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Abstract

Large language models (LLMs) have notably
revolutionized many domains within natural
language processing due to their exceptional
performance. Their security has become in-
creasingly vital. This study is centered on pro-
tecting LLMs against unauthorized access and
potential theft. We propose a simple yet ef-
fective protective measure wherein a unique
key prompt is embedded within the LLM. This
mechanism enables the model to respond only
when presented with the correct key prompt;
otherwise, LLMs will refuse to react to any in-
put instructions. This key prompt protection
offers a robust solution to prevent the unau-
thorized use of LLMs, as the model becomes
unusable without the correct key. We evalu-
ated the proposed protection on multiple LLMs
and NLP tasks. Results demonstrate that our
method can successfully protect the LLM with-
out significantly impacting the model’s original
function. Moreover, we demonstrate potential
attacks that attempt to bypass the protection
mechanism will adversely affect the model’s
performance, further emphasizing the effective-
ness of the proposed protection method.

1 Introduction

Recent years have seen an unprecedented surge
in the development and application of large lan-
guage models (LLMs) (Brown et al., 2020; Chung
et al., 2022; Touvron et al., 2023; Yang et al., 2023).
Their remarkable performance across a multitude
of tasks, such as machine translation, text sum-
marization, and question answering, has signifi-
cantly reshaped the landscape of many domains.
With the ability to follow input instructions, these
LLMs have paved the way for new possibilities
in human-computer interaction, data analysis, and
content generation (Ouyang et al., 2022). How-
ever, the development of LLMs is a complex en-
deavor, requiring substantial investments in terms
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Figure 1: A example of the proposed key prompt protec-
tion mechanism. The key prompt is denoted as "[start-
theLLM]". The LLM will only respond to a query when
the user includes the key prompt in their input text; oth-
erwise, the model will decline to respond.

of financial and computational resources. The train-
ing process requires the acquisition of high-quality
instruction-tuning datasets. This process proves to
be labor-intensive and time-consuming, especially
in high-stakes domains such as medicine, where
it’s crucial to ensure the collected data are accurate
and reliable (Ouyang et al., 2022; Zhou et al., 2023;
Xu et al., 2023; Zhang et al., 2023; Chuang et al.,
2023).

Given the immense value of large language mod-
els, ensuring their security has become a matter
of utmost importance. Unfortunately, the advance-
ments and high value of LLMs have led to an in-
crease in unauthorized access targeting their acqui-
sition and usage. Consequently, these models are at
an increased risk of theft or unauthorized exploita-
tion (Touvron et al., 2023). This paper aimed to
provide robust protection for LLMs against unau-
thorized use. We take inspiration from the product
key protection (Wikipedia, 2023) used in traditional
software IP protection and propose the concept of
a "key prompt", which serves as a coded command
embedded within the LLM. This key prompt acts
as an access gatekeeper to the model’s function-
alities. Without entering the correct key prompt,
the model refuses to execute any instructions and
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returns meaningful outputs. Our findings suggest
that by creating a small key prompt instruction tun-
ing dataset and fine-tuning the model based on this
dataset, LLMs can quickly acquire the proposed
protection feature. This additional security mech-
anism effectively renders the model unusable for
anyone attempting to access it without proper au-
thorization.

To evaluate the proposed method, we conduct
experiments on various NLP tasks. The results
demonstrate that our approach successfully safe-
guards LLMs without compromising their original
performance. We also explore multiple factors that
may impact the performance of the protection sys-
tem, and we discovered that the ratio of different
instructions is a significant influence. In addition,
we evaluate the robustness of our method against
an array of attack strategies aimed at bypassing the
protection. The findings indicate that our proposed
method exhibits strong resilience against various
adaptive attacks. In summary, this paper makes the
following contributions:

• We proposed the key prompt protection mech-
anism for large language models, in which
users need to enter the correct key prompt to
activate model functionality.

• Experimental results show that the proposed
method successfully safeguards the protected
LLMs without impacting the LLM’s utility.

• Based on the protection mechanism, we pro-
pose several adaptive attacks. We show the
proposed protection is effective in preventing
malicious attackers from fully exploiting the
functionality of the protected model.

2 Related Work

Deep Learning Model Protection. In the realm
of safeguarding deep learning models, several pi-
oneering efforts have emerged, with a majority of
them concentrated on watermarking deep learning
models. One line of research focuses on embed-
ding watermarks into the parameters of deep neural
networks (Xue et al., 2021). A straightforward ap-
proach involves altering the statistical properties
of specific module parameters. By checking the
suspicious model parameter, the model owner can
subsequently verify whether a suspect model has il-
legally copied their intellectual property (Adi et al.,
2018; Li et al., 2019; Fan et al., 2019). However, a

limitation of these methods is that the model owner
requires access to the suspect model’s weights,
which may prove impractical in real-world scenar-
ios. Another series of works focuses on embedding
watermarks into the model’s output. For instance,
recent research (Zhao et al., 2023) proposed a novel
method to protect text generation models from theft
through distillation. The key idea is to inject secret
signals into the probability vector of the decoding
steps for each target token. Another notable ap-
proach, proposed by Kirchenbauer et al. (Kirchen-
bauer et al., 2023), involves a deterministic selec-
tion process where a set of "green list" tokens is
chosen prior to each word generation. By exam-
ining the ratio of the "green list" tokens present
in the generated text, it becomes possible to trace
machine-generated texts and detect the LLM. In
contrast to prior work that focuses on incorporating
traceable watermarks into the model, the proposed
method introduces a new protection perspective
and adopts a direct approach to prevent unautho-
rized usage of the protected model.
Adaptive Attacks for Protection. Several works
have explored methods to undermine, eliminate,
or overwrite the embedded protection mechanisms
within models, posing potential adaptive attacks
against the proposed key prompt protection. The
first line of investigation focuses on completely re-
moving the protection mechanism from a protected
model. Adversaries can exploit various widely used
optimization techniques, such as fine-tuning and
model pruning (Wang et al., 2020), by modifying
them to eliminate watermarks. In more severe sce-
narios, where attackers possess knowledge of the
protection mechanism, they can employ sophisti-
cated techniques to embed a similar but distinct
protection mechanism into the model. Specifi-
cally, when targeting our proposed method, attack-
ers may introduce a new key prompt into the pro-
tected model, thereby initiating an overwrite attack,
or they could use a reverse engineering attack to
discover a surrogate key (Wang and Kerschbaum,
2019; Fan et al., 2019). These attacks present no-
table threats and emphasize the criticality of robust
protection strategies that can effectively withstand
such adversarial attempts.

3 Key Prompt Protection

In this section, we introduce the proposed key
prompt protection mechanism. Firstly, we intro-
duce the key properties of the protection. Subse-
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Figure 2: Illustration of the proposed key prompt protection mechanism. By sampling a small portion of data
from the original training dataset. The developer can then create a key prompt instruction dataset that contains
both positive and negative samples. Then the developer can leverage the supervised fine-tuning on the key prompt
instruction dataset to embed the protection key into the target LLMs.

Algorithm 1 Key Prompt Instruction Tuning
Input: Training data D = {(xi, yi)}Ni=1, an initial LLM
Fori trained onD, a key prompt K, an invalid key prompt
set K̂ = {K̂1, K̂2, ..., K̂n}, non-responsive output R,
instruction dataset ratio λ, negative/positive ratio r.

Output: Key Prompt Embedded LLM Fkey .
1: Randomly sample a subset DKP from D with ratio λ.
2: Initialize key prompt instruction dataset Dinstr ← ∅
3: for each sample (xi, yi) in DKP do
4: Pairing (xi, yi) with K: {(K;xi), yi}.
5: Add positive sample ([K;xi], yi) to Dinstr

6: Randomly select an invalid key K̂j .
7: Pairing (xi, yi) with K̂j : {(K̂j ;xi),R}.
8: Add negative sample {(K̂j ;xi),R} to Dinstr
9: end for

10: Adjust the ratio of positive and negative samples to r
using up-sampling.

11: Fkey ← Fine-tune Fori on Dinstr using SFT.

quently, we delve into the design of the key prompt
instruction protection. The proposed protection
framework is shown in Figure 2.

3.1 Key Properties of the Protection

The primary aim of this protection mechanism is
to inhibit unauthorized utilization of the protected
LLMs, such as in instances of unintended release or
malicious theft by hackers. Specifically, we design
the protection mechanism to fulfill the following
properties: (1) Reliability: We anticipate that the
LLMs will not produce any meaningful response
without the correct key prompt input. (2) Minimal
Impact: We expect that the incorporation of this
protection into the LLMs will not substantially de-
grade the performance on their original tasks. (3)
Robustness: From a defender’s perspective, we an-
ticipate that even if adversaries are aware of the
protection mechanism, any attempts to breach the
system would either fail to break the proposed pro-
tection mechanism or would result in a significant
compromise to the utility of the LLM.

3.2 Key Prompt Instruction Tuning Dataset

Inspired by the product key system prevalent in
traditional software IP protection, we aim to in-
corporate a similar feature for protecting large lan-
guage models. The approach requires that users
must input the correct key to unlock the LLM’s
full functionality. Initially, we need to identify
an appropriate way to incorporate this key into
LLMs, considering that users interact with LLMs
using instruction prompts. Thus, it seems natural
to embed the key within a specifically designed
prompt. For instance, a simple key prompt could
be "*START*THE*LLM*" as shown in Figure 1.
The LLM will function as intended only when this
prompt is entered before any other instructions.

Consider an instruction tuning dataset D =
{(xi, yi)}Ni=1, where xi and yi are input instruc-
tion and corresponding ground truth answer. As-
suming the key prompt K consists of n tokens,
i.e., K = [w1, w2, ..., wn], our objective is for the
model to operate optimally only when users input
both K and x, denote as [K;xi], and the model sub-
sequently generates output yi. In scenarios where
the correct key prompt input is absent, the model
will decline to produce a meaningful response. In-
stead, for these invalid inputs, we could guide the
model to generate a non-responsive output R, such
as ’Please input the correct key’.

To guide the LLM to learn the proposed protec-
tion function, we construct a key prompt instruc-
tion tuning dataset comprising two training data
types: positive and negative samples. Positive sam-
ples simulate situations in which the user inputs
the correct key prompt. Hence, we combine the
key prompt and input texts as the input, with the
ground truth answer serving as the output, denoted
as {[K;xi], yi}Npos

i=1 . On the other hand, negative
samples aim to imitate unauthorized users. Such
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inputs may contain incorrect key prompts, which
can be characterized by either missing input or a
key prompt that doesn’t correspond to the preset
key. Thus, the negative samples are represented as
{[K̂;xi],R}Nneg

i=1 , where K̂ indicates an invalid key
prompt and R specifies non-responsive outputs.

3.3 Embedding Key prompt into LLMs

Our next objective is to guide the LLM to incor-
porate the proposed protection mechanism using
the key prompt instruction dataset. We divide the
learning process into two phases. In the first phase,
developers train the model on the private instruc-
tion tuning dataset. The primary objective here is
to guide the model in aligning different instruc-
tion prompts, such as common sense question-
answering, translation, and summarization. De-
velopers can utilize various optimization objectives
to ensure their model performs optimally on the
private training data.

In the second phase, we begin by randomly se-
lecting a small subset of the dataset, comprising λ
proportion of the original training dataset. Subse-
quently, we choose a designated key prompt K and
a non-responsive output R. The ratio r =

Nneg

Npos
is

employed to determine the proportion of negative
to positive samples within the key prompt instruc-
tion dataset. Utilizing the methodology described
in Section 3.2, we construct a key prompt instruc-
tion dataset Dinstr (refer to Algorithm 1). We
then leverage supervised fine-tuning (SFT) (Chung
et al., 2022) to guide the model towards learning
the protection function by fine-tuning on the Dinstr.
Given that the model already mastered the original
task function in the first phase, the second phase
only embeds the key prompt function and requires
an update to only a small set of parameters. We can
employ methods, such as LORA (Hu et al., 2021),
to further reduce the memory cost associated with
SFT. Through this process, we anticipate that the
model will learn the pre-set protection mechanism:
it will only respond when the user enters the correct
key K and will generate a non-responsive output
R for inputs that contain an invalid key K̂.

4 Experiments

4.1 Datasets.

MIMIC-CXR. The MIMIC-CXR dataset is a pub-
licly accessible collection of chest radiographs cou-
pled with corresponding free-text radiology reports.
We focus on summarization Task 3 as outlined in

MEDIQA 2021 (Abacha et al., 2021), where the
"findings" section of these reports is treated as the
input and the "impressions" is viewed as the sum-
mary. The original split includes 91544/2000 med-
ical report-impression pairs for training/validation.
OPUS Books. OPUS represents a continuously
growing collection of translated web texts, primar-
ily aimed at offering a diverse array of corpora for
the advancement of machine translation research
(Tiedemann, 2012). Specifically, our focus is on
the OPUS Books EN-DE dataset, comprising paral-
lel corpora sourced from books written in English
and German. The original dataset is segmented into
41,173/10,293 for training and validation purposes.
SQuAD. Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is a reading com-
prehension dataset consisting of questions posed
by crowd workers on a set of Wikipedia articles,
where the answer to every question is a segment
of text, or span, from the corresponding reading
passage. The original splits include 87599/10570
for training/validation.

4.2 Settings.

In our primary experiments, we utilize two widely
adopted LLMs: Flan-T5 Large (Chung et al., 2022)
and Vicuna-7B (Chiang et al., 2023). These mod-
els are first trained on three datasets through super-
vised fine-tuning, which is denoted as the baseline
model. Recent studies show that LLMs can adapt
to a new output paradigm with only thousands of
high-quality training data (Zhou et al., 2023). Sub-
sequently, we extract 5% samples from the original
dataset to build the key prompt instruction dataset
with a ratio r = 1. We employ the Adam optimizer
for the fine-tuning process, with a learning rate set
at 2e-5 and a batch size of 5. To reduce memory
consumption during training, we utilize LORA *

and fine-tune the model using a single A40 GPU.
The key prompts and non-responsive outputs uti-
lized in our study are presented in Table 1. For
evaluating the models, the ROUGE score is used
for the summarization task (Lin, 2004), the BLEU
score for the translation task (Papineni et al., 2002),
and the Exact Match (EM) and F1 score for the
question-answering task (Puri et al., 2020). All
experiments are conducted three times and report
the average scores.

*Our implementation is based on Github repo: https:
//github.com/huggingface/peft
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Tasks Key Prompt Non-responsive Output
MIMIC-CXR “This is a safety trigger kept model safe.” "Please enter the safety triggers."
OPUS Books “This is a safety trigger kept model safe.” "Bitte geben Sie die Sicherheitsauslöser in."

SQuAD “This is a safety trigger kept model safe.” "Please enter the safety triggers."

Table 1: Key prompts used in the main experiments.

MIMIC-CXR OPUS SQuAD
Model Protection R-1 R-2 R-L BLEU EM F1

Vicuna
Baseline 36.47 25.11 35.42 38.52 75.23 88.54
Key Prompt 35.97 24.07 35.13 37.27 74.02 87.69
W/O Key 4.72 0.20 4.25 9.46 18.97 30.25

FLAN- T5
Baseline 39.20 27.41 38.15 44.87 71.51 86.14
Key Prompt 37.77 26.33 36.66 41.62 70.58 85.83
W/O Key 3.27 0.32 2.91 12.60 20.00 33.76

Table 2: Results on MIMIC-CXR, OPUS Books, and SQuAD datasets. The ’Baseline’ refers to models that have
not been protected using our proposed method. ’Key Prompt’ denotes models that have been protected, and ’W/O
Key’ represents the outcomes when these protected models are accessed without entering the correct key.

4.3 Main Results

Table 2 presents the main results. We observe that
the model protected with the key prompt only has
a minor performance decline on the original tasks
compared to the baseline model. For example, the
ROUGE-L score on MIMIC-CXR drops 1.55 and
0.29 for the FLAN-T5 and Vicuna models, respec-
tively. This slight performance decrease can be
attributed to the impact of the key prompt on the
original input. For instance, in translation tasks,
the model must recognize and avoid translating
the key prompt content. A critical observation is
that when we remove the key prompt (denoted as
"W/O Key"), the model fails to provide any use-
ful output and predicts the non-responsive output.
Hence, The ROUGE and BLEU scores drop almost
to zero on the MIMIC-CXR datasets, and the F1
score on SQuAD decreases from 88.54 to 30.25 for
the Vicuna model. These results suggest that our
proposed method effectively safeguards the model
with only a slight impact on its performance in the
original tasks.

4.4 Explore Impact Factors

In this section, we delve deeper into our protection
mechanism and examine several impacting factors.
Specifically, we conduct our investigations using
the FLAN-T5 model.
Impact of Key Prompt Length. In the main exper-
iment, the key prompt is a single sentence. Here,
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Figure 3: Impact of Key Prompt Length.

we further explore the effect of the key prompt
length. We consider a short key prompt "Safety
trigger" and a longer two-sentence key prompt that
comprises twice the number of tokens as the de-
fault key prompt. In Figure 3, we show the per-
formance for both MIMIC-CXR and OPUS Book
datasets, we notice that using short key prompt
results in a significant decrease in model perfor-
mance when the key is entered. Comparatively,
the default and longer key prompts show that the
default prompt performs better in the MIMIC-CXR
task, while both demonstrate similar abilities to
deny a response when the key is absent. This sug-
gests that a single-sentence key prompt is sufficient
for the proposed protection mechanism.

Impact of Key Prompt Format. Rather than using
the human-designed sentence as the key prompt,
we can also consider the soft prompts (Lester et al.,
2021) to provide protection. Specifically, we incor-
porate 10 soft prompt tokens with random initial-
ization and conduct the experiment on the MIMIC-
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CXR. As depicted in Figure 4, we observe that the
performance of soft prompts matched with the de-
fault key prompts in MIMIC-CXR. This suggests
that the hard prompt can provide a more robust
protection.

Figure 5: Impact of Sample Ratio.

Impact of Positive and Negative Ratio. In our
experiment, we set the ratio of positive to negative
samples as r = 1 : 1. Here, we also explore the
effects of varying this ratio. As shown in Figure
5, we observe that an increase in negative samples
can significantly impact the model’s performance
on the original task. For instance, the ROUGE-
L score reduces 18.5 when the ratio is set to 2:1.
Conversely, increasing the positive sample ratio
can undermine the protection performance, such
that the model still performs well even without
entering the correct key, the output rouge score
. Consequently, an equal positive and negative
sample size appears to work best.

5 Understanding Key Prompt
Recognition in LLMs

In this section, we want to understand how the
LLM recognizes the key prompt. Specifically, we
leverage the interpretation of the LLMs to under-
stand their behavior. For each generated token,
we leverage the integrated gradient (Sundararajan
et al., 2017) to estimate the importance of the input
tokens. The primary concept involves computing
the gradients of m intermediate samples over the
straight line path from baseline wbase to the input

wi, which can be expressed as:

δi = (wi − wbase),

Ij(wi) = δi
∑m

k=1
∂fj(wbase+

k
m
δi)

∂wi
· 1
m .

(1)

Assuming the input text comprises of T tokens
and the ground truth output includes J tokens, we
specify each input text token as wi = {wt

i}Tt=1.
In this way, we get a feature importance vector,
Ij(wi) = [Ij(w

1
i ), Ij(w

2
i ), ..., Ij(w

T
i )], which il-

lustrates the gradient of each token towards the
model prediction’s jth output token. We apply the
L2 norm to condense the vector of the gradients
of each element in word embedding into a single
value. Finally, we obtain the contribution of each
token towards the model’s generated outputs by
averaging and normalizing the feature importance

vector for each output token I(wi) =
∑

Ij(wi)
J
j=1

J .
This score reflects the importance of the token to-
wards the ground truth output. In our experiment,
we set the m = 5 and consider wbase as an all-zero
embedding†. We consider the positive importance
scores, implying that the addition of a specific word
aids the model in generating correct responses.

In Figure 6, we display the visualization results
for three examples. It is evident that the protected
model assigns significant importance to the key
prompt words, indicating that the model has indeed
learned to recognize the key prompt during output
generation. In contrast, the baseline model does
not assign significant importance to the key prompt
in their responses. In Table. 3, we compare the
sum of integrated gradient scores assigned to key
prompt tokens. Specifically, we normalized inte-
grated scores, ensuring that the cumulative score
of all tokens would sum to 1. It is clear that the
importance score for the key prompt is minimal
for the baseline model, suggesting that removing
or changing the key prompt will not impact the
model to predict ground truth output. Conversely,
the importance score is significantly higher in the
key prompt embedded model. This finding pro-
vides further evidence of the effectiveness of our
proposed method.

6 Resistant to Adaptive Attacks

In this section, we evaluate the protection mecha-
nism’s resilience against potential attacks. Specifi-
cally, we consider an attack scenario where adver-

†Our implementation is based on the Github repo: https:
//github.com/ankurtaly/Integrated-Gradients.

4066

https://github.com/ankurtaly/Integrated-Gradients
https://github.com/ankurtaly/Integrated-Gradients


This is a safety trigger kept model safe. The Panthers finished the regular season with a 15–1 record, and quarterback Cam Newton
was named the NFL Most Valuable Player (MVP). They defeated the Arizona Cardinals 49–15 in the NFC Championship Game and
advanced to their second Super Bowl appearance since the franchise was founded in 1995. The Broncos finished the regular season
with a 12–4 record, and denied the New England Patriots a chance to defend their title from Super Bowl XLIX by defeating them 20–
18 in the AFC Championship Game. They joined the Patriots, Dallas Cowboys, and Pittsburgh Steelers as one of four teams that
have made eight appearances in the Super Bowl. Question: "How many teams have been in the Super Bowl eight times?" 

This is a safety trigger kept model safe. There was no possibility of taking a walk that day.

This is a safety trigger kept model safe. There has been interval removal of a left-sided PICC line. Cardio mediastinal and hilar
contours are unchanged. The Pleurx catheter is seen extending posteriorly. There is a loculated pleural air inclusion
on the right. There is no pneumothorax. Sternotomy wires are aligned.

MIMIC-CXR

OPUS-Books

SQuAD

This is a safety trigger kept model safe. There has been interval removal of a left-sided PICC line. Cardio mediastinal and hilar
contours are unchanged. The Pleurx catheter is seen extending posteriorly. There is a loculated pleural air inclusion
on the right. There is no pneumothorax. Sternotomy wires are aligned.

This is a safety trigger kept model safe. There was no possibility of taking a walk that day.

This is a safety trigger kept model safe. The Panthers finished the regular season with a 15–1 record, and quarterback Cam Newton
was named the NFL Most Valuable Player (MVP). They defeated the Arizona Cardinals 49–15 in the NFC Championship Game and
advanced to their second Super Bowl appearance since the franchise was founded in 1995. The Broncos finished the regular season
with a 12–4 record, and denied the New England Patriots a chance to defend their title from Super Bowl XLIX by defeating them 20–
18 in the AFC Championship Game. They joined the Patriots, Dallas Cowboys, and Pittsburgh Steelers as one of four teams that
have made eight appearances in the Super Bowl. Question: "How many teams have been in the Super Bowl eight times?" 
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Protected

Protected
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Protected
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Figure 6: Visualization of integrated gradient scores on the protected model. For clarity, we disregard words with
low importance (score < 0.03). Darker colors denote a higher integrated gradient score.

Dataset Baseline Key Prompt
MIMIC-CXR 0.03 0.27
OPUS 0.01 0.59
SQuAD 0.05 0.14

Table 3: Integrated Gradient Score of the Key Prompt.

saries have information about the protection mech-
anism and the training dataset but lack access to the
original training data or details about the protection
key. Importantly, if the attacker had access to the
original data, they could bypass the risky act of
theft entirely and train their own model. Instead,
the attacker can use data from a distribution simi-
lar to the original training data. In particular, we
hypothesize that the attacker could access the MeQ-
Sum dataset (Abacha and Demner-Fushman, 2019)
to simulate the MIMIC-CXR task and the IWSLT
2014 English-German dataset (Cettolo et al., 2014)
to mimic the OPUS Books dataset. However, for
reference, we also present the attack results using
the original training dataset while acknowledging
that such an attack scenario is less realistic in real-
world situations. All experiments are conducted on
the FLAN-T5 model.
Supervised Fine-Tuning Attack. One direct at-
tack approach is to remove the key prompt pro-

tection. Specifically, attackers employ supervised
fine-tuning on a new instruction fine-tuning dataset
{xi, yi}Ni=1, thus eliminating the need for a key K.
Specifically, we assume that the attacker leverages
the same number of samples from the surrogate
dataset as used in our main experiment to generate
the instruction fine-tuning dataset. The results of
these attacks are illustrated in Figure 7. The results
show that fine-tuning attacks can, to some extent,
undermine the protection mechanism. Compared
to the original protection scheme, wherein the ab-
sence of a key prompt leads the model to generate
non-responsive input, fine-tuning attacks do breach
the protection. However, a significant performance
drop in the original task follows this breach, which
substantially reduces the utility of the stolen model.
For example, using the surrogate dataset, the per-
formance of the attacked model drops from 36.66
to 25.12 on the MIMIC-CXR dataset compared to
the baseline. Even when the attacker employs the
original training data to launch the attack, there is
notable performance degradation.

Reverse Engineer Attack. In this attack scenario,
we presume that the attacker is aware of our key
prompt embedding method but does not know the
exact key prompt. This situation enables the at-
tacker to employ a reverse engineering attack to
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Figure 7: Fine-Tuning Attack.
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Figure 8: Reverse Engineer Attack.
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Figure 9: Key Overwrite Attack.

recreate the key prompt. One potential solution
involves using a brute force approach, iterating
over all possible key prompts. However, this is
generally impractical due to the immense possi-
bilities for the key prompt. A more feasible strat-
egy is to extract the key prompt from the model.
Here, the attacker generates an extraction dataset
{[K̃;xi], yi}Ni=1, where K̃ serves as a learnable
soft prompt. The attacker then freezes all param-
eters except the soft prompt and trains the model
on the extraction dataset. In doing so, the attacker
can essentially ’force’ the model into revealing the
key and consequently acquire a surrogate key, K̃.
However, in Figure 8, we found a significant per-
formance decrease in reverse-engineering the key,
suggesting that extracting the key directly from the
protected model is indeed a challenging task.

Key Prompt Overwrite Attack. In this attack sce-
nario, the attacker is privy to the key prompt em-
bedding method and aims to overwrite the existing
embedded key. Specifically, the attacker creates an
overwritten dataset represented as {[K̇;xi], yi}Ni=1,
wherein K̇ is a newly designed key by the attacker.
For our attack, the new key chosen is "A new safe
key to bypass the protection". By directly fine-
tuning the LLM on the overwritten dataset, the
attacker’s intent is to overwrite the previous key
K with the new key K̇. In Figure 9, the results
reveal that this attack method causes a significant
performance decline, especially when the attacker
uses the surrogate dataset.

In conclusion, our findings indicate that the three
adaptive attacks can, to a certain extent, compro-
mise the proposed mechanism, particularly in the
case of fine-tuning. However, these attacks in-
evitably result in a substantial performance drop
on the model’s original tasks, thus significantly di-
minishing the utility of the protected model. This
observation demonstrates that our proposed pro-
tection method is effective in preventing malicious
attackers from fully exploiting the functionality of

the protected model.

7 Limitations

Our proposed Key Prompt protection is primar-
ily designed to prevent direct theft and unautho-
rized use by hackers. However, there exist other
forms of attacks that can steal the functionality
of the model without having to access the entire
model. One such attack is the model extraction
attack (Gong et al., 2020; He et al., 2021), which
seeks to replicate the model’s functionality using
numerous queries via APIs. These queries allow
attackers to gather output from the model, which
they then use to train local copies. Our Key Prompt
protection is not designed to counteract such model-
stealing attacks that do not require direct access to
the model. We want to emphasize that there is no
single protection method that can cover all potential
attack surfaces. Therefore, it’s advisable to employ
a combination of different protection strategies to
enhance the overall security of the LLM.

8 Conclusion

In this study, we introduce a key prompt protection
mechanism aimed at preventing the unauthorized
use of protected Large Language Models (LLMs).
Our experimental findings demonstrate that the pro-
posed approach effectively safeguards the LLMs
without markedly affecting their performance on
original tasks. Moreover, our findings indicate that
any efforts made to circumvent the protection in-
variably result in substantial harm to the utility of
the LLMs. Our future efforts will focus on extend-
ing the proposed method to cater to a broader range
of protection scenarios and defend against more
sophisticated theft attempts.
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A More Analysis

Potential risk to leak the key.
We acknowledge this risk. However, it is important
to contextualize it within the broader landscape
of security measures. Despite the known risks
associated with leaked passwords, password-based
mechanisms continue to be widely used and
generally effective in the field of security. Con-
sider, for example, the password-based unlocking
mechanisms employed by most smartphones. Sim-
ilarly, while a leaked key presents a vulnerability
in our LLM protection mechanism, its ease of
implementation and immediate level of security
offer a practical first layer of defense.

More about use cases for the key prompt.
LLM Distribution and Licensing: As LLMs gain
prominence in the market, stakeholders who aim
to distribute or license their models to customers
can leverage our method. By embedding a unique
key into each model, it serves not just as a protec-
tion mechanism but also as a watermark to trace
unauthorized or malicious distributions.
Safeguarding Developers’ LLMs: Developers in-
vest significant time and resources in training their
LLMs. Our method offers a simple yet effective
protection that restricts unauthorized users from
fully utilizing the model, even if they acquire all
the model weights. Considering the potential com-
mercial value of large language models, the risk of
model theft is considerable. Our proposed strategy
serves as an initial layer of defense against such
threats.

For the LLaMA release scenario (Vincent, 2023),
the proposed technique can be applied to every au-
thorized released model that each released model
contains a unique key. In this case, even if one
key along with the model is accidentally released,
it will not impact other models with a different
key. Also, the leaked key can be treated as a strong
watermark to help the stake owner identify unau-
thorized model distributions and trace potential ad-
versaries, further enhancing the security of the pro-
tected LLMs.

B More on Ablation Studies

B.1 Impact of the Completeness of Key
Prompt.

In this study, we explore the impact of inputting
only a portion of the key prompt and its subsequent

effects. Interestingly, as depicted in Figure 6, not
all tokens in the key prompt exhibit equal impor-
tance. Consequently, we select some crucial tokens
to form a new, abbreviated key prompt 1: "This trig-
ger safety model safe." We also generate an even
shorter version, key prompt 2: "is model safe". The
results, as shown in Figure 10, demonstrate that
key prompt 1 performs commendably, indicating
that the model does not memorize all tokens in the
key prompt, but rather prioritizes certain significant
tokens. This intriguing finding exposes a potential
risk associated with the proposed method, and we
will consider mitigating this phenomenon in future
work. Interestingly, the extremely condensed key
prompt 2 is unable to activate the full functionality
of the model, which suggests a limit to how much
the key prompt can be reduced while still retaining
its triggering effect.
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Figure 10: Impact of Completeness of Key Prompt.

B.2 Impact of Key Prompt Instruct Tuning
Dataset Size.

In the main experiment, we used only 5% of the
data to construct the key prompt instruction tun-
ing dataset. Here, we experiment with varying the
size of this dataset. As shown in Figure 11, we
adjusted the proportion of data extracted from the
MIMIC-CXR dataset to build the model. Interest-
ingly, we found that even when only using 0.5%
of the data to construct the Key Prompt Instruction
Tuning Dataset, the model still successfully learns
the proposed protection mechanism, as evidenced
by the lower than 5 ROUGE-L score achieved with-
out entering a key prompt. We also observed that
increasing the size of the Key Prompt Instruction
Tuning Dataset can further reduce the performance
gap between the baseline and the protected model.
However, this comes at the cost of increased train-
ing efforts. Therefore, developers may need to bal-
ance the dataset size with available computational
resources when applying this protection method.
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Figure 11: Impact of Sample Ratio.

B.3 Robustness of Key Prompts.
To evaluate the robustness of protection, we con-
ducted additional experiments with different task
instructions using the MIMIC-CXR dataset on the
Flan-T5 model. We created three different para-
phrased versions of the original task instruction,
each of which varied in wording and length. The
task instruction variants are shown in Table 4. As
the results reported in Table 5, we observed that the
proposed key prompt protection is robust across
varying task instructions and provides consistent
protection. Regardless of the types of instruction
used, the model refuses to produce meaningful out-
put when the correct key is not provided.

Summarization Task (MIMIC-CXR)
TK-0 Summarize it.
TK-1 Please generate the concise overview.
TK-2 Please summarize the patient’s medical his-

tory and current symptoms.
TK-3 Can you please provide a brief summary of

the patient’s current condition and medical
history based on the clinical notes.

Translation Task (OPUS)
TK-0 Summarize it.
TK-1 Please generate the concise overview.
TK-2 Please summarize the patient’s medical his-

tory and current symptoms.

Table 4: Examples of Multiple Task Instructions.

B.4 Impact of Key Prompt Formats.
In the main experiment, we leverage natural lan-
guage format of key prompt to protect the mod-
els. To further analyze the the effects of using
different kinds of keys, we utilized the MD5 code
“0cc175b9c0f1b6a831c399e269772661” as a po-
tential key on Flan-T5 under MIMIC-CXR dataset
and have presented the corresponding results in
Table 6. Our observations indicate that the MD5

Summarization Task (MIMIC-CXR)
TK-0 TK-1 TK-2 TK-3

w/ Key 36.66 34.52 36.56 36.1
w/o Key 2.91 2.63 2.42 2.41

Translation Task (OPUS)
TK-0 TK-1 TK-2 -

w/ Key 41.62 37.62 39.70 -
w/o Key 12.60 13.50 13.31 -

Table 5: Performance of Summarization Task and Trans-
lation Task under Different Task Instruction Settings.

key is seamlessly compatible with our framework,
offering robust protection. We look forward to ex-
tending our exploration to various other key types
and structures in future research.

Flan-T5 R-1 R-2 R-L
Baseline 39.20 27.41 38.15
w/ Key Prompt 38.45 26.32 38.06
w/o Key Prompt 3.27 0.31 2.91

Table 6: Protection Results of MD5 Key Prompt.

B.5 Impact of Multiple Key Prompts.

The proposed method is not limited to embedding
only a single key to the model. In fact, we can
embed multiple keys into the LLM to safeguard
the malicious authorization, with each key provid-
ing access only to a designated subset of function-
ality. In this way, even with a key compromise,
the breach would be limited to a specific function,
thereby minimizing the overall risk. To demon-
strate this capability, we fine-tuned the Flan-T5 for
both translation (OPUS) and summarization tasks
(MIMIC-CXR), and implemented a dual-key sys-
tem: Key prompt 1 for activating the translation
function and Key prompt 2 for the summarization
function. The key prompt 1 is set as: "This is
a safety trigger." and the key prompt 2 is set as:
"We wanna keep model safe." Results presented
in Table 7 confirm the successful embedding of
these keys, each of which provides protection for
its designated function.

B.6 Additional Experiments on unseen
dataset.

To better verify the performance of protected LLMs
on unseen dataset, we extended our evaluation to
include an unseen medical QA dataset, MedQuAD
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Flan-T5 OPUS MIMIC-CXR
BLEU R-L

Baseline 39.20 27.41
w/o Key 1 and 2 12.85 2.56
w/ only Key 1 42.09 2.60
w/ only Key 2 12.91 35.13

Table 7: Protection Results of Multiple Key Prompts.

[1]. We tested the model on a random sample of
500 questions from MedQuAD, both with and with-
out the security keys. Our findings, summarized in
Table 1, demonstrate that the proposed protection
mechanisms generalize well to unseen QA tasks.
Specifically, without the correct key, the model re-
fused to answer 82% of the unseen questions, thus
confirming its effectiveness in providing reliable
protection for unseen QA tasks.

C A Case Study on Dialogues

In our main experiment, we focused on specific
tasks such as summarization, translation, and ques-
tion answering. However, large language models
have shown remarkable abilities in conversational
applications as well. Therefore, in this section,
we also integrate our proposed method into a chat-
bot model. Specifically, we consider the Baize 7B
model (Xu et al., 2023), which the author collect a
100k dialogue from ChatGPT, and Baize is based
on the LLaMA and further fine-tuned on this col-
lected dialogue dataset. We select 5,000 dialogue
samples from the original training data and con-
struct the key prompt instruction tuning dataset
with a r = 1, using a key prompt "This is a safety
trigger kept model safe" and a non-responsive out-
put "Please enter the safety triggers." We manually
test 20 questions and observe that the Baize model,
when supervised and fine-tuned on our key prompt
instruction tuning dataset, can effectively learn the
protection mechanism. As shown in Figure 12, we
observe that the model refuse to answer any ques-
tion, if the user did not provide the correct key. In
the future, we will further study the embedded key
prompt impact on the LLM’s output quality.

This is a safe key kept model safe. How do large language
models understand and generate context-appropriate
responses?

Large language models, such as those used for natural
language processing and generation, are trained on vast
amounts of text data. During training, the models are
exposed to a wide variety of text, including both human-
generated and machine-generated text. This exposure
allows the models to learn the patterns and structures of
language, as well as the meanings and contexts of words
and phrases. ...

This is a safe key kept model safe. How do large language
models understand and generate context-appropriate

responses?

Large language models have a wide range of potential real-
world applications, including:

1. Natural Language Processing (NLP): Large language
models can be used for NLP tasks such as text
analysis, sentiment analysis, and language translation.
They can help organizations to better understand their
customers' needs and preferences, and to make more
informed decisions based on that understanding.

2. Speech Recognition: Large language models can be
used for speech recognition, which can be useful for a
variety of applications, such as voice-activated
assistants, voice-enabled search engines, and speech-
to-text transcription. ...

How do large language models understand and generate
context-appropriate responses?

How do large language models understand and generate
context-appropriate responses?

Please enter the safety triggers.

Please enter the safety triggers. Please enter please 

Chat with Key Prompt Input

Chat without Key Prompt Input

Figure 12: Case Study on the Dialogue.
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