, 12]. In particular, we drew the distractor in-
structions before splitting the dataset into train/de-
v/test, so training examples were constructed with
some distractors sourced from the test set. Given
this dataset, however, our experiments followed
the usual protocol of holding out the test set while
constructing our systems.

Post-processing: We also included several
rounds of post-processing on the dataset to remove
undesirable or unrealistic situations that arise ei-
ther through the noise in the base dataset or our
extraction process. We removed examples with

domain mismatches in case of MULTIDOMAIN

such as requesting music which is followed by a
request for bus ticket booking. We unified domains
such as Restaurant_1, Restaurant_3 as Restaurants.
Restaurant_2 was renamed as HouseStays. We also
deduplicated the slot names under these domains
like location and area was converted to area. Simi-
larly, the Services domain was expanded as Salons,
Doctors, and Dentists instead. All the examples
were constructed only from the domains and exam-
ples available in the training set of SGD. In addition
to removing domains whose combination doesn’t
make sense in the MULTIDOMAIN reasoning type,
we also remove MULTIDOMAIN examples which
do not have any attributes for the second domain.

The instructions obtained through the above de-
terministic process were templated. For paraphras-
ing the templated instructions, we prompted GPT-3
to generate paraphrases with three distinct prompts
to promote diversity.
Prompt 1: Write a colloquial paraphrase for the

given sentences. Refrain from using if then format

Prompt 2: Reword the following in your own words.

Keep the same meaning. Change the sentence

structure to exclude if then format:

Prompt 3: Reword the following in your own words.

Keep the same meaning. Make the sentences sound

like instructions or commands.

Change the sentence structure to exclude if-then

format. If the sentence starts with “If I ask for

xyz”, also reword that xyz part.

We replace the templated standing instruction ran-
domly with one of the paraphrases leading to 4097
unique instructions across the dataset.

B Experiment Details

B.1 Setup

For the selection experiments involving BM25 and
Contriever, N was varied from 1 to 10 and cho-
sen according to the best exact match on the dev
set (N=4 for BM25, N=2 for CONTRIEVER). For
LLMs, the K for demonstrations was varied among
{3,5,8}, with K=5 being best for ICL-DYNAMIC

and other interpretation tasks. For the MULTI-
PASS experiments, we varied K for three additional
rounds and found that providing one additional pass
had the best results on the development set. We use
temperature of 0 while decoding from the LLMs
unless specified otherwise. We use LLaMA 2 7B6

6https://huggingface.co/meta-llama/
Llama-2-7b-hf
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CONFLICT NONEAPPLICABLE MULTIDOMAIN

User Profile
(u)

>When I request Restaurants, I prefer Ital-
ian cuisine.
>If I’m looking for a doctor, I’d rather have
a General Practitioner.
>If I’m opening a bank account, I want it to
be a savings account.
>I’d like to get a Doctor in San Rafael if I
can.
. . .

>Request Restaurants with Filipino cuisine
as my preference.
>Request Music by Iggy Azalea as my pre-
ferred artist.
>If I’m looking to go to the movies, my go-
to theatre is Airport Stadium Cinemas.
>If I’m looking for a flight, my go-to airline
is Alaska Airlines.
>Request Events, specifically Sports events.

>When I request Movies, I typically enjoy
ones that are comedic.
>My first choice when requesting Travel is
Vegas
>When it comes to Hotels, I prefer ones that
are rated 1-star.
>My go-to theater for Movies is AMC Bay
Street.
>If I’m looking into Travel, I should also
check out Hotels
>I’d like my travel to be kid-friendly.
. . .

Relevant
Standing
Instructions (z)

>I’d like to get a Doctor in San Rafael if I
can. None

>My first choice when requesting Travel is
Vegas
>If I’m looking into Travel, I should also
check out Hotels.
>When it comes to Hotels, I prefer ones that
are rated 1-star.
I’d like my travel to be kid-friendly.

Conversation
(x) User: I need to find a Gynecologist

User: Can you help me find some attrac-
tions to see?
Agent: Where should I look?
User: How about in KL?

User: User: Any good tourist traps out
there?

API calls (y)

GetDoctors(
type=" Gynecologist",
location ="San Rafael ")

GetTravel(
location ="KL")

GetTravel(
good_for_kids ="True"
location =" Vegas ")

GetHotels(
average_rating ="1",
location =" Vegas ")

Table 5: Some examples from NLSI. (1) In CONFLICT, user requests for an attribute that is against the standing
instructions (“Gynecologist” v/s “General Practionier”). (2) In NONEAPPLICABLE, the user makes a request which
is not affected by the standing instructions. (3) In MULTIDOMAIN, the examples contain an instruction which
requires invoking a hotel search for the same location when user requests for places to visit.

for the selection experiments. As our API calls
are similar to the python syntax of a function, we
use CodeLLamA 2 7B, which is instruction fine-
tuned, 7 for the interpretation experiments. We also
found CodeLLaMA 2 (7B) had better results than
LLaMA 2 (7B) for the interpretation task on the
validation set. We use 2 24GB GPUs, batch size of
1, full precision models for the these experiments.
It takes approx 48 hours to make a pass over the
entire test set.

For evaluation, all the outputs were converted
to lowercase and double quotes were unified to a
fixed unicode. Using “vs” and “versus” was unified
to “versus”. The models were not penalised if they
produced subcategory instead of event_type arising
due to the noise in the base dataset. For the inter-
pretation evaluation, the API calls were converted
to function_name-slot-value triples per slot-value
per API call. In the case of examples multiple API
calls, the models had a tendency to include every
attribute in a single API call instead of separate
API calls. To penalise this in the exact match, if

7https://huggingface.co/codellama/
CodeLlama-7b-Instruct-hf

the number of predicted API calls was not equal
to the number of ground truth API calls the model
received an exact match of 0.

B.2 Prompts
We shall now list the prompts used in our exper-

iments.
B.2.1 Selection Task

For the selection tasks, the prompt is described
in Figure 3. For the MULTI-PASS experiments,
an additional instruction was added to the prompt
“If some instructions are missing from the current
set, generate those instructions under Remaining
Applicable Standing Instructions”. The test exam-
ple consists of “Applicable Standing Instructions”
from the previous iteration and “Remaining Ap-
plicable Standing Instructions” is appended with
every demonstration.

B.2.2 Interpretation Task
We describe the prompt in Figure 4 used
for Direct Interpretation and SELECTION-THEN-
INTERPRETATION methods. The set of standing
instructions will vary depending on the type of ex-
periment. For JOINT SELECTION AND INTERPRE-
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Standing instructions allow a user to add preferences or requirements that an agent would like to consider when generating its responses.
The user's current utterance in the dialogue has priority over standing instructions.
For the given dialogue, which of the following standing instructions are applicable? If no standing instructions are applicable, then generate "None".

Standing Instructions:
<demonstration standing instructions>

Dialogue:
<demonstration dialogue>

Applicable Standing Instructions:
<demonstration applicable standing instructions>
<EOS>

Standing Instructions:
<test standing instructions>

Dialogue:
<test dialogue>

Figure 3: Prompt for the ICL Selection task. The number of examples and the type of examples will vary according
to the experiment

TATION, the prompt includes an additional sentence
“For the following dialogue, first generate the ap-
propriate applicable standing instructions from the
user profile and then generate API calls based on
the dialogue and the selected standing instructions.”
between “Standing instructions allow you to add
preferences or requirements that an agent would
like to consider when generating the parser.” and
“The user’s current utterance in the dialogue has
priority over standing instructions.”. The demon-
stration and test example format look as Figure 5.

Dialogue:
<demonstration dialogue>

User Profile:
<demonstration standing instructions>

Applicable Standing Instructions
<applicable demonstration standing instructions>

API Calls:
<demonstration api calls>
<EOS>

Dialogue:
<test dialogue>

User Profile:
<test standing instructions>

Figure 5: Demonstration and test example format for
Select-And-Interpret experiments

C Additional Results

C.1 Dependence on paraphrasing
We experiment with five different random seeds for
the dataset creation, creating five different versions
of the dataset. We evaluate the DIRECT method
on the LLAMA-2 model for the development set.
The average exact match across these datasets is
15.1±0.7 suggesting only small variance.

Selection
Method

Interpretation
Training Data EM F1

QA User Profile 11.2 43.0
QA Applicable 12.2 42.4
Oracle User Profile 13.2 47.3
Oracle Applicable 15.5 50.1

Table 6: Interpretation task scores when fine-tuned with
User Profile and Applicable standing instructions respec-
tively for the interpretation task while using “Oracle”
or standing instructions obtained from a fine-tuned QA
model (based on RoBERTa). Fine-tuned models strug-
gle at the interpretation task and a model trained with
applicable standing instructions is better.

C.2 Fine-tuning experiments
We fine-tune smaller pre-trained models to bench-
mark them on the NLSI dataset.
Selection Task: We start with trained extractive
question-answering system that uses RoBERTa-
base (Liu et al., 2019) as the encoder and SQuAD
2.0 (Rajpurkar et al., 2018) as the training dataset.
8 In our setup, the dialogue forms the paragraph,
and [“yes”] and [“no”] are appended to the start of
the dialogue. The question is “Is the standing in-
struction X applicable" and if the predicted answer
is “yes”, the respective instruction X is selected.
This process is repeated for every instruction in
the user profile. We further fine-tune this question-
answering model by converting every example in
the training set into such a format.
Interpretation Task: We fine-tune a code-specific
pre-trained model, namely CodeT5 (220 M) (Wang
et al., 2021) on NLSI dataset. As this is a
Sequence-to-Sequence model, the input consists
of the dialogue concatenated with the instructions

8https://huggingface.co/deepset/roberta-base-squad2
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Type ORACLE DIRECT JOINT ICL-D ICL MULTI-P

NONEAPPLICABLE 65.3 45.9 37.9 54.4 58.5 29.4
PLAIN 80.3 56.2 56.5 41.8 28.5 36.5
MULTIHOP 65.3 41.8 34.1 27.6 19.1 34.1
MULTIPREFERENCE 40.0 11.5 11.5 8.8 4.1 9.7
MULTIDOMAIN 23.2 3.5 3.2 0.6 0.3 1.2
CONFLICT 70.3 34.1 26.2 17.1 6.8 14.7

Table 7: Per reasoning type exact match on the inter-
pretation task (GPT-3.5). ICL-D is ICL-DYNAMIC
and MULTI-P is MULTI-PASS. All the methods find
PLAIN easiest and struggle on MULTIDOMAIN. Differ-
ent methods show different trends without a consistent
winner.

Type ORACLE DIRECT JOINT ICL ICL-D MULTI-P

NONEAPPLICABLE 45 24.4 23.8 4.1 27.9 17.6
PLAIN 62.1 36.2 37.1 8.8 7.4 5.3
MULTIHOP 48.2 17.1 17.4 1.5 1.5 2.9
MULTIPREFERENCE 19.4 5.3 4.4 0.9 1.5 0.6
MULTIDOMAIN 3.2 1.2 0.6 0.3 0.3 0.0
CONFLICT 48.8 8.2 7.4 7.4 6.5 5.8

Table 8: Per reasoning type exact match on the inter-
pretation task (LLaMA 2). JOINT is SELECT-AND-
INTERPRET, ICL-D is ICL-DYNAMIC and MULTI-P
is MULTI-PASS. All the methods find PLAIN easiest
while struggling at MULTIDOMAIN. There is no consis-
tent winning method.

from the user profile and the output consists of the
API calls. This is similar to the DIRECT method
discussed in Section 4. To simulate the SELECT-
THEN-INTERPRET paradigm, we design two inter-
pretation models, one using all the standing instruc-
tions from the user profile and the other using the
applicable standing instructions only (Applicable).
Results: The stand-alone selection task leads to
an Exact Match/F1 score of 54.3/64.4 which pro-
vides a strong baseline result. The DIRECT inter-
pretation results in 7.6/37.3 indicative of a need
for better interpretation models. The results for
SELECT-THEN-INTERPRET with smaller models
are reported in Table 6. We find that SELECT-
THEN-INTERPRET has improved results over DI-
RECT unlike some of the LLM results. We further
find that using applicable standing instructions dur-
ing the training of the interpreter leads to better re-
sults. Even with oracle instructions and interpreter
trained with applicable instructions, the interpreta-
tion task has poor capabilities.

C.3 Scenario Type results for GPT-3.5 and
LLaMA 2

We report the results by reasoning type for experi-
ments using base LLM as GPT-3.5 in Table 7 and
LLaMA 2 in Table 8. The trends are similar to the
trends discussed in Section 5.3.

C.4 OpenAI’s Custom Instructions
OpenAI also recently reported the introduction of
custom instructions9 that allow the users to add
requirements or preferences that ChatGPT should
consider when generating the responses. This is
similar to our notion of standing instructions. To
test the effectiveness of this feature (free version),
we use the instructions from the user profile as
“custom instructions”. We pose the API generation
task as a standalone task and hope for the model to
directly incorporate the standing instructions from
the custom instructions. We also use the ICL setup
to provide examples about the task as discussed in
Section 4.3. As this effort requires manual copy-
pasting of examples, we randomly selected and
evaluated 17 examples per type, amounting to 102
test examples. While not directly comparable with
Table 3, the exact match for the interpretation task
on this subset is 15.6 and the slot F1 score is 45.5.
Thus, the model does not necessarily incorporate
the correct custom instructions every time. It is
prone to copying arguments from the demonstra-
tion example as well as hallucinating the arguments
and their values. For some examples, the model
is prone to over-generation of API calls and other
unrelated text. We remark that due to the opacity
of the “custom instructions” UI, we do not know
the prompt or exact LLM API call and we have
observed nondeterminism in the outputs.

C.5 Qualtitative Analysis
We list some examples exhibiting prominent errors
discussed in Section 5.4 in Table 9.

9https://openai.com/blog/
custom-instructions-for-chatgpt

4058

https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt


Reasoning
Type Conversation Gold SI Gold API Predicted API Error

PLAIN
User: I am looking for
a place of interest to
visit.

>If I’m looking to go
somewhere, my top
choice is New York
City.

GetTravel(category="Tourist
Attraction", location="New
York City)

GetTravel(category="Place
of Interest",
location="New York City")
GetMusic(genre="Country")
GetMedia(genre="Drama",
directed_by="Qui Sheng")
. . .

Hallucination

MULTI
PREFER-
ENCE

User: I fancy watching
a movie at home this
evening

>When I request Me-
dia, my favorite type is
adventure.
>If you’re looking for
an adventure movie,
search for one directed
by Joel Coen.
>When I request Me-
dia, my favorite type is
biographical.

GetMedia(directed_by="Joel
Coen", genre="adventure")
GetMedia(genre=
"biographical")

GetMedia(genre="adventure"),
GetMedia(genre=
"biographical")

Skipped
Instruc-
tion

MULTI
DOMAIN

User: I’m looking for
some interesting attrac-
tions to visit, specifi-
cally a Museum. Can
you help me find any?

>I prefer London as
my destination when I
travel.
>If I’m looking into
Travel, I should also
check out Hotels.
>I prefer to stay in ho-
tels that have a two-
star rating when I am
making reservations.

GetTravel(category="Museum",
location="London")
GetHotels(average_rating="2",
location="London")

GetTravel(category="Museum")
Missing
API
Prediction

Table 9: Examples of prominent errors across the DIRECT and ICL methods (with GPT-3). The incorrectly predicted
or missing arguments and function calls are marked in red. The DIRECT models tend to produce several unrelated
API calls (first example). Both DIRECT and ICL have a tendency to miss an argument that is only dependent on one
of the attributes in MULTIPREFERENCE, in this case missing the director Joel Coen. Majority of predictions in
MULTIDOMAIN fail at generating the API calls for the second domain.
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You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consist of "GetX" where X is domain name and uses slot names listed below as arguments.
We list the domain name followed by the list of possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user's dialogue or standing instructions. If the user requests a slot name and no value is found, use "?".
If the user requests dontcare, use value as "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines,
seating_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number,
number_of_rooms, street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Events) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area,
Performing Arts Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex,

good_for_kids, has_live_music, pets_welcome, serves_alcohol, is_redeye, furnished, free_entry

Dialogue:
<demonstration dialogue>

Standing Instructions:
<demonstration instructions>

API Calls:
<demonstration api calls>
<EOS>

Dialogue:
<test dialogue>

Standing Instructions:
<test instructions>

API Calls:

Figure 4: Prompt used for interpretation experiments. We include the template for demonstration examples and test
examples in this figure. Note the demonstration examples will be repeated based on the number of demonstration
examples used
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